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Abstract

An algorithm for controlling the pump powers of broadband Raman amplifiers is pro-
posed. The algorithm is based on a variant of the standard Raman model for pump-channel
interactions, and determines pump settings that minimize peak-to-peak ripple of the chan-
nel powers with respect to any given per-channel target. It is shown that such optimal
pump settings can be computed via the solution of linear programs. Some examples are
presented.

1 Introduction

It has long been known that stimulated Raman scattering can be employed to build amplifiers
for compensating fiber loss in optical transmission systems. We refer the reader to [5, 11, 12, 13],
[1, Chapter 8], [18, Chapter 3], and the references given there. Raman amplifiers use the fiber
itself as the amplification medium. Raman pump power is launched into the fiber and then
transferred to the signals via stimulated Raman scattering.

In recent years, there has been a lot of interest in Raman amplification; see, e.g., [2, 16,
17, 20, 21], the survey paper [13], and the references given there.

There are two main reasons for this renewed interest in Raman amplification. First, the
Raman effect has a broad gain curve, which makes it very attractive for today’s broadband
DWDM (dense wavelength-division multiplexing) systems [7]. By employing a small number
of Raman pumps, operating at different frequencies, it is possible to provide sufficient gain
throughout the whole signal band. In Figure 1 we display the typical Raman gain curves
for a state-of-the-art DWDM system with six Raman pumps. Note that the gain curves are
normalized so that the maximal gain for each curve is one. Also shown in Figure 1 is a typical
set of channel frequencies in such a DWDM system. There are 128 channels from 186.50 THz
to 192.85 THz, with 50 GHz spacing.

Second, Raman amplifiers require pumps with output of several hundreds of milliwatts.
Semiconductor pump lasers with such power outputs have now become commercially available
at an appropriate cost, and thus Raman amplification has become feasible.
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Figure 1: Raman gain of six pumps operating at different frequencies

As indicated above, Raman amplifiers for broadband systems employ multiple pumps. The
powers of these pumps need to be adjusted dynamically, so that signal powers are as flat as
possible, relative to some given power target.

For flat power targets, some approaches for controlling the pump powers of broadband
Raman amplifiers have appeared in the literature. In [20], simulated annealing is used to flatten
signal powers. In [15, 17], a genetic algorithm is employed to flatten signal powers. Both these
approaches are based on the standard simplified Raman model that expresses signal powers in
a log scale as linear functions of the linear pump powers. However, simulated annealing and
genetic algorithms are very generic optimization methods that do not take advantage of the
structure of the Raman control problem. Moreover, they are not guaranteed to find optimal
pump settings that minimize signal ripple. Even when these techniques converge to close-
to-optimal pump settings, convergence is too slow to control the Raman pumps of an actual
system

In this paper, we propose a different approach for controlling the pump powers of broadband
Raman amplifiers. The algorithm is based on a new variant of the standard simplified Raman
model, and determines pump settings that minimize peak-to-peak ripple of the channel powers
with respect to any given per-channel target. Such optimal pump settings can be computed
via the solution of certain linear programming problems.

The paper is organized as follows. In Section 2, we state the standard simplified Raman
model and present our new variant thereof. In Section 3, we present a first formulation of the
control problem. In Section 4, we give a precise formulation of the Raman control problem
as a linear program. In Section 5, we present some examples. Finally, in Section 6, we make
some concluding remarks.



2 The underlying model

The equations that describe the power evolution of Raman amplification are well known; see,
e.g., [6, 8,9, 10, 16, 21]. If only pump-signal interactions are taken into account, then these
equations result in a simple Raman model that expresses signal powers in a log scale as linear
functions of the linear pump powers. This simplified model is the basis for the approaches
described in [15, 16, 17, 20] for the control and design of Raman amplifiers. Next, we state the
simplified model and present a new variant thereof.

We consider the propagation of n signal channels along a fiber of length L. The signals
are amplified by m backward Raman pumps, and possibly a number of forward pumps. We
denote by Sj(z), i = 1,2,...,n, and Pj(z), j = 1,2,...,m, the power (in mW) at position z
of the i-th channel, and the j-th backward pump, respectively. Moreover, r;; is the Raman
gain between the i-th channel and the j-th backward pump. With this notation, the simplified
Raman model can be stated as follows:

m
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Here,
y; == 101og 10 (S;(L)) (2)

is the 4-th channel power (in dBm) at the end of the fiber, and
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Moreover, the term ¢; in (1) represents the i-th channel power at the beginning of the fiber,
fiber loss, and Raman gain provided by possible forward pump. As well see below, the term ¢;
actually drops out in our formulation of the Raman model.

