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NON-OBTUSE TRIANGULATION OF A POLYGON¥
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Abstract. We show how to triangulate a polygon without using any cbtuse triangles. Such triangula-
tions can be used to discretize partial differential equations in a way that guarantees the resulting matrix is
Stieltjes, a desirable property both for computation and for theoretical analysis.

A simple divide-and-conquer approach would fail because adjacent subproblems cannot be solved
independently, but this can be overcome by careful subdivision. Overlay a square grid on the polygon,
preferably with the polygon vertices at grid points. Choose boundary cells so they can be triangulated
without propagating irregular points to adjacent cells. The remaining interior is rectangular and easily tri-
angulated. Small angles can also be avoided in these constructions.

1. Introduction. Can a polygon be triangulated without using any obtuse
angles? This problem has been known for some time and solved manually in particu-
lar cases. For example, in an early paper [7] on discretizations of partial differential
equations MacNeal says in an aside,

“The network should be planar and none of the interior angles of the triangles

should be cbtuse. It may be necessary to insert a few additional points in order

to fulfill the last condition.”
A literature search (by looking for the keyword “triangulation’” in online indices)
and asking experts did not uncover any algorithms guaranteed to produce a non-
obtuse triangulation. Indeed, there was some doubt whether such triangulations were
even possible in general.

It turns out that elementary constructions suffice. Exactly how complicated the
algorithm is depends on how many extra conditions are imposed dealing with small
angles and interfaces, but no tools beyond high school geometry and trigonometry
are needed.

To see why this problem is important, imagine solving Au = f on a domain P.
The finite element method chooses some approximating space A, say piecewise linear
functions on a triangulation of P, and finds the element u €A such that for all v€A,
_];vAu=J;vf. This leads to a matrix with elements of the form j;Vcb,-V(bj. It is

known [11,p.78] that if there are no obtuse angles in the triangulation then for i#;
these integrals are negative and consequently the matrix is Steltjes. Recall that a
Stieltjes matrix is a symmetric positive definite matrix whose off-diagonal entries are
all nonpositive. This property is important in the analysis of iterative methods for
solving the linear system; for example, it implies that block Gauss-Seidel has a better
asymptotic rate of convergence than point Gauss-Seidel. Other discretizations such
as the “box method” [12,p.191] also benefit from non-obtuse triangulations.

If all the vertices of the triangles are preassigned, as in scattered data interpola-
tion, then excellent triangulation algorithms are available [2,4,5,6,10]. Several of
these algorithms compute the Voronoi tesselation, which partitions the plane into
polygonal regions by labelling an arbitrary point in the plane according to the closest
vertex. Connecting vertices in adjacent regions gives the Delaunay triangulation.
Actually the “no obtuse angles” condition is only a sufficient for the matrix to be
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Stieltjes. The necessary condition is that when two triangles adjoin in a side, the two
angles opposite the side sum to at most 180°; the Delaunay triangulation achieves this
weaker condition. But obtuse angles may occur and then the boundary of the Voro-
noi region about a vertex extends outside the star of triangles attached to that vertex.
This causes problems for the box method with linear elements on triangles. So we
still seek a nonobtuse triangulaton.

In this paper we give two solutions of increasing complexity. The first assumes
that the vertices of P lie on a square grid. The second removes this hypothesis and
moreover avoids any angles smaller than 13°.

2. The Problem. Given a simple polygon P with vertices {v{,v;, - - - ,v,}, add
points {v,.1, - - - ,v,} inside P or on its boundary and connect the points with
straight line segments to triangulate P. No resulting triangle should contain an
obtuse angle. By a triangulation we mean a set of triangular regions such that the
union is P; any two distinct triangles intersect along one full side, in a single point,
or not at all; and the set of vertices of all the triangles is exactly {v;}1<;<m. Figure
2.1 illustrates a legal triangulation, while figure 2.2 shows two triangulations that are
illegal because of a point on a side and an obtuse angle, respectively.
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FiG. 2.1. A legal triangulation of a quadrilateral.

3. Solution 1. A natural approach is to partition the polygon. The trick is to
divide in such a way that each subproblem can be solved independently and to prove
for each subproblem that all cases have been considered.

LEMMA 1. If the vertices of the polygon lie on a square grid and if none of the
interior angles of the polygon are acute, then a non-obtuse triangulation exists.

Proof. Refine the grid until the cell diagonals are smaller than the minimum
distance between non-intersecting boundary segments. Introduce points v; at the grid
intersection points in the interior of P and everywhere that a grid line intersects the
boundary of P. Each square cell in the interior of P is triangulated by adding a diag-
onal, leaving only cells intersecting the boundary to be dealt with. We will introduce
some further points inside such cells and on the boundary of P, but not on the sides
of the cells. Thus each cell is independently triangulated without propagating points



Fic. 2.2. lllegal triangulations.

from one cell to a neighbor.

If more than one boundary segment passes through a cell, the segments must be
adjacent in order not to violate the refinement criterion. But they cannot have an
acute interior angle. Therefore, they have an acute exterior angle, and the regions of
P bounded by these segments and the cell boundaries are disjoint. The triangulation
strategy below can be applied independently to the two regions, each of which has
only one boundary segment within the cell.

So consider a cell with only one boundary segment extending into its interior.
By reflection, rotation, and scaling we may assume without loss of generality that the
upper right corner of the cell lies inside P and the sides of the cell have length 1.
The boundary of P will be indicated by a dashed line. Figure 3.1 illustrates that no
further points are needed if the boundary hits the top and right sides of the cell.

FiG. 3.1. An easy case.

Figure 3.2 shows how to deal with the next case, in which the top and bottom sides
are hit. Without loss of generality, we may assume that B=90°. The angle a is
acute because its vertex lies outside the semicircle drawn on the opposite side of the
triangle.

Now we come to the key step, when the left and bottom sides are hit. Split the
analysis into subcases based on the location of the point ¢ determined by vertical and
horizontal lines extending from intersections of the boundary and the cell sides.



Fic. 3.2. The semicircle rule.

