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Abstract. We introduce an expressive yet semantically clean core Java-like lan-
guage, Java Jr., and provide it with a formal operational semantics based on traces
of observable actions which represent interaction across package boundaries. A
detailed example based on the Observer Pattern is used to demonstrate the intu-
itive character of the semantic model. We also show that our semantic trace equiv-
alence is fully-abstract with respect to a natural notion of testing equivalence for
object systems. This is the first such result for a full class-based OO-language
with inheritance.

1 Introduction

Operational semantics as a modelling tool for program behaviour originated in the early
1960s in early work of McCarthy [19] and found some popularity in modelling pro-
gramming languages such as ALGOL and LISP [20, 30