The Raman control problem is to adjust the initial values

P = -PJ(L)’ .]: 1123"'7ma m, (4)

of the m backward pumps such that the signal powers (1), y;, ¢ = 1,2,...,n, at the end of the
fiber are as “flat” as possible in some yet to be specified sense. Next, we introduce the vectors
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With (5) and (6), the system (1) can be stated in the following compact form:
y(p) = c+ RP(p). (7)

Recall that the control variables are the initial values (4) of the backward pumps, which,
by (5), are just the entries of the vector p in (7). Moreover, in (7), R is the Raman gain
matrix for which nominal values are known, and y(p) is the vector of channel powers (in
dBm) at the end of the fiber. In a simulation environment, values for y(p) are generated by
a suitable Raman simulator. In an actual system, values for y(p), up to some noise level, are
measured by the system’s optical monitor (OMON). In view of (3), the constant term, c, in (7)
represents fiber loss and the Raman gain generated by the forward pumps. Values for ¢ are not
available in general. Fortunately, the vector ¢ can be eliminated easily. Indeed, let p°4 be the
current powers of the backward pumps and let y(p°9) be the corresponding channel powers
as generated by a Raman simulator or measured by an OMON. Then, by considering (7) for

both p and p°9, and by taking differences, we obtain the following relation:
y(p) =y(o") + R (P(p) - P(p™)). ®)
By linearizing P (p) about p°'4, we get
ﬁ(p) _ﬁ(pold) zJ(p—pOld), (9)
where
J = J(pold) — Dﬁ(pold) (10)

is the Jacobian of the function
p > Plp) (11)

at the pump settings p°9. Note that, in view of (3) and (5), the entries of the vector P(p) are
just the integrals of the backward pump powers along the fiber.
Finally, by inserting the approximation (9) into (8), we obtain the linear relation

y(p) =y(p°) + RJ (p — p°9) (12)

between the initial values p of the backward pump powers (in mW) and the corresponding
signal powers y(p) (in dBm) at the end of the fiber. Equation (12) is the basis of our Raman
control algorithm.

Note that equation (12) still involves the Jacobian matrix (10), J, of the mapping (11). A
simple approximation of this backward pump Jacobian is as follows:

/oy 0 --- 0
7] — 0 1/a
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: . . 0
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Here,
a~ajlL, j=12,...,m,

is a nominal value for the netloss along the fiber. Note that J; is a constant diagonal matrix
that does not depend on p.
More accurate approximations are possible and will be described elsewhere.



3 The control problem

We are now in a position to present a precise mathematical formulation of the Raman control
problem.

Let p°4 be the current powers (in mW) of the m backward pumps, and let y°!4 := y(p
be the corresponding powers (in dBm) of the n signal channels, as measured by an optical
monitoring device (OMON) or provided by a Raman simulator. Note that p°'9 and y°'9 are
vectors of length m and n, respectively. Let y'38® be a given vector (of length n) of target
powers (in dBm) for the n channels. We stress that the entries of y*'8" are allowed to be
arbitrary per-channel target powers, and thus y'3%8° is not restricted to constant or tilted
target powers.

The Raman control problem then is to compute new pump settings p such that the corre-
sponding channel powers y(p) have minimal possible peak-to-peak ripple (relative to the target
y'T8¢t) and are at the same time close enough to the target y*'8*. The computation of such
new pump settings is based on the linear relation (12) between p and y(p). Moreover, we use
the simple diagonal approximation (13), Jyg, in (12). Thus, the relation (12) becomes

old)

y(p) =y + M(p— p°), where M = RJ,. (14)

Recall from (3) and (6) that R = [R;;] is the n x m Raman gain matrix whose entries R;; are
nominal values for the Raman gain provided for channel ¢ by pump j. Moreover, by (13), the
matrix J; only involves nominal values of the fiber netloss and of the fiber loss at the pump
wavelengths.

Next, we formally define what we mean by ripple (relative to the target). Let y and ytar&et
be the channel powers and their target values, respectively, for n channels. We distinguish
between two cases: multiple channels (n > 1) and a single channel only (n = 1). In the first
case (n > 1), we set

: _ ,target) .__ L !:arget) . : ( L ‘parget)
ripple(y — ™) = max (ue—9i™) = min (- oi™).
In the second case (n = 1), we set
ripple(y _ ytarget) .— 9 |y _ ytarget| .

The reason for this distinction is that the first definition makes no sense for a single channel,
since the “ripple” would be always zero.

With this above notation, the basic problem of determining new pump settings p can be
stated as the following optimization problem:

minimize ripple(y(p) — y'¥'8*) (15)

over all peR™ with y(p) =y + M(p— p"ld),
pmin < P < pmax'
Here, p™™ and p™2* are vectors of minimal and maximal possible pump powers.

We remark that the optimization problem (15) is linear in the variables p. This is important
since, as we will describe in Section 4 below, it allows us to rewrite (15) as a linear programming
problem. This is a well-understood and computationally easy problem, and we can employ one
of the standard algorithms, such as the simplex method, for its solution.



4 Formulation as a linear program

In this section, we rewrite the optimization problem (15) as a linear program.
First, instead of p, we introduce the transformed variable

d=pd—p. (16)

We call d the suggested pump change. Once we commit to that change, we obtain the new
pump settings as p = p°4 — d. With (16), the model (14) underlying our Raman control
algorithm becomes

y=y(d) =y - Md.