Without loss of generality, we may assume that ¢ lies on or below the diagonal from
the upper right corner to the lower left corner of the cell. See figure 3.3.

FiG. 3.3. Crucial subcases.

Draw a semicircle based on the right side of the cell and another diagonal to form
three regions a, b, and ¢ in which ¢ can lie.

In subcase a, illustrated in figure 3.4, we have x=<y and hence a=p. But
B+vy+(90°—a) = 180° so y = 90°+a—P = 90°. To show 8=90°, base a semicircle
on the opposite side. Since x=1/2, the radius of the semicircle is at most V5/4. But
the center of the semicircle is at most 1/4 away from the right side of the cell and
1/4+\/5/4 < 1. Therefore, the vertex at 8 lies outside the semicircle, implying 3 is
acute.
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Fic. 3.4. subcase a.

Subcase b is illustrated in figure 3.5. In contrast to the previous figure, y=90°.
Introduce a point in the interior of the cell at the intersection of lines drawn to form
five right triangles. (This construction is the only one that introduces any points on
the boundary other than at grid lines.) The angle 8 is acute because y <1/2.
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Fic. 3.5. subcase b.

The same argument shows that the two non-right triangles in figure 3.6 are
acute, so that introducing the point ¢ solves subcase ¢. D

THEOREM 1. If the vertices of the polygon lie on a square grid, then there exists a
non-obtuse triangulation.

Proof. For each vertex v; with an acute interior angle, cut off a corner by
adding new vertices v/ and v;' so that the triangle {v;,v{,v;'} being removed is acute
and does not contain any other vertices and so that the newly generated interior
angles are obtuse. See figure 3.7.

The only question is how to pick v; and v;'. If they did not need to be on grid
points, we could pick two points that form an isosceles triangle with v;. We could
thus cut off an acute triangle and leave obtuse interior angles, and by making the
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Fic. 3.6. subcase c.
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Fic. 3.7. Cuning off an isosceles triangle.

triangle small enough we could also guarantee that it does not contain other vertices.
To obtain v{ and v{' on grid points, we will approximate this solution as follows. By
hypothesis, the grid is fine enough that there are grid points on the line between v
and each adjacent vertex such that the triangle formed by v; and these two grid
points does not include any other vertices. If this triangle is satisfactory, let v; and
v’ be its two new vertices. Otherwise, let v; be the new vertex that is closer to v;.
(See figure 3.8.)

The angle at v within the current triangle must be obtuse, or the triangle would be
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Fic. 3.8. Approximating an isosceles triangle on grid points.

satisfactory. Let x be the point on the other side that is the same distance from v; as
vi. For some €, picking any point within e of x and within the current triangle will
give a new acute triangle that does not contain any other vertices. Refining the grid
sufficiently guarantees that a grid point will lie within this interval. Letting it be v;’
gives a satisfactory triangle with vertices that are grid points.

Apply the lemma above to the new polygon, which does not have acute interior
angles. This may introduce points on the artificial boundary segment. Figure 3.9
shows how to introduce orthogonal lines emanating from such points that partition
the removed triangle into right triangles and rectangles, which of course can also be
divided into right triangles. O

The references to a “‘sufficiently fine grid” might suggest that many triangles are
produced. But it is possible to refine the grid locally, using the trick illustrated in
figure 3.10 to triangulate near the boundary between the coarse and fine cells.

One way to do this is to use quadtrees [9, 8].

4. Solution 2. In numerical applications [3], very small angles may lead to ill-
conditioned matrices. (It used to be thought that small angles also prevented conver-
gence, but [1] showed that it suffices to avoid large angles.) We have devised
another triangulation algorithm guarantees that no angle in the triangulation is less
than tan™'(1/3)~18° or the minimum internal angle in the boundary, whichever is
smaller. Moreover, if all interior angles of the polygon are at least 54°, then triangu-
lations of two abutting polygons are consistent. However, this solution still requires
that the polygon vertices lie on a square grid. In the interest of saving space, we
omit this intermediate solution and move on to a more elaborate analysis which frees
the vertices to lie in arbitrary position. Define a line to be nearly horizonsal if its
slope is at least —1 and at most 1, and nearly vertical otherwise. A vertical grid line
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Fic. 3.9. Triangulating the cut off corner.
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Fic. 3.10. Triangulation at a jump in refinement.

is nearly perpendicular to a nearly horizontal line; a horizontal grid line is nearly per-
pendicular t0 a nearly vertical line.

Define a triangulation of a polygon to be good if it uses no obtuse angles and no
angles less than tan~!(1/4) or the smallest angle in the polygon, whichever is smaller.
A good triangulation well-triangulates the region.

We begin by showing how to well-triangulate a polygon of a particularly simple
form.

LemMa 4.1. Let R be a simple polygon overlaid with a unit grid. Suppose each
edge of R is of one of the following forms:

(1) cell diagonal

(2) cell side

(3) gridline segment forming the sides of two adjacent cells.

Then R can be well-triangulated without adding any extra points on its boundary.

Proof. The following procedure triangulates R. Add a vertex at every interior
gridpoint. Add edges on cell sides to connect previously unconnected vertices one
unit apart. Add edges on cell diagonals where possible to do so without crossing or



lying on top of another cell diagonal. Add a diagonal to each rectangle still lacking a
diagonal.

The proof that this procedure well-triangulates R is by showing that every origi-
nal edge borders a good triangle and every new edge borders a good triangle on each
side, and is straightforward. O

Let R be a simple polygon. The triangulation strategy will be to well-triangulate
in the vicinity of each vertex of R, and then to well-triangulate the remaining region
R'. Figure 4.1 shows how R might be divided into regions around each vertex and
R'. In triangulating the region around a vertex, points are introduced on the com-
mon boundary with R’. No new points can be added on these common boundaries
while triangulating R'. (Points added on a common boundary would invalidate the
triangulation already done in the adjoining region around the vertex.) The key to
the proof is to restrict the edges occurring in the boundaries of the regions around
the vertices so that the remaining region is easily well-triangulated.

FiG. 4.1. Vertex cells.

