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Abstract. Aspects have emerged as a powerful tool in the design and develop-
ment of systems, allowing for the encapsulation of program transformations. The
dynamic semantics of aspects is typically specified by appealing to an underly-
ing object-oriented language via a compiler transformation known as weaving.
This treatment is unsatisfactory for several reasons. Firstly, this semantics vio-
lates basic modularity principles of object-oriented programming. Secondly, the
converse translation from object-oriented programs into an aspect language has
a simple canonical flavor. Taken together, these observations suggest that aspects
are worthy of study as primitive computational abstractions in their own right. In
this paper, we describe an aspect calculus and its operational semantics. The cal-
culus is rich enough to encompass many of the features of extant aspect-oriented
frameworks that do not involve reflection. The independent description of the dy-
namic semantics of aspects enables us to specify the correctness of a weaving
algorithm. We formalize weaving as a translation from the aspect calculus to a
class-based object calculus, and prove its soundness.

1 Introduction

In this paper we give the dynamic semantics for an aspect-based language and prove
the correctness of weaving with respect to that semantics.

Aspects: A Short Introduction. Aspects have emerged as a powerful tool in the de-
sign and development of systems [4, 14,19, 16, 15, 2]. We begin with a short example
to introduce the basic vocabulary of aspect-oriented programming and illustrate the un-
derlying issues. Although our examples throughout the paper are couched in terms of
Aspect] (http://www.aspectj.org), our study is more general in scope.

Suppose that L is a class realizing a useful library. Suppose further say that we are
interested in timing information about a method foo () in L. The following AspectJ
code addresses this situation. It is noteworthy and indicative of the power of the aspect
framework that

— the profiling code is localized in the following aspect,
— the existing client and library source code is left untouched, and
— the responsibility for profiling all foo () calls resides with the AspectJ compiler.

aspect TimingMethodInvocation {
Timer timer = new Timer();
void around(): call (void L.foo()) {
timer.start(); proceed(); timer.stop;
System.out.println(timer.getTime());
3
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This aspect is intended to trap all invocations to foo () in L. An aspect may advise meth-
ods, causing additional code to be executed whenever a method of interest is called. The
set of interesting methods is specified using a pointcut, here call (void L.foo()).
The advice itself is a sequence of commands. The example uses around advice. The
intended execution semantics is as follows: a call to £oo () invokes the code associated
with the advice; in the example, the timer is started. The underlying foo () method is
invoked when control reaches proceed (). Upon termination of foo (), control returns
to the advice; in the example, the timer is stopped and the elapsed time displayed on the
screen.

In many aspect-based languages, the intended execution semantics is realized by a
compile-time process called weaving. Because the advice is attached to a call point-
cut in the example, the weaving algorithm replaces each call to foo () with a call to
the advice; it alters the client code, leaving the library L untouched. In this light, it is
not surprising that dispatch of call pointcuts is based on the compile-time type of the
receiver of foo ().

The converse effect is achieved using an execution pointcut. Our example can be al-
tered to use execution pointcuts by replacing call (void L.foo()) with execution
(void L.foo()). In this case the weaving algorithm alters the library, leaving the
client untouched. Dispatch of execution pointcuts is based on the runtime type of the
receiver of foo ().

In general, there may be several pieces of advice attached to a method, and there-
fore there must be an ordering on advice which determines the order of execution. In
Aspect], for example, the textual order of declarations is used.

Advice may also take parameters, and these parameters may be passed on to the
next piece of advice via proceed. In particular, in both call and execution advice one
can define a binder for target, the object receiving the message. In call advice, one
can additionally bind this, the object sending the message.

Aspects interfere with OO reasoning. Much of the power in aspect-oriented program-
ming lies in the ability to intercept method calls. This power, however, comes at the
price of breaking object-oriented encapsulation and the reasoning that it allows. As a
simple example, consider the following declarations:

class C { void foo(){..} }
class D extends C { }

In an object-oriented language, this definition is indistinguishable from the following:

class C { void foo(){..} }
class D extends C { void foo(){ super.foo(); } }

The following aspect, however, distinguishes them:

aspect SpotInheritance {
void around(): execution (void D.foo()) {
System.out.println("aspect in action");

3}
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In the first declaration, the execution advice cannot attach itself to foo in D, since D does
not declare the method; it inherits it. It cannot attach itself either to C, since the advice
is intended for D alone. The effect of the aspect is seen only in the second declaration
where foo () is redeclared, albeit trivially.

Unfortunately, interference with object-oriented reasoning does not stop there. As a
second example, consider that behavioral changes caused by aspects need not be inher-
ited down the class hierarchy. The following aspect distinguishes objects of type C that
are not also of type D:

aspect OnlySuperclass {
void around(): (void execution(C.foo()))
&& !'(void execution(D.foo())) {
System.out.println("aspect in action");

3

These examples indicate that one cannot naively extend object-oriented reasoning to
aspect-oriented programs.

Our aims: Reductionism and a specification for weaving. Our approach to understand-
ing aspect-oriented programming is based on an aspect calculus. We have attempted
to define the essential features of an aspect-oriented language, leaving many pragmatic
programming constructs out. To begin with, we do not include the aspect container in
our language, taking advice to be primitive. In addition, we study only around advice.
Some other forms of advice can be derived. For example, Aspect] includes before ad-
vice, which executes just before a method is called; “before (){C;}” can be encoded
as “around () {C; proceed();}”. We also define a simple logic to describe pointcuts,
built up from the call and execution primitives described above. Aspect-oriented lan-
guages such as AspectJ have a rich collection of pointcuts, including ones that rely on
reflection. While many forms of pointcuts can be encoded in our language, we do not
address reflection. In this paper, we also focus strictly on dynamics, avoiding issues
related to the static semantics and type checking.