To express ripple(y(d) — ytarget) in terms of linear variables, we introduce the additional un-
knowns o1 and o2, and require that they satisfy the following constraints:

o1 e(n) > yold — Md— ytarget, (17)
o9 e(n) < yold — Md— ytarget_ (18)

Here, (™) denotes the vector of all ones:

The inequalities (17) and (18) imply that the objective function in (15) is bounded as follows:

ripple(y — ytarget) < 01— 09. (19)

We now replace the objective function in (15) by the right-hand side of (19). Moreover, we add
the constraints (17) and (18) to the original problem (15). The resulting new version of (15)
is the following linear program:

minimize o] — o9 (LP)
over all 01,09 € R, deR™ with
—0q e(n) —Md< ytarget o yold’
o9 e(n) + Md< yold _ ytarget,
pold _ pmax <d< pold _ pmin.
The objective function and all the constraints of (LP) are linear functions of the unknowns o1,
o2, and d, and thus (LP) is indeed a linear program. The vector d of the solution of the linear
program (LP) is the suggested pump change.
Note that the objective function of (LP) is just the right-hand side of (19). By minimizing

the right-hand side of (19) over all o1, oy that satisfy the constraints (17) and (18), we can
guarantee that the original problem (15) and the linear program (LP) are indeed equivalent.
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Figure 2: 128 channels, 5 spans, linear pogram vs. least squares

There are standard techniques, such as the simplex method, for the solution of the linear
programs (LP). For a detailed discussion of the simplex method for linear programs, we refer
the reader to [3], [4, Chapter 8], [14, Chapter 13], or [19, Chapter 4].

For Raman control of an actual system, additional features are needed to deal with OMON
noise, power changes due to upstream pump adjustments, and other issues. Our linear pro-
gram formulation allows to incorporate such additional features. Even though these additional
features are based on known concepts, tailoring them to the Raman control problem is far from
trivial. We will not be releasing any of the details of these features and their implementation.

5 Examples

In this section, we present some examples to illustrate the typical behavior of the Raman
control algorithm proposed in this paper.

In all these examples, we use spans consisting of 100 km TWRS outside plant (OSP) fiber,
followed by a dispersion-compensating module (DCM). There are backward Raman pumps at
both the end of the OSP and the end of the DCM. Separate runs of the proposed algorithm
are used to adjust the OSP and the DCM pumps. All channel powers were obtained from a
Raman simulator.

The first example is a system with 128 channels from 186.50 THz to 192.85 THz, with 50
GHz spacing. There are 6 OSP backward pumps and 5 DCM backward pumps. Flat targets
for the channel powers are used. In Figure 2, we display the signal powers obtained after
5 spans for the proposed linear-programming approach (red *’s) and for an algorithm that
uses least-squares approximation (green +’s). Recall that our proposed algorithm minimizes
peak-to-peak (p2p) ripple.  For the example shown in Figure 2, the p2p minimization of
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Figure 3: 40 channels, 3 spans, no noise

our algorithm results in a total p2p ripple of 2.7551 dB after 5 spans, while the least-squares
minimization gives a total p2p ripple of 5.6520 dB.

Our next example is a 40-channel system consisting of 3 spans. All 3 spans are allowed
to adjust their pumps independently. We employ the proposed linear-programming approach
with some added features to adjust the Raman backward pumps. In Figure 3, we first show
the channel power evolution for the case that the OMON readings are exact. The total p2p
ripple after 3 spans is 0.9893 dB. In Figure 4, we show the results when the OMON reading are
only accurate to within 0.2dB. The total ripple is now 1.0077 dB, which is only slightly higher
than in the case without noise. Clearly, the linear-programming approach allows to efficiently
handle OMON noise and multispan adjustments.

The next example is a 128-channel system with a tilted power target at the end of the
DCM. Figure 5 shows the signal powers at the end of one span.

The final example illustrates one of the additional features that can be built into the
linear-programming approach. Raman control algorithms need to respond not only to external
events such as addition or deletion of channels, but also to power changes due to adjustments
upstream. They must be robust with respect to inaccuracies in the monitoring devices. Figure 6
shows two pump power traces with respect to time. The one on the left results from a control
strategy that ignores noise in the monitoring device; the one on the right results from a variant
of the linear-programming approach with an additional feature to suppress noise.

6 Concluding remarks

We have proposed an algorithm that employs linear programming to compute optimal settings
of the backward pumps of broadband Raman amplifiers. The algorithm is based on a new
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Figure 6: Power evolution of a Raman pump in a DWDM system. The left trace results from
a control strategy that ignores noise in the monitoring device; the right one results from a
strategy with an added feature to suppresses noise

variant of the standard linear model for Raman pump design and control. The algorithm
computes pump settings that minimize peak-to-peak ripple relative to any given power target.
The proposed algorithm can handle the adding and dropping of channels and pumps, and it
is not restricted to constant or tilted linear power targets.
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