If ¢ is a side of R, and g is a gridline nearly perpendicular to R, intersecting e at
A, there is a unique gridpoint on g whose distance from A is at least one and less
than two and which lies on the interior side of e. This gridpoint is called the nreigh-
bor gridpoint of A. It is also called a neighbor gridpoint of e. Figure 4.2 illustrates a
point on a side of R and its neighbor gridpoint.

Let e; be a side of R, and let A be an intersection point of e; with a nearly per-
pendicular gridline. Let e, be an adjacent side of R, and let B be an intersection
point of e, with a nearly perpendicular gridline. A sequence of edges from A to B is
a satisfactory path from A to B if it lies in the interior of R (except for A and B), the
edges are pairwise non-intersecting (except for the point between two successive
edges), and each edge is of one of the following forms:
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FiG. 4.2. A neighbor gridpoint.

(1) a cell side or diagonal
(2) a gridline segment forming the sides of two adjacent cells
(3) AG, where G is a neighbor gridpoint of A, or BG, where G is a neighbor grid-

point of B.

Satisfactory paths are illustrated in Figure 4.1. The region bounded by the path, e,
and e, has a satisfactory boundary. An edge is satisfactory if it is of a form satisfy-
ing one of (1)-(3).

LeEmMMA 4.2. Let R be a simple polygon overlaid with a unit grid, such that no ver-
tex of R lies within four units of a non-adjacent edge. For each edge e=(A,B), let ¢4
and eg be points lying on gridlines nearly perpendicular to e, with e4 closer than eg to
A. Designate each gridpoint lying less than one unit from e along a nearly perpendicu-
lar gridline between those of A and B as a forbidden point. For each vertex V with
incident edges e and f, let Py be a satisfactory path from ey to fy, and let Ry be the
region bounded by Py, ey, and es. If these paths are pairwise non-intersecting and no
path touches a forbidden point, then the region

R_URV
\4

can be well-triangulated, with no new vertices introduced on any path Py.

Proof. For each edge e =(A,B), introduce a vertex on each nearly perpendicular
gridline lying between e4 and eg. On each such gridline, also add a vertex at its
neighbor gridpoint of e, unless that gridpoint is occupied by some path Py .

Wherever two successive gridlines have vertices at neighbor points of e, connect
them with an edge. This forms quadrilaterals with two parallel edges. (See Figure
4.3(a) and (b).) The side connecting the two grid points is either a horizontal or
vertical edge of length one, or a cell diagonal. In either case, a diagonal of the qua-
drilateral well-triangulates it as desired. Since none of the satisfactory paths occupy
either neigbor point or any forbidden points, and no vertex not adjacent to e lies
within four units of e, the new edges do not conflict with any previous edges.

Now, suppose a neighbor gridpoint of e is occupied by a satisfactory path. If it
does not lie on an edge of length 2 nearly parallel to e, it can form part of a quadri-
lateral formed as above with an adjacent neighbor gridpoint of e. If it lies on an
edge e’ of length 2 nearly parallel 10 e, then e’ can form part of a well-triangulated
quadrilateral as shown in Figure 4.3(c) or d, according to whether both endpoints of
e’ are neighbor gridpoints of e. Again, the new edges cannot conflict with any pre-
vious edges.

After triangulating along each original edge of R as above, the region remaining
to be triangulated can be well-triangulated by Lemma 4.1. O
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FiG. 4.3. Quadrilaterals along a nearly horizontal edge.

Thus, we need only show that we can triangulate around each vertex of R so as
to satisfy Lemma 4.2. By making the grid sufficiently fine, we will ensure that no
two satisfactory paths intersect.

Vertices of R need not be on grid points. For each vertex A, define the grid cell
containing A to be any grid cell for which A is in the interior or on the boundary.
Number the octants at each vertex counterclockwise as shown in Figure 4.4. Simi-
larly, number the quadrants counterclockwise.

The next two lemmas will be helpful in triangulating around each vertex so as to
obtain a satisfactory path along the boundary.

LEMMA 4.3. Let e be an edge of R that is at an angle of p to the vertical, p<45°,
as shown in Fig. 4.5 (a)-(c), with the interior of R to the left of e. Let A be at the
intersection of a horizontal gridline with e. Let G be the gridpoint that lies at least 2
and less than 3 units to the left of A. Then one of the regions shown in Figure 4.5 can
be well-triangulated as shown, depending on the value of A,—G,—2tanp. The boundary
from G to B is satisfactory for each region.

Proof. Let d=A,—G,—2tanp. The bounds on p imply d€[0,3).

If d€[1,2), then triangulate as shown in Figure 4.5(a). Note that the boundary
from G to B is satisfactory. The right triangle is obviously good. Since B,=G,+d,
angle AGB is non-obtuse; since G,—B,=2, angle AGB=45°. Angle
GAB=m/2—p€[45°,90°]. Angle GBA is non-obtuse because |GA| is less than twice
the height of the triangle, and at least tan™*(1/2) because dropping a perpendicular
from B to GA gives at least one subangle with a tangent of at least /2. Therefore,
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FiG. 4.4. Octants.

triangle GAB is good.

If d€[0,1), then triangulate as shown in Figure 4.4(b). Clearly, triangle LKB is
good. Triangle GAB is good by the same reasons as in Figure 4.4(a). Let 6 be the
angle of GB with the vertical. Since d<1, #=tan~1(1/2). Obviously, angle
LGB=45°+0¢€[45°,90°). Angle GBL is obviously acute; since angle LBK=45° and
p=<tan~!(1/2), angle GBL=45°—tan"!(1/2)>18°. Since angle GLB=135°- angle
KLB and KLB€[45°,tan"?(2)], angle GLB€[45°,90°]. Therefore, triangle LGB is
good.