Perhaps more important than providing a core calculus, the source-level semantics
for aspects provides a specification for the weaving algorithm. Rather than using trans-
formation to define the semantics, we are able to prove the correctness of the weaving
transformation; we prove that woven programs (where all aspects have been removed)
perform computation exactly as specified by the original aspect program.

In one respect, our aspect calculus is richer than statically woven languages such as
Aspect], allowing for the the dynamic addition of advice to a running program. Clearly,
programs that dynamically load advice affecting existing classes cannot be woven stat-
ically. We define a notion of weavability, which excludes such programs, and prove the
correctness of weaving with respect to weavable programs only.

The rest of this paper. We define a class-based language in Section 2. The class-based
language is the foundation for the aspect-based language introduced in Section 3. In
Section 4 we describe the weaving algorithm, which translates programs in the aspect-
based languages into the class-based language. Section 5 states the correctness theorem;
all proofs can be found in the full version of the paper. We conclude with a survey of
related work.
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2 A Class-based Language

In this section, we describe an untyped class-based language. In contrast to untyped ob-
ject calculi, our language includes a primitive notion of class. This approach simplifies
the later discussion of aspects, whose advice is bound to classes, rather than objects.

Previous work on class-based languages has concentrated on translations from class-
based languages into polymorphic A-calculi [5] or to object-based languages such as
the ¢-calculus [1]. For example, this is the technique used in giving the semantics of
LOOM [6], PolyTOIL [7] and Moby [11]. There is less literature on providing a direct
semantics for class-based languages; notable exceptions are Featherweight Java [12]
and Javas [9]. Our semantics is heavily influenced by Featherweight Java, but is for a
multi-threaded language of mutable objects rather than a single-threaded language of
immutable objects; in addition, we do not address issues of genericity or of translating
away inner classes [13].

NOTATION. For any metavariable x, we write X for ordered sequences of x’s, and X for
unordered sequences of x’s.

A program P has the form (D + H), where D is a set of declarations and H is a set of
heap allocated threads and objects. A class declaration “classc<: d {..m(X) {C}...}”
must indicate the superclass d and a set of method declarations. Fields are not declared
since the language is untyped. The superclass relation is terminated in the undeclared
class “Object”. An object declaration, “obj 0:¢ {...f=v...}” must indicate the actual
class of the object and the values of the fields. A thread declaration, “thrd p{S}” names
a controlling object p and a stack S, which contains a sequence of commands to perform.
If a thread is executing a method on behalf of object p, then p will be the controlling
object. We include the controlling object only for compatibility with the aspect-based
language; it is not used here.

The dynamic semantics of the class-based language is described as a transformation
of programs:

P—~P

Let us consider a few examples. As a simple example of a command, the values of
fields in objects can be retrieved by dereferencing the heap.

objo:c{..f=v..} ~ objo:c{..f=v..}
thrd p{letx=o0.f; } thrd p{letx=v; }

Symmetrically, a field in an object can be set to store a new value.

objo:c{..f=u..} ~  objo:c{..f=v..}
thrd p{seto.f=v; } thrd p{}

Threads may include “nested” class declarations that are loaded dynamically:

classc<:d {...}

thrd p{newclassc<:d {..}; } thrd p{ }
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Table 1 Class-Based Syntax

a,..,zZ Name C,B = Command
P,Q = (DFH) Program new D; New Class
—_ ) new H; New Heap Element
D,E :=classc<:d {M} Declaration return v Return
M :=m®) {C} Method let x=v; Value
H,G = Heap Element let x=0.m(V); Dynamic Message
obj o:c{F_} Object let x=0.c::m(¥); Static Message
thrd 0{S} Thread let x=0.f; Get Field
F o —f=v Field setO.f=V; Set Field
S, T = Call Stack
c Current Frame
let x=0{S};C Pushed Frame

The most important reduction rules, however, are those involving method invocation.
In a dynamically dispatched message, we first look up the dynamic type of the object.
Next, we move up the superclass chain till we find a class where the method is actually
defined. Finally, once we have discovered the class where the method is defined, reduc-
tion proceeds via a standard substitution of parameters for the method, instantiating of
this with the actual receiver of the method.

class d<: Object {...m(x) {B}...} class d<: Object {...m(x) {B}...}
classc<:d{...} _,  Classc<d{..}

objo:c{..} objo:c{..}

thrd p{fo.m(v); } thrd p{ B[%tnis, %] }

We include statically dispatched messages to encode superclass calls. In class ¢ which
extends d, “super.m(V) ;” is encoded “this.d::m(V) ;.

2.1 Syntax

[Tl

The syntax is given in Table 1. In definitions and examples, we write “_" to stand for an
element of any syntactic category that is not of interest.