Finally, suppose d€[2,3). Then p<tan™'(1/2). Let d'=d—tanp. Then
d’ €[1.5,3). If d'€[1.5,2), triangulate as shown in Figure 4.4(c), without the vertex
L and the edge ML. If d' €[2,3), triangulate as shown in Figure 4.4(c), with the ver-
tex L and the edge ML. The edge MK is drawn perpendicular to AB. Note that the
boundary GJB is satisfactory in either case. In the former case, triangle JMB is good
because |JB|=d'<2, and in the latter case, right triangles JML and MLB are obvi-
ously good. Triangle GAM is good for the same reasons as in triangle GAB in Figure
4.4(a). Triangles GMD and JDM are obviously good. Since p<tan~!(1/2),
|AK|=V5. Also, |MK|=1 because  d=2. Therefore, angle
MAK=tan"1(/V5)>tan"1(1/4). Angle AMK =45 because it is at least as large as
angle GAM, which is at least 45°. This implies that triangle AMK is good. Angle
KBM=p+90°— angle MBJ. If d'€[1.5,2), angle MBJ€[45°,tan"'(2)], and angle
KBM ¢[tan"1(1/2),45°+tan"1(12)]  C[tan™!(12),72°]. I d'€[2,3), then
p<tan !(1/3) and angle MBJ€[tan"!(1/2),45°], implying that angle
KBM €[45°,tan"*(1/3)+tan"!(2) C[45°,82°]. In either case, right triangle MKB is
good. O

LeMMA 4.4. Let e be an edge of R that is at an angle of p to the vertical, p=45°,
as shown in Figure 4.6(a), with the interior of R to the right of e. Let A be at the inter-
section of a horizontal gridline with e. Let G be a gridpoint that lies at least 2 and less
than 4 units to the right of A. Then a quadrilateral AGHJ (as shown in Figure 4.6(a))
can be triangulated, where GH has length either 2 or 4, with vertices added on GH and
HJ to make these sides satisfactory.

Proof. Let x;=|AG]|, and let x,=x;+2tanp. Then x;€[2,6).

If x; €[2,4), then triangulate as in Figure 4.6(b), where K is the neighbor vertex
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(c)
Fic. 4.5. Lemma 4.3.

of J. Consequently, |KH| is either 1 or 2. Obviously, the triangles are all good.

If x;€[2,3) and x,€[4,5), or if x; €[3,4) and x, €[5,6), triangulate as in Figure
4.6(c), where K is the neighbor vertex of J, KM is perpendicular to AJ, and |LH|=2.
Consequently, |KL] is either 1 or 2. The relative sizes of x; and x; imply tanp=1/2.
Obviously, triangle LGH is good. The relative sizes of the height and bases of trian-
gles AKL and AGL force those triangles to be good. The angle M/K=90°~p. There-
fore, right triangle JMK is good. Since [JK|=1 and angle M/IK=45°, |MK l=1/V2.
Note that the length of AK is at most V5. Since |[MK|=1/V2 and |AK|=VS5,
angle MAK =>tan" ' (1/V10)>tan"1(1/4). Also, angle MAK=p=45°. Consequently,
right triangle AMK is good.

The only remaining case is when x;€[3,4) and x,€[4,5). In this case, triangu-
late as in Figure 4.6(d), where |KN|€[2,3) and region KNMJ is to be filled in
according to Figure 4.6(b) or (c). All the triangles are obviously good, and sides JH
and GH are made satisfactory. O
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FiG. 4.6. Lemma 4 .4.

LEMMA 4.5. Let A be the vertex of an acute angle of R. Then there is a region
around A that can be well-triangulated with a satisfactory path along its boundary.

Proof. Let o be the angle at A. Without loss of generality, we may assume that
one edge L, at A lies in octant 6. Since o is acute, the clockwise edge L, at A lies in
one of octants 4-8. We consider cases according to which octant L, lies in. It is suf-
ficient to consider L, in octants 5-8, since the case for L, in octant 4 can be handled
by rotation from the case for L; in octant 8.

Let p, 0=p=45°, be the angle of L; with the vertical.

Case (1). Suppose L, is in octant 5. Let o, 0=0=45°, be the angle of L, with
the horizontal.

First, we show that for any positive constant ¢, there is a neighbor gridpoint G
of L, that also lies to the left of L; by a horizontal distance in the range
[c,c +1+tanp). Form a parallelogram P by two lines parallel to L; at horizontal dis-
tances of ¢ and ¢ +1+tanp from L; and by two lines parallel to L, at vertical dis-
tances of 1 and 2 from L,. Label vertices Q and R as shown. Then R,—Q, = 1 by
Figure 4.7(a). Therefore, a vertical gridline lies between Q and R or passes through
R. Since length 1 of this gridline lies in P, there is a gridpoint inside P or on its
right or upper boundary. This gridpoint satisfies the requirement.

By symmetry, for any positive constant ¢, there is a neighbor gridpoint of L;
that lies below L, by a vertical distance in the range [c,c +1+tano).

There are two subcases according to the values of p and o.
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First, suppose p<tan~!(1/4) and o=tan~!(1/4). We begin by showing the
existence of a gridpoint H that is a neighbor gridpoint of both L; and L,. Let G be
the neighbor gridpoint of L, found by the above argument with ¢ =1, so that G lies
to the left of L, by a distance in [1,2+tanp). If the latter distance is less than 2, we
are done. Otherwise, move right one unit to a gridpoint G;. G lies to the left of
L, by a distance in [1,1+tanp) and below L, by a distance in [1+tano,2+tanc). If
the latter distance is less than 2, we are done. Otherwise, move up one unit to a
gridpoint G,. G lies below L by a distance in [1,1+tanc) and to the left of L, by
a distance in [1+tanp,1+2tanp). Since tanc,tanp =1/4, we are done.

Triangulate as shown in Figure 4.7(b). The path RHQ is satisfactory because of
the bounds on H. Obviously right triangle RHQ is good. Now, angle AQR=90°+p—
angle RQH. Since angle RQH €[tan™!(1/2),tan”?(2)] and p=<tan~!(1/4), angle
AQR€[tan"%(1/2),90°].  Similarly, angle ARQ=m/2+o— angle HRQ, and
tan~1(1/2)< angle ARQ=90°. Therefore, triangle RAQ is also good.

(c)
Fic. 4.7. Lemma 4.5, case (1).

Now, suppose p>tan~!(1/4). From the earlier argument with ¢ =2, there is a
neighbor gridpoint H of L, that lies to the left of L; by a distance in [2,3+tanp).
Triangulate as shown in Figure 4.7(c), where R and Q lie on the gridlines through H,
QS is vertical, and ST is perpendicular to L;.
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Since a=m/2—p<tan~!(2), triangle SAT is good. Since angle SQT =p, right tri-
angle SQT is good. Triangle RHQ is good because |RH|€[1,2) and |HQ|€[2,4).
Now, angle ARQ=n/2+c~ angle HRQ. Since 0=45° and angle HRQ>45°, angle
ARQ is acute. Also, angle ARQ =angle HQR >tan~1(1/4). Since RH and SQ are vert-
ical, angle SQR= angle HRQ. Angle RSQ=n/2—c. Therefore, triangle RSQ is
good.

Unfortunately, H is not the neighbor vertex of Q. Therefore, RHQ is not a
satisfactory path. If |HQ|€[2,3), apply Lemma 4.3. Otherwise, form a quadrila-
teral below HQ by going down 2 from H and then right to L;. This quadrilateral is
well-triangulated by a diagonal. The lower boundary of the quadrilateral has length
in [3—2tanp,3—tanp). If this length is in [1,2), we are done. Otherwise, we apply
Lemma 4.3 below HQ. The final triangulated region has a satisfactory path along its
border, and does not pass through any forbidden points along L; or L,.

Case (2). Suppose L, is in octant 6. Without loss of generality, we assume L,
is clockwise from L, as shown in Figure 4.8. Find the top horizontal gridline with
exactly four gridpoints between or on L; and L,. Such a gridline exists since
tanp=45°. Let M and R be its intersection points with L, and L;, respectively, as
shown in Figure 4.8. Place a vertex P at the neighbor point of M. Then
|PR|€[2,3). Extend a perpendicular from P, intersecting L, at U. Then angle
MUP=a and angle UMP=45°, implying triangle MPU is good. Since |PR|z |PM],
angle PUR= angle MUP=a. Since |PU|=1, angle PRU=tan"'(1/3). Hence, trian-
gle PRU is good. Apply Lemma 4.3 below PR to obtain a satisfactory boundary.

It remains to well-triangulate RUA. Note that angle URA= angle PUR and that
angle AUR=45°. If both angles AUR and ARU are non-obtuse, we are done. Other-
wise, assume without loss of generality that angle AUR is obtuse. Draw a perpendic-
ular from U to L, intersecting L; at T, as shown in Figure 4.8. Since angle RUA is
obtuse, angle URA=m/2—a. Therefore, triangle RTU is good. Clearly, triangle AUT
is good, and we are done.

Case (3). Suppose L, is in octant 7. Let o, 0=0=45°, be the angle of L, with
the vertical. Find the highest horizontal gridline such that either 4 or 5 points lie
between or on L; and L,. This is possible since p,0=45°. Let M and R be where
this gridline intersects L; and L,, respectively. Let P and Q be the neighbor grid-
points of M and R, respectively. Then MPQR is a satisfactory path.

Let U and V be where the gridline one unit higher intersects L; and L, respec-
tively, as shown in Figure 4.9. Since the gridline of M and R is the highest one with
at least 4 points, the gridline of U and V has at most 3 points on or between L; and
L,. Therefore, |UV|<4. The slopes of L, and L, guarantee that |UV|=1.

We claim there is a point C on UV such that C lies above PQ, |UC|=2,
|cV|=2, and |UC|€[|UV|/3,2|UV|/3]. If the halfway point between U and V lies
above PQ, take C to be this halfway point. Since |UV|=<4, |UC| and |CV| have the
desired sizes. Otherwise, suppose without loss of generality that the halfway point
lies too far to the right to be above PQ. Take C to be the gridpoint one unit above
Q. Since |QR|=2, |CV|=2 as well. Also, |UC|<|UV|/2=2. It only remains to
show that |UC|=|UV|/3. Let x;=|MP| and x,=|QR|. Note that |PQ|=1, or the
halfway point between U and V would have been above PQ. Since x;21, tanp=1,
and x,=<2, we have

x;+x,+1—tanp—tanc
3

luC|—-|UV|/3 = (x;+1—tanp) —

2 2 2 1 1
- =_ = —_ - “+ =
3x1+ 3 3tanp 3x2 3tano'
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Fic. 4.8. Lemma 4.5, case (2).

=0.

Therefore, C satisfies the constraints of the claim.

Triangulate the region MRVCU as shown in Figure 4.9. Since C lies above PQ,
angles CPQ and CQP are non-obtuse. The bounds on p andCo imply that U lies
above MP and V lies above QR. Consequently, angles VOR and UPM are non-
obtuse. Angles UPC, CQV, MUP, and QVR are all non-obtuse because
|UC|,|CV|=2 and their triangles have height 1. Angles UMP and VRQ are non-
obtuse by assumption. We conclude that all the triangles are non-obtuse. Since
|MP|,|QR|=1, angles MUP,QVR=tan"'(1/2). Angles UMP,VRQ=45° by assump-
tion. The remaining angles except for CQV and UPC are at least tan~!(1/2) because
their triangles have height 1 and the relevant edges are at most 2. Angle CQV is at
least tan~*(1/4) because |UV|=1 and |CV|=|UV|/2=1/2. Finally, either C is the
halfway point of UV, implying |CV|=|UV|/2=12 and angle UPC=tan™'(1/4), or C
is the gridpoint above Q, implying |UC|=1 and angle UPC =tan"1(1/2). Therefore,
all of these triangles are good.

It remains to triangulate above UCV. Let r=tano+tanp and z= |UV|. Let HJ
be a horizontal line connecting L; and L, at height y above UV, where
(a) if =1, then y=2/3, and
(b) if <1, then y=z/(2+1).

Triangulate as shown in Figure 4.9. Note that |HJ|=z—1y=<2y.