Lower-case letters a—z range over a set of names. “Object”, “this”, “target” and
“proceed” are reserved names. Although all names are drawn from a single set, our
use of names is disciplined to improve readability. We use c—e for class names; f for
field names; m for method names; o—q for object reference names; x-z for variables;
v for values (object references or variables); a—b for advice. Advice is discussed in the
following section, where we will also assume a fixed total order on names, n < m. We
may write a collection of names as “a, a” to indicate that a is ordered before any of the
names in a.
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Table 2 Reduction

(EE-SUPER) __
D>classc<:d {M}
(Le-THiS) B M#mC) {-}
D>classc<: - {M,mx) {C}} D+ body(d::m) = ()C
D+ body(c:m) = () C D+ body(c::m) = () C
(Re-LET )_ .
(D FH ., thrdg{S })
— (D'FH',thrd q{S'}) (Rc-VALUE)
(D FH , thrd p{let x=q{S }; ch (DI H, thrd p{let x=v;C})
— (D' H’, thrd p{let x=q{S'};C}) — (DFH,thrd p{C["} })
(Rc-RETURN) (Rc-GARBAGE)
(D H, thrd p{let x=q{returnv; B};C}) (DF H, thrd p{returnv;C})
— (DFH,thrd p{let x=v;C}) — (DFH)
(Rc-DYN-MSG)
H3>objo:c{ } (Re-DEC)
Dt body(c:m) = (0B domains of D and E are disjoint
(DI—H thrd p{let x=0.m(V);C}) (DFH thrdp{newE o))
— (D H, thrd p{let x=0{ B[%nis, %% };C}) — (D,EFH,thrdp{C})
(Re-sTC-MSG) (Re-HEAP) _
D body(c:m) = (X)B domains of H and G are disjoint
(D H, thrd p{let x=0.c::m(¥) ;C}) (DFH, thrdp{newG (o))
— (D H, thrd p{let x=0{ B[%tnis, %] };C}) — (D+H,G,thrd p{C})
(Rc-GET)

H 3 objo:c{F,f=v}
(DI—H thrd p{let x=0.f;C})
— (D H,thrd p{let x=v;C})
(Re-SET)
(DI—H obj o: c{F f=u},thrd p{setof v;C})
— (DFH,objo:c{F,f=v},thrd p{C})

We define the notion of bound name for method declarations and command se-
quences. The method declaration “m (X) {C}” binds X and this, the scope is C. The
class declaration “new class c<: d {M?};C” binds c, with 1 scope | M and C. The object
declaration “new obj 0:¢ {F};C” binds o, with scope F and C. Each let-command
sequence “let x=.. .;C”, binds x, with scope C. Command sequences associate to the
right, so “C; C, Cg” should be read “C1(C, C3)”; the scope of variables bound in C;
includes C, and C3. Note that there are no binders for method or field names; the usual
semantics requires a static typing system, which we purposefully avoid here. We iden-
tify programs up to renaming of bound names and define substitution C[V/x] as usual.
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2.2 Dynamic semantics

Computation proceeds by executing the command sequences contained in threads. Com-
mands may include declaration of classes “new D;” or heap elements “new H;”. The
value stored in an object field can be retrieved “let x=0.f;” and set “seto.f=v;".
Method calls may be dispatched using the dynamic type of the object “let x=0.m (V) ;”
or a statically chosen type “let x=0.c:2m (V) ;”.

A pushed frame “let x=p{S};é” successfully terminates in a return command
which removes the remainder of S, leaving C to execute; “let x=p{return v;B};C”
reduces to “let x=v; C”, which is then further reduced via substitution to “C[Vx]”. A top
level return “thrd p{ return v; C }” causes the thread to be garbage collected.

The reduction rules P — P’ are given in Table 2. The rules (R¢-LET), (Rc-RETURN)
and (Rc-GARBAGE) deal with pushed frames. The rule (Rc-VALUE) allows returned
values to be substituted through for the variables to which they are bound. The rules
(Rc-DEC) and (Rc-HEAP) allow threads to create new classes, objects and threads.
These rules require alpha-renaming to make the domains disjoint, allowing generation
of new class, object and thread names. The rules (Rc-GET) and (Rc-SET) allow for the
manipulation of fields.

The rules (Rc-DYN-MSG) and (Rc-STC-MSG) perform beta reduction on method
calls; in the dynamic case, the method is determined by the actual class of the object o;
in the static case, the method is determined by the annotated method call c::m. These
rules use an auxiliary relation for method lookup “D F body(c::m) = ) C”, also de-
fined in Table 2. The rule (Lc-THIS) allows for a method body to be retrieved from the
class which declares it, whereas (L c-SUPER) specifies that if a method is not declared in
a class, then the superclass should be checked. Note that body defines a partial function.

3 An Aspect-based Language

The move from a class-based language to an aspect-based language involves three new
pieces of syntax: aspect declarations, advised method calls and proceed calls.

An aspect declaration, “adv a(X) :(p{é}” has three essential components. The
name a allows references to the aspect from elsewhere in the program. The command
sequence C species what to execute and the pointcut ¢ specifies when. A pointcut spec-
ifies the set of methods that are affected by this aspect; formally pointcuts are presented
as elements of the boolean algebra whose atoms are execution pointcuts, exec(c::m),
and call pointcuts, call(c::m). .

An advised method call “let x=0.m[a ;b1 (V) ;" specifies a set "a of call advice and
a set b of execution advice. For simplicity, we assume that there is a fixed total ordering
on the names of advice (n < m) which determines the execution order; we do not allow
declarations of advice precedence. The advice sets “a andb determine the semantics of
advised method calls; the method name m is an annotation required only to define the
weaving function for call advice in the Section 4.