Without loss of generality, we assume that |UC|€[z/3,2/2] and
|CV|€[2/2,22/3). Angles HUC, JVC, AHJ,and AJH are between 45° and 90°. Since
y=z/3 and |UC|,|CV|=2z/3, angles UHC and CJV are non-obtuse. Since
|UC|, |CV|=2/3 and y <z/2, angles UHC and CJV are at least tan"'(1/3). In height
y, JV moves horizontally by at most y<z/2=<|CV|. Therefore, J is above CV and
angle JCV is non-obtuse. Since CV=2:/3=2y, angle JCV=tan"1(1/2). Angle
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...................................................

P 0

FiG. 4.9. Triangulation for Lemma 4.5, case (3).

HJC=JCV. In height y, HU moves horizontally by ytanp. If =1,
ytanp<z/3=<|UC|, and H lies above UC; if 1<1, ytanp<yr=zt/(2+1)<z/3, and H
also lies above UC. Therefore, angle JHC is non-obtuse. Since |HJ|=2y, angle
JHC=tan"!(1/2). Angle HCU=JHC. Angle HCJ is non-obtuse since H/C=2y. If
t=1, then y=2z/3 and |HJ|=z—ty=z/3=y, implying angle HCJ=tan"1(1/2); if t<1,
then |HJ|=z-—ty=z—y=z/2>y, implying again that angle HCJ=tan™!(1/2). We
have shown that all triangles are good.

Case (4). Suppose L, is in octant 8. Let o be the angle of L, with the horizon-
tal, 0=0=45°. We consider two subcases, according to whether p=tan™1(2/5).

FiG. 4.10. Triangulation for Lemma 4.5, case (4), when p<tan™!(%/5).

First, suppose p<tan~'(2/5). We begin by showing the existence of a neighbor
gridpoint Y of L, whose horizontal distance to L; is in the range [2,4). (See Figure
4.10.) There is a vertical gridline g that lies at least 2 units and less than 3 units to
the right of A. Since 0=45°, L, drops less than 3 units before intersecting g. Let G
be the neighbor point of the intersection of g with L,. Then A,—G, < 5. Since
p=tan~1(2/5), L1 moves left at most 2 in height 5, and the horizontal distance from
G to L is in the range [2,5). If this distance is less than 4, we are done, with Y =G.
Otherwise, let G; be the gridpoint one unit to the left of G. The horizontal distance
from G; to Ly is in [3,4). The vertical distance to L, is in the range [1,3). If this
distance is less than 2, we are done, with Y=G;. Otherwise, let Y be one unit above



-19 -

G,. The vertical distance from ¥ to L, is now in [1,2). The horizontal distance
from Y to L is in [13/5,4), and we are done.

(©) (d)
Fi16. 4.11. Triangulation for Lemma 4.5, case (4), when p>tan™1(2/5).

Let U be the point on L, above Y, and Z the point on L{ to the left of Y. Tri-
angulate as shown in Figure 4.10. Let B= angle ZUY. Note that 45°<B<tan”'(4).
Therefore, right triangle UYZ is good. Angle AUZ is at most 135°—B < 90°, and at
least m/2—R>tan"(1/4). Angle AZU is obviously acute and is at least m/2—p—angle
UZY=45°—tan™'(2/5)=23°. Therefore, triangle AZU is good.

Finally, to obtain a satisfactory boundary, triangulate below ZY as in Lemma
4.4.

Now, suppose p>tan~'(2/5). Consider the points at which two successive verti-
cal gridlines intersect L, and the horizontal lines through these intersection points
from L, to L1, as shown in Figure 4.11(a). The difference in length of the horizon-
tal lines is at most 2 since o,p=<45°. Hence, there exists a vertical gridline for which
the horizontal segment WU has a length in the range [1,3), as shown in Fig. 4.11(b).
Define x; = |[WU/|.

Let Y be the gridpoint below U by a distance in [1.5,2.5). Let Z be on L; to the
left of Y, and let x,=|YZ|. Since 2/5<tanp=1, x,€[1.6,5.5).

If Y is the neighbor point of U, UY is a satisfactory boundary edge. Otherwise,
triangulate to the right of UY as in Lemma 4.3 (rotated).

Next, we show how to triangulate the quadrilateral WUYZ, and how to obtain a
satisfactory boundary below WUYZ. There are two cases based on the size of x;.

First, if x,€[1.6,3), triangulate by drawing WY. Let y=|UY|. Since Y was
chosen so that y is between x;/2 and 2.5x, right triangle WUY is good. Angles WZY
and WYZ are obviously both non-obtuse and at least tan~(1/2). Since x;<2y, angle
ZWY is acute. Therefore, triangle ZWY is also good.

If x,€[1.6,2), then ZY gives a good interface. If x;€[2,3), triangulate below ZY
by Lemma 4.4 to obtain a satisfactory boundary.
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Next, suppose x;€[3,5.5). Let X be the gridpoint that lies [xIJ to the left of Y.

Triangulate as shown in Figure 4.11(b). By choice of X, |ZX|<y+1<2y. From the
relative values of |ZX|, x{, and |UY|, it is clear that all three triangles are non-
obtuse and that angles WZX, WXZ, UWX, WUX, XUY, and YXU are greater than
tan~'(1/4). Both x; and ZX are at least one. To see that angle WXU is at least
tan~*(1/4), draw a perpendicular from X to WU. Either one segment of WU is at
least .625 and one subangle is at least tan™!(1/4), or both segments are at least .375
and both subangles are at least tan™!(.375/2.5)>.5tan"(1/4). - A similar argument
applies to angle ZWX. Therefore, all triangles are good.

From above, 1=|ZX|<y+1=3.5. If |ZX|<2, then ZX is a satisfactory boun-
dary edge. Otherwise, Lemma 4.4 is applied below ZX to obtain a satisfactory boun-
dary. O '

To handle triangulating around obtuse and reflex angles, we make use of the
following three lemmas. Each lemma involves triangulating some particular type of
region at vertex A, and with rotations and reflections can be combined to handle any
obtuse or reflex angle. Choose a local origin so that A is in the cell with lower left
corner at (0,0).