The final new command is “let x=proceed (V) ;”” which is intended to appear in
the body of advice. This command plays a crucial role in the operational semantics as
sketched below.
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Due to the presence of call advice, we must know the static (declared) type of an
object reference, in addition to its dynamic (actual) type. Thus, in the aspect language,
each dynamically dispatched method call “let x=0:c.m(V) ;” must be annotated with
a static type c. We follow AspectJ in ignoring call advice for super calls, here modeled
by statically dispatched messages. We could easily adapt our semantics to execute call
advice on static messages as well. o

In the aspect language, classes have the form “classc<:d {...m["a;b] ... }”. There
are no commands directly associated with classes, rather, they are indirectly associated
using the advice sets "a andb. Method bodies in class declarations would be redundant,
as demonstrated below.

Let us first consider a few examples. Given a method call in the aspect-oriented
calculus, we first lookup the call and execution advice associated with the method to
build an advised method call. Call advice lookup is based on the declared type, whereas
execution advice lookup is based on the actual type.

adva(..):call(c:zm) {..} adva(..):call(czm) {..}
advb(..):exec(du=m) {...} adv b(...) :exec(d=m) {...}
objo:d{..} - objo:d{..}

thrd p{o:c.m(v); } thrd p{o.m[a; bl (v); }

Now, consider an advised message where the call advice list is nonempty:

adva(x):..{C} L, adva):..{C}
thrd p{O.m [a; bl (v); } thrd p{C[p/this, °/target,°'m[0; b]/proceed,"/x]}

Reduction proceeds as follows: First, we choose the aspect to execute, in this case a.
Next, the aspect declaration is looked up to extract the advice body, in this case B.
Finally, some substitutions are performed. In addition to the formal parameters, this
is bound to the sender of the message p, and target is bound to the recipient o. Most
significantly, proceed is bound to a new advised method call, referencing the remaining
aspects, in this case o.m[0; b]. Using the substitution on proceed, the semantics walks
through the advice given in the call advice set, then the advice given in the execution
advice set, using global order on aspect names to determine precedence within each
of the two sets. If proceed does not occur in an advice body, then subsequent advice
is ignored. On the other hand, if a name occurs in both the call and execution advice
sets, the advice body may be executed twice. An advised method call with no advice is
treated as an error; it cannot reduce.

The encoding of the class-based language into the aspect calculus provides insight
into the operational semantics of the aspect calculus. The translation must account for
the fact that methods in the aspect calculus do not have any method bodies. Write
“cbl_c_m” to identify a fresh name generated from class name ¢ and method name m.
Given a method definition “classd <: ¢ {...m(%) {C}...}” create the advice:

classd<:c{..m[0; cbl.d.m]..}
adv cbl_d_m (%) :exec(d::m) { C[Poedsuper.m] }

For this encoding to work, it must be the case that if d is a subclass of ¢, then the name
cbl_d_m precedes cbl_c_m in the advice ordering. Thus, the first aspect pulled out of the
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Table 3 Aspect-Based Syntax

D,E = .. Declaration C,B = .. Command

adva(®:@{C} Advice let x=0:c.m(V); Dynamic Message

S T letx=0.m[a;b] (V); Advised Message

M i=ml a:b] Method let x=proceed (V) ; Proceed
Lu=cum La?el Replace the dynamic message syntax from Table 1
o = Pointcut

false False

- Negation

ovy Disjunction

call(L) Call

exec(L) Execution

aspect list is the closest definition of m in the class hierarchy. Finally, note that method
bodies in a class-based language do not contain proceed; thus proceed can be used to
encode calls to super. If no such calls exist, then subsequent advice is not executed.

3.1 Syntax

In Table 3 we extend the grammar for declarations and commands, replace the grammar
for method declarations, and define a new grammar for pointcuts. The method declara-
tion “m["a;bl” no longer includes a command sequence, but rather two sets of advice;
the idea is that "a is executed by the caller (call advice)p is executed by the callee (ex-
ecution adV|ce) The advice declaration “new adv a(S() o{ B} C” binds a, with scope
B and C, and also binds X, this and target, with scope B.

Pointcuts are used to indicate the set of methods to which advice should be attached.
A point cut @ allows one to specify a calling point “call(c::m)”, an execution point
“exec(c::m)”, or a combination thereof. The full set of boolean connectives can prove
useful, given that point cuts apply not only to the specified class, but to all subclasses
as well; negation can be used to change this.

An advised method call “let x=0.m[a ;b] (V) ;” indicates the collections of call
advice "a and execution adviceb yet to be performed; the method name m is ignored.
Source programs need not contain advised method calls; rather advised method calls
are included because they arise during the dynamics of programs. An advised call
with no advice “let x=0.m[0 ; 0] (V) ;” is unable to reduce. The proceed command
“let x=proceed (V) ;” causes control to advance to the next named advice, where the
global order on names (n < m) is used to determine which advice is next.

3.2 Dynamic Semantics

The semantics of pointcuts is defined in Table 4. We write “D F c::m € execadv(¢)”
when pointcut ¢ applies to the execution of method m in class c, and similarly for call
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Table 4 Semantics of Pointcuts

(S"TRANS)
(S-EXTENDS) (S-REFLEX) DFc<:d
D>classc<:d {-} DFd<:e
DFc<:d DFc<c Dbc<:e
(PC-EXEC) (Pc-CALL)
DFc<:d Dtc<:d
D F c::m € execadv(exec(d::m)) DF c::m € calladv(call(d::m))
(Pc-ENOT) (PC-EORL) (PC-EORR)
D L ¢ execadv(g) DI L € execadv(®) D F L € execadv ()
D L € execadv(—) DI L € execadv(@V g) D F L € execadv(@V Y)
(Pc-cNor) (Pc-CcORL) (PC-CORR)
D L ¢ calladv(¢) D+ L € calladv(¢p) DF L € calladv(y)
DL € calladv(—¢) DF L € calladv(pV W) DF L € calladv(gV @)

pointcuts. The definition relies on a notion of subtyping “D F c<: d”, given in the same
table. Note that these definitions ignore the advice sets declared by methods.

The semantics of aspect programs is defined in Table 5. Rather than use the seman-
tics of pointcuts directly, the rules for method invocation (R4-DYN-MSG) and (Ra-STC-
MSG), rely on the advice sets declared by methods. We do this to emulate realistic ad-
vice lookup, which should be be based on the class hierarchy alone. The more naive ap-
proach would require that each method dispatch lock all advice in the heap; our seman-
tics is intended to be efficiently implementable. Write “D F advice(c::m) = ["a;b]” if
“a (respb) is the call advice (resp. execution advice) declared for m in c. The definition
is also given in Table 5. The rule (Lo-TOP) is required to ensure that (Ry-DYN-MSG)
always succeeds in looking up execution advice, even if the method m is not defined.
This is required for consistency with the woven program, where call advice is executed
even if the object o does not exist. Note that (Ra-DYN-MSG) looks up the call and ex-
ecution advice at different types. The rule (Ry-ADV-MSG1) describes the reduction of
execution advice. The rule (Ra-ADV-MSG2) describes the reduction of call advice.

Clearly, the advice that appears in a method declaration must be consistent with
that which is attached to a pointcut. We formalize this intuition as coherence and define
a function close which creates coherent declaration sets. To maintain coherence, the
rule for inner declarations (R4-DEC) uses close to saturate the declaration set with new
classes and advice.

DErINITION 1 (COHERENCE). A collection of declarations D is coherent (resp. semi-
coherent) if whenever D S advb(.):@{_}and D> classc<: _{..m[a; "&...} then

b e "a iff (resp. implies)lil— c:m € calladv(¢)
and b € “aiff (resp. implies) D F ¢::m € execadv(q)
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Table 5 Aspect-Based Reduction

Include all rules from Table 2, except (Rc-DEC), (Rc-DYN-MSG) and (Rc-STC-MSG).

(La-TOP) (La-SUPER) _

D - advice(Object::m) = [0 ; 0] D - advice(d:m) = ["a;b]

(La-THIS) MZmQ {-}

D>classc<: - {M,m[@:b]} D>classc<:d {M}

D |- advice(c::m) = ['a;b] D F advice(c:m) = ["a;b]
(Ra-DEC)

domains of D and E are disjoint
(D H, thrd p{new E;C})

—> (close(D, E) - H, thrd p{C})
(&—DYN—MSG)
H>objo:d {_}
D F-advice(c:m)=["a;- ]
D Fadvice(d::m) = [_; b]
(D H, thrd p{let x=0:c.m(V);C})
— (D+H,thrd p{letx=0.m[@;b]1 (M);C})

(E\-STC-MSG) _
D advice(c::m) = [_; b]
(D:l— Ii,thrd pq let X=0.C::m(V2;é})
— (D+H, thrd p{let x=0.m[0; bl (") ;C})

(Ra-ADV-MSG1)

D>advb(X):_{B} B b b
(D H,thrd p{let x=0.m[0; b,b] (v);C})

—> (D + H, thrd p{ let x=0{ B[Jthis, °-M: D /proceed, Y] };C })

(Ra-ADV-MSG2)

D>adva(®: {B}
(D H, thrd p{let x=0.m[a, a;b] (");C})

- (Sl— H, thrd p{ let x=p{ B[Ythis, Ytarget, ML 25V /5roceed, Y%] };C })

ol

a<
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DEFINITION 2 (CLOSE). We define the function close(D), which saturates class dec-
larations with advice:

(c-FIX)

D is coherent
close(D) =D
(c-cALL)

D>adva():@{-}

Dk c::m € calladv(@) _
D=E,classc<:d {M,m[a;bl}

close(D) = close(E, classc<:d {M, m[ab,b] })

(C-EXEC)

D>advb():@{_}

D | c:m € execadv(g) _
D=E,classc<:d {M,m[a;b]}

close(D) = close(E, classc<:d {M, m[a,a;b] })

LEMMA 1 (CLOSE). If D is semi-coherent, then close(D) is coherent.
LEMMA 2 (COHERENCE PRESERVATION). Coherence is preserved by reduction.

Note that any program where each class declaration is taken from the class-based lan-
guage is semi-coherent by construction.

4 Weaving

The weaving algorithm translates aspect-based programs into programs in the class-
based language. The algorithm is not novel, being closely modeled on that used by
AspectJ. Rather our contribution is that we have developed a specification of the cor-
rectness of any weaving algorithm.

Our goal is to show that the weaving algorithm preserves transitions made by the
source aspect program. We achieve this up to a trivial renaming on methods (~) de-
fined below. Corectness is formalized by demanding that the following diagram can be

completed.
weave weave
2

Q P=——=0Q
weave
PI PI _ ~ QI

We also expect that a woven program not have spurious new reductions. This is formal-
ized by demanding that the following diagram can be completed.

Q
!
o

weave weave
P—— Q P—

| = |
weave

Q P =
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4.1 Weaving as Macro Expansion

In order to motivate the ideas, we first describe a macro-expansion approach to weav-
ing, limiting our attention to execution pointcuts. Recall that weaving is intended as
a compile-time process. Thus, the weaving process works through the entire program
text. The effect of the weaving process will be to change method calls to incorporate all
of the aspects advising the method.