Lemma 4.6. Let U=(2,-1), V=(3,-1), W=(3,1), X=(3,2), and Y=(2,2) as
in Figure 4.12. Then the triangulation shown of region AUVWXY is good.

Proof. Straightforward.

Fic. 4.12. Triangulation for Lemma 4 4.

LeMMa 4.7. Let BAC be an obtuse angle such that AB is in the second octant at A,
i.e. AB is nearly vertical with positive slope.
(a) Suppose the edge AC is in the seventh octant at A, i.e. AC is nearly vertical with
negative slope, as shown in Figure 4.13(a). Let E be the point of intersection of
AB and the line y =2, F be the point of intersection of AC and y=—1, U=(5,—1),
and V=(5,2). Then the region AFUVE can be well-triangulated, with new points
introduced as necessary to make the boundary EVUF satisfactory.

(b) Suppose the edge AC is in the eighth ociant at A, i.e. AC is nearly horizontal with
negative slope, as shown in Figure 4.13(b). Let E be the point of intersection of
AB and the line y=3, and let F be the point of intersection of AC and the line
x=7, and let W=(7,3). Then the region AFWE can be well-triangulated, with new
points introduced as necessary to make the boundary FWE satisfactory.
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Proof. In §7.

v=(5,2)

U=(5,-1)

(b)

Fic. 4.13. Triangulatable regions for Lemma 4.7.

The division of Lemma 4.7 into cases (a) and (b) is induced by the satisfactory
path requirement of an edge nearly perpendicular to AC, namely a horizontal edge in
(a) and a vertical edge in (b).

LeEmMA 4.8. Let S=(2,2) and let AC be in the seventh or eighth octant of A.

(a) Suppose AC is in the seventh octant of A, as shown in Figure 4.14(a). Let F be
the point of intersection of AC and the line y=—1, U=(5,—1), and V=(5,2).
Then AFUVS can be well-triangulated, with new points to make sides FU, UV, and
VS satisfactory, and with no points introduced on AS.

(b) Suppose AC is in the eighth octant of A, as shown in Figure 4.14(b). Let
R=(6,2), and let Q be the point of intersection of AC and x=6. Then AQRS can
be well-triangulated, with new points introduced to make sides QR and RS satisfac-
tory, and with no points introduced on AS.

Proof. In §7.

LeMMa 4.9. Let A be the vertex of an obtuse or reflex angle of R. Then there is a
region around A that can be well-triangulated with a satisfactory path along its boun-
dary.

Proof. Lemmas 4.6-4.8 are used to triangulate at A as follows. Without loss of
generality we may suppose AB lies in the first quadrant of A and bounds the interior
of P from above and that A lies in the cell with lower left corner at (0,0). We con-
sider cases according to the quadrant of AC.

(a) AC in the fourth quadrant at A. Since ABC is an obtuse angle, either AB is in
the second octant or AC is in the seventh octant. In either case, we can apply
Lemma 4.7, either directly or reflected. See Figure 4.7(a).

(b) AC in the third quadrant at A. In this case, we add a vertex G =(2,—1) and an
edge AG as shown in Figure 4.7(b). We apply Lemma 4.8 to CAG, and a reflec-
tion of Lemma 4.8 to BAG. The union of the two triangulated regions gives the
desired triangulation at A. Note that the two regions obtained do not overlap
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P M 7 R R

(2) (b)

FiG. 4.14. Triangulatable regions for Lemma 4.8.

except along the boundary edge AG, and no points are added on AG by Lemma
4.8 or its reflection. Also, the boundaries of the triangulated region are satisfac-
tory.

(c) AC in the second quadrant at A. In this case, we add vertices G=(2,-1) and
H=(-1,-1) and edges AG and AH as shown in Figure 4.7(c). We apply
Lemma 4.8 (rotated and reflected as necessary) to angles BAG and CAH and
Lemma 4.6 (rotated) to HAG. The union of the three regions obtained is the
desired triangulated region for A. The three regions overlap only along the lines
AH and AG, on which no points are introduced by Lemmas 4.6 or 4.8. The
boundaries of the final region for A are satisfactory.

(d) AC in the first quadrant at A. In this case, we add vertices G=(2,—1),
H=(-1,-1), and I=(—1,2) and edges AG, AH, and Al as shown in Figure
4.7(d). We apply Lemma 4.8 (reflected and rotated as necessary) to angles BAG
and CAI, and Lemma 4.6 (rotated as necessary) to HAG and HAI. The union of
the resulting regions is the desired triangulated region for A. As before, no
points are introduced by Lemmas 4.6 or 4.8 along AG, AH, or Al, and the vari-
ous regions overlap only along these lines. The boundaries of the final region
for A are satisfactory.

When the above triangulations are applied at the vertices of P, the remaining
region satisfies conditions (1) - (3) as desired.
o

Combining Lemmas 4.2, 4.5, and 4.8, we obtain the main result.

THEOREM 4.10. Any polygon can be triangulated using no obtuse angles and no
angles smaller than tan™!(1/4) or the minimum angle of the polygon, whichever is
smaller.

5. Proofs of Lemmas 4.7 and 4.8. For any point P, let P, and P, denote the x-
and y-coordinates of P, respectively. In the proofs that follow, most angles can be
shown to be between tan™'(1/4) and 90° by either the semicircle principle, inspection
based on given constraints of position and slopes, or the inequality
tan(a; +o;)=tan(ay ) +tan(a,). The last formula is usually applied by dropping a
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(a) (b)

(©) (d)

Fic. 4.7. Cases for triangulating at A.

perpendicular from a point to the opposite side of the triangle. The proof will only
be mentioned for an angle if it does not follow in a straightforward manner using
one of these four strategies.

Proof of Lemma 4.7.

(a) Edge AC in the seventh octant, i.e. nearly vertical with negative slope. Figure
5.1(a) shows how the region AFUVE is subdivided into regions. The line AO is hor-
izontal. The triangles in region GUVY are good by inspection. Region AOYE is tri-
angulated as in Figure 5.1 (b)-(d), depending on where E lies. Since the slope of AB
is at least one, E,=<3, and (b)-(d) cover all possibilities. The proofs that triangles are
good are straightforward except perhaps for triangle DME of (d). For this triangle,
applying trigonometric identities and solving for minimum and maximum values of
angle DEM according to the positions of E and M shows that the range of DEM is
between tan”*(1/3) and tan™!(2), implying that the triangle is good.