Read D I- weave(-) as the weaving of program fragment (-) in the context of decla-
rations D. The heart of the macro expansion approach to weaving is the following rule.
The body of a method is determined by selecting the body of the first advice named in
the advice list. The rule is applied again, after substituting the remaining advice through
for proceed. Note that in the case that the advice list b is empty, then any calls to proceed
will be blocked in the consequent.

D>advb(®):_{C}
D+ weave() = C’
D+ weave(m[0; b,b]) =m (%) {C'}

b0

This treatment directly captures the idea from the dynamic semantics that a call to
proceed is a call to the succeeding aspect in the aspect list.

This implementation of weaving is not useful in practice because it is not guaranteed
to terminate. Since weaving is intended to occur at compile time, non-termination is a
bad thing.

4.2 Weaving by Introducing New Methods

We now describe a practical weaving algorithm which mimics macro expansion using
run-time method invocation. Our algorithm closely follows that of AspectJ. Intuitively,
given a method m affected by advice "a, we create an auxiliary method for each suffix of
the list “a. Call advised methods are placed in the class of the caller, whereas execution
advised methods are placed in the class of the callee.

We begin with an example in the aspect language, showing the reduction of a dy-
namically dispatched message. Consider the following declarations:

obj p:Main {}

class Main{m[0; mal }

adv ma() :exec(Mainz:m) {letx=0:c.m() ;return (); }
objo:c{}

classc{m[ca; cb]}

advca():call(c::m) {let y=proceed () ;return (); }
advcb() :exec(czm) {return O; }
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In the presence of these declarations, we can observe the following reductions:

thrd p{letx=0:c.m(); }

(Ra-DYN-MSG) —> thrd p{letx=0.m[ca; cb](); }
(Ra-ADV-MSG2) —> thrd p{let x=p{lety=0.m[0; cb] () ;return );}; }
(Ra-ADV-MSGL) —> thrd p{let x=p{lety=o{return (); };return O; };}

(Ra-RETURN) —> thrd p{let x=p{lety= () ;return (); }; }

(Ra-VAL) —> thrd p{let x=p{return (); };}

(Ra-RETURN) —> thrd p{letx=();}

(Ra-vAL) —> thrd p{}

Weaving the declarations produces:

obj p:Main {}
class Main{m () {skip;let x=this.call_ca_m (o) ;return (); }
exec_ma () {skip;let x=this.call_ca_m (o) ;return (); }
call_ca_m(z) {lety=z.m() ;return (); }}
objo:c{}
classc{mQ) {return O); }
exec_cb() {return (); }}

Here “skip; C” is defined as “let x=x;é”, where x does not appear free in C. The
resulting class-based reductions are as follows:

thrd p{skip;let x=p.call_.ca_m(o) ; }

(Rc-VAL) — thrd p{letx=p.call_ca.m(o);}
(Rc-DYN-MSG) — thrd p{let x=p{lety=0.m() ;return (); }; }
(Rc-DYN-MSG) — thrd p{let x=p{lety=o{return O ; };return (); }; }
(Rc-RETURN) — thrd p{let x=p{lety= () ;return O;}; }
(Rc-VAL) — thrd p{let x=p{return O); }; }
(Rc-RETURN) — thrd p{letx=();}

(Re-VAL) — thrd p{}

It is worth noting several things in this example. First, the method exec_ma is in-
troduced into Main, corresponding to the execution advice on m in Main. In addition,
call_ca_m is introduced into Main and exec_cb is introduced into c, corresponding to call
and execution advice on m in c. Second, note that in call_ca_m, the call to proceed has
been replaced with a dynamically dispatched call on m, sent to the extra parameter z.
Since woven call advice is not defined in the target object’s class, the target object must
be passed using this additional parameter. Finally, note the gratuitous use of “skip;”;
the extra reduction is required to match the advice lookup step (Ra-DYN-MSG) in the
aspect language.

The definition of weaving is split over two tables. Table 6 gives the rules for han-
dling execution advice; Table 7 gives the rules for handling call advice. The definition
proceeds by structural induction on program fragments. For clarity, we use different
names when weaving different syntactic categories: weave for programs, wdec for dec-
larations, wheap for heaps, wmth for methods, and wstack for stacks. Each of these is a
total function on the respective domains.
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Table 6 Execution Advice Weaving

(w-PROG) - -

close(D) - wdec(close(D)) = D’

close(D) + wheap(H) = H'

weave(D - H) = (D' - H)
(W-ADVICE) (W-OBJECT)
DFwdec(adv _():_{_}) = D wheap(objo:c{F}) =objo:c {F}
(w-cLass) _ (W-THREAD) _
D +wmth(M) = M’ Dt wstack(p{S}) = (M; §)
D+ wdec(classc<: d {M}) =classc<:d {M'} Dt wheap(thrd p{S}) =thrd p{S'}
(W-METHOD) _
D I~ genExecMth(b) = M
M > exec b(%) {C}
DFwmth(m[a;bl) =M,m {C}
(GEN-EXEC)
D>advb(®):_{C} -
|i|— wstack(this{ ('chis.m_[ﬂ); b’]/proceed} h= (I\W ; é') . .
D I genExecMth(b') =M b=b,b’
D I genExecMth(b) = M, M’, exec_b(%) {C'} b<b
(w-LET) . (W-DYN-MsG1)
D - wstack(q{S}) = (I\/I_ g D - advice(c:m) = [0; ]
D wstack(p{C}) = (M'; C') D+ wstack(p{C}) = (M ; C')
D - wstack(p{let x=q{S};C}) D - wstack (p{ let x=0:c.m(V) ; C})