Region AFGL is triangulated in the same fashion as AOYE. Note that points M
and N are introduced on AO in each case so that the shared boundary AO is con-
sistent.

(b) Edge AC in the eighth octant, i.e. nearly horizontal with negative slope. We sub-
divide this case further according to whether the slope of AC is less than or equal to
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(b) E,=1 (c) 1<E, =2 (d) 2<E,=3
Fic. 5.1. Case (a) of Lemma 4.5.

—1/2 or greater than —1/2.

First, suppose the slope of AC is less than or equal to —1/2. We divide the
region AFWE as shown in Figure 5.2. Right triangle AHG is good because of the
slope of AC. The other regions are handled as follows.

Region AHJLM is triangulated by Figure 5.3 (a), (b), or (c), according to
whether M, =1, 1<M, =2, or 2<M,=3. The slope of AM prevents M, from being
greater than 3. The proofs that the angles lie between tan"1(1/4) and 90° are
straightforward except perhaps for angles NHJ of (b) and NMH and MHJ of (o) .
Trigonometric identities can be applied to deduce that NMH of (c) is between
tan~'(1/3) and tan"(2), and that NHJ of (b) and MHJ of (c) are between tan™'(1/3)
and 90°.

Region GTKJH of Figure 5.2 is further divided by a vertical line JI, with I at the
intersection of GT and x=4. (See Figure 5.4.) Note that the slope of AC forces G to
lie at least 1/2 below H, but at most 2 below H. Therefore, 1/2=G,=—2. Further-
more, G,—1=,=G,—-2. If G,=0, let R be one half unit below J, as shown in Fig-
ure 5.4(a) and (b). If |JI|<2, triangulate as in Figure 5.4(a); otherwise, triangulate
as in Figure 5.4(b). If 0>G,>-1, triangulate GI/H as in Figure 5.4(c) or (d),
according to whether 7 lies one or two cells below G; side 7K can be made satisfac-
tory and region ITKJ can be triangulated by the method of Lemma 4.2. If
-12G,=-2, the triangulation is similar except that point P is moved one unit
down.

Add points to make EW and WF satisfactory. The region MLJKTFWE now has
satisfactory sides and can be well-triangulated by Lemma 4.2.
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F

()M, =1 b)l<M, =2 )2<M =3
Fic. 5.3. Triangulations for AHJLM of Figure 5.2.

Now, suppose that the slope of AC is negative but greater than —1/2. Figure
5.5(a) and (b) show subdivisions of AFWE according to whether AE crosses the line
y=2 to the left of (1,2). In each case, region AHE is left as is if angle AHE is acute;
otherwise a perpendicular is added from H to AE. Also, in each case, if E,<H,—1, a
line is drawn from H to a point exactly one unit above on WE. This guarantees that
the angle(s) above H are not obtuse and makes ED satisfactory.

In Figure 5.5(a), the slope of AF guarantees that G,>~1, so |GH|<3. In Fig-
ure 5.5(b), the slope of AF forces G,>—3/2, so 1= |GH|<7/2. Add points to make
sides DW and WF satisfactory. Region GFWDH can be well-triangulated by Lemmas
4.4 (rotated) and 4.2. O

Proof of Lemma 4.8.

(a) AC in the seventh octant, i.e. nearly vertical with negative slope. In this case,
apply the same triangulation as in Case (a) of Lemma 4.7, i.e. withE = § =
(2,2) in Figure 5.1(a). Thus, Figure 5.1(c) is applied for the region AOYE of
Figure 5.1(a). This method well-triangulates the region even if the slope of AS
is nearly horizontal, instead of nearly vertical as specified in Lemma 4.7.

(b) AC in the eighth octant, i.e. nearly horizontal with negative slope.
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(d)
(c) S5=G, =0
-l=z1,=-2

Fic. 5.4. Further divisions of Figure 5.2.

First, suppose SAF is obtuse. Then AS must lie in the second octant at A4, but
the position of § forces the slope of AS to be at most 2. Hence, the slope of AC is at
most —1/2. We can apply the triangulation method used in case (b) of Lemma 4.7
when the slope of AC is at most —1/2 (ignoring the rectangle MLVWE of Figure 5.2
since it lies outside the desired region for Lemma 4.8).

Now, suppose SAF is acute. The region to be triangulated is shown in Figure
4.14(b). Draw a vertical line downward from §, intersecting AC at P. Note that
1= |SP|=4. If |SP|=2, apply Lemma 4.4 (rotated) to triangulate next to SP. Now,
either all of SPRW is well-triangulated, or all but the rightmost 2 or 4 units is well-
triangulated. In the latter case, make RQ satisfactory and triangulate the remaining
region by Lemma 4.2. O
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(b)
Fic. 5.5. Lemma 4.7, case (b), when the slope of AC is greater than —1/2.

6. Discussion. Our algorithms remove doubt that a polygon can be triangulated
without obtuse angles. But the topic is by no means exhausted, because there are
many combinations of side conditions that could be imposed resulting in simpler (or
more complicated) algorithms. A hexagonal grid might be investigated. No particu-
lar effort has been made to minimize the number of triangles generated; that problem
looks harder and not crucial to the applications, which require many triangles any-
way. It would be interesting to see if the independent cell triangulations given here
can be used to repair locally obtuse triangulations given by other algorithms.

@ D

G D

FiG. 8.1. Two sides of a crack are independent.

We defined our problem in terms of a simple polygon. More precisely, we
assume that P is the closure of a bounded planar open set whose boundary is com-
posed of finitely many straight line segments. We consider a “crack™ to be made up
of two line segments and allow different points on the two segments, as shown in
Figure 8.1. In effect, we perturb the problem to open the crack into an infini-
tesimally narrow wedge.
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