=(M,M’; letx=q{S'};C’) = (M ; skip;let x=0.m(V) ;C')
(w-DEC) _ _
close(D,E) - wdec(close( ) =E" (W-STC-MSG) _
close(D,E) - wstack(p{C }) = [ (o)) D+ wstack(p{C}) = (M ; C')
D+ wstack(p{new E;C}) = (M ; new E';C’) D'~ wstack(p{letx=0.czm(®);C})
= (M ; skip;let x=0.c::m(V);C")
(W-HEAP) _ _
DFwheap(H) =H" (W-ADV-MSG1) _
D I wstack(p{C})= (M ; C') D+ wstack(p{C}) = (M ; C')
D wstack(p{new H;C}) = (M; new H';C') D wstack(p{let x=0.m[0; bl () ;C})
=(M; let x=0.exec_b(V) ;")

(W-OTHER)
no other command rules applies
D+ wstack(p{C}) = (M ; C') (W-NONE)
D - wstack(p{BC})=(M; BC) D+ wstack(p{}) = (0; 0)
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Table 7 Call Advice Weaving

(W-DYN-MSG2)

Dt advice(czm)=1[a;- 1
D+ genCallMth(m; a) =M

D I wstack(p{C}) = (M’ ; C')

— - aAD
D - wstack(p{let x=0:c.m(¥);C})

= (M, M’ ; skip;let x=p.call_a m(o,") £')
(W-ADV-MSG2) _
D+ genCallMth(m; a) =M
D I wstack(p{C}) = (M’ ; T’

wstack(p{C}) = ( ) 340

D - wstack(p{let x=0.m[@;- 1(M £})
=(M,M’; let x=p.call_.a m(o,") £)

(GEN-CALLI)

D>adva(®:_{C} B

Dk WStaCk(this{é[%arget,y'n}/proceed] H=M; él)

D F genCallMth(m; a) = M’, call_a_m(y,%) {C'}

(EEN—CALLZ)

Doadva®:_{C} B B _

D + wstack(this{ C[Ytarget, this- M a0 roceed] }) = (M ; €)@= &2

D - genCallMth(m; @) =M’, call_a m(y,%) £'} E£0

The resulting of weaving is a class-based program without any advice declaration;
thus (W-ADVICE) returns the empty set. Instead, (W-CLASS) specifies that in a class
declaration, the method bodies must be woven. This in turn causes (W-METHOD) to be
applied to each method in the class. The result of weaving a method m is a method suite
with a new method generated for each suffix of the aspect list affecting m. The names
of the new methods are based on the declared advice; roughly speaking, the method
exec_b handles the advice list b.

The rule (GEN-EXEC) specifies that the body of the newly created method is given
by the advice associated with the first aspect in the list, with the proceed bound to the
method corresponding to the rest of the list. (GEN-EXEC) generates the methods one
at a time, substituting for proceed, in each, the progressively smaller advice set. Infor-
mally, this definition can be viewed as performing the macro-expanded code described
in previous subsection inside of the newly created method body. Thus, in effect, the
actual expansion is postponed to runtime.

The commands in a method are woven as stacks with controlling object this; the
controlling object is used only when weaving call advice. Weaving the commands in
(GEN-EXEC) may produce call advised methods M’. In the end, all of the collected
methods are added back into the class using (w-METHOD) and (W-CLASS).
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The rules for commands themselves are mostly straightforward. Note however, that
(w-DYN-MSG1) and (w-STC-MSG) introduce an extra reduction, corresponding to ad-
vice lookup. Also note that (w-ADV-MSG1) substitutes exec_b for m[0; b].

The extension to call pointcuts is given in Table 7. Recall that the call aspects asso-
ciated with a message are determined by the static type of the object. Apart from this
difference, the weaving process for call advised methods (w-DYN-MsG2) follows the
structure enunciated for execution advice. One difference stands out, however; rather
than sending a message to the target o, call advised methods remain with the sender p,
passing o as an additional parameter.

This extra parameter is substituted for target when weaving the advice body in
(W-GEN-CALL1) and (W-GEN-CALLZ2), giving the call advice access to the target ob-
ject. Note in (w-GEN-CALL2) that this.m[ a ;0] is substituted through for proceed,
which is later converted to this.call_a m by (W-ADV-MSG2).

Note that if a subclass inherits a method it also inherits the associated call advice.

5 TheCorrectness of Weaving

Weaving is not correct for all programs. In particular weaving does not support the
dynamic loading of advice that affects existing classes, although it is admissible to
load classes that are affected by existing advice. Because we allow for the weaving
of running threads — not something typically allowed in aspect languages — we also
must make a few other sanity requirements. In particular, we require that the controlling
object of all threads must be defined, and that all advised messages m[_; _] in a thread
with controlling object p should arise because some method defined in the class of
p is declared to send a message to m. In addition, we require that programs contain
no dangling references; along with the other requirements, this ensures that all of the
required methods have been generated. We formalize these intuitions in the following
notion of weavability.

DEFINITION 3 (WEAVABILITY). We define D; H; T F weavable(-) on stacks in Ta-
ble 8. Extend the definition to programs and advice declarations as follows:
D;H;bn(H) - weavable(D)
D; H; bn(H) - weavable(H) D; H; n,X,this,target - weavable(this{C })
weavable(D + H) D;H; N+ weavable(adva(®) = £})

Extend the definition to all other program constructs homorphically using conjunction.
LEMMA 3. Weavability is preserved by reduction.

Even given weavability, our definition of weaving is not quite exact with respect
to the reduction semantics. As seen in the example in the last section, in the aspect
language a dynamic message is converted to an advised message in one reduction. The
names generated by weaving these are different in the case that there is no call advice.
The discrepancy cannot be handled during weaving, since the list of execution advice
cannot be determined statically. We therefore must work up to a relation that equates m
with exec_b in the appropriate circumstances.
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Table 8 Weavability of Stacks

To simplify the definition we write “wheap 5(H)” for D + wheap(H)", and ‘wdec 5(E)” for
“D I wdec(E)". Also, “write bn( H)” for the set of object names bound by heap H.

(we-DEC)

wheaps(H) = wheapgosss 5y (H)

close(wdec (D), wdeCosyp, D_)(close(D’)))
= Wdecdose(_ D,)(close(D D") (WC-HEAP)

close(D, D'); H; N+ weavable(p{ }) :H, H’; ,bnAH’) - weavable(p{ C })
D; H; T+ weavable(p{ new B;C}) H.

(wc-ADV-MSG)

;H; T+ weavable(p{ newH’;C})
H>objo:c{_}

H>objp:d{-} _
wdeC s 5) (Close(D) D)) - body (c:: exec_b) defined (we-LET)

wdecdose(D)(close( )) I-body(d::call_"a m) defined D;H; T+ weavable(o{S})

D;H; N,x+ weavable(p{C}) D; H; ,x - weavable(p{ })

D; H; T+ weavable(p{let x=0.m[abl (V);C}) D; H; N weavable(p{let x=0{S}£})
(WC-DYN-MSG) (WC-OTHERL)

o€ B no other let rule applies

D;H; n,x+ weavable(p{C}) D; H; T,x - weavable(pC })

D; H; 7+ weavable(p{let x=0:c.m(¥) £}) D;H; T+ weavable(p{let x=..£ })
(WC-STC-MSG) (WC-OTHER2)

0€EnN no other command rule applies

D;H; N,x+ weavable(p{}) D; H; ,x+ weavable(p{ })

D;H; 7+ weavable(p{ let x=0.czm(¥) £ }) D;H; T+ weavable(p{BC })

DEFINITION 4 (NAME EQUIVALENCE). Let ~ be the equivalence on class-based
commands generated by:

H>objo:d {_} -

D+ advice(d::m) = [_; b]

D; HF let x=0.m(V) ; ~ let x=0.exec_b(V) ;

D | advice(c:m) = [_; b]

D; HEletx=0.czm(V) ; ~ let x=0.exec_b(V) ;

C is not a method call
D;HFC~C

Extend the definition to all other program constructs homorphically using conjunction.
Let P=(DF H)and P’ = (D' - H'). We write “P ~ P"” when D; H - P ~ P’ and
S H'FP~P.

THEOREM 1. Suppose that an aspect-based program P is coherent and weavable, and
that P > P'. Then there exists some Q’, such that weave(P) — Q' and Q' ~ weave(P’).
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Suppose that an aspect-based program P is coherent and weavable, and that weave(P)
— Q’. Then there exists some P’, such that P —~ P’ and P’ ~ weave(Q').

6 Reated work

We refer the reader to the October 2001 issue of CACM for a comprehensive survey and
references to the range of approaches and applications of AOP. Here, we restrict our-
selves to the several recent efforts to formalize and provide simple conceptual models
of some features of aspect-oriented languages.

There are several efforts focused largely on weaving and the understanding of point-
cuts. For example, The Aspect SandBox [10] provides a testbed to experiment with
weaving strategies. Wand, Kiczales, and Dutchyn [21], give a denotational semantics
for a mini-language that embodies the key features of dynamic join points, pointcut des-
ignators, and advice. R. Douence and O. Motelet and M. Siidholt [8] describe a domain-
specific language for the definition of crosscuts and sketch a prototype implementation
in Java which has been systematically derived from the language definition. H. Ma-
suhara, Kiczales and Dutchyn [17] present a semantics-based compilation framework
for an aspect-oriented programming language. Using partial evaluation, the framework
studies which aspects can be woven in at compile time and which dispatches must be
executed at run-time.

In contrast to this line of research, our aim has been to develop an independent
specification of weaving. We have taken the point of view that the operational semantics
of the aspect language validates a given implementation of weaving. In this sense, our
approach is complementary to this body of work. One might daresay that a suitable
mixture of these ideas could result in a model of a real-life aspect-oriented programming
language.

The research closest to the spirit of our paper is the concurrent and independent
work of Walker, Zdancewic and Ligatti [20]. This paper studies a powerful core calculus
of aspects, not including subtyping, where both advice and join-points are first class
entities that can be created and manipulated at runtime. On the one hand, their paper
proves a type soundness theorem for a calculus with features that are not available in our
core calculus. On the other hand, their study focuses on the case of execution pointcuts
by assuming that the source code of the advised method is available for transformation.

From a more foundational viewpoint, Meuter [18] describe a view of aspects as
monads. In this view, the weaver then becomes a lifter to transform programs through
different monads. Andrews [3] views aspects in a process-algebraic context. Both these
papers can be viewed as attempts to translate aspects into other frameworks. In contrast,
our work follows the line of research into object calculi and their adaptations to partic-
ular programming languages such as Java. In this spirit, we study aspects as a primitive
computational entity in their own right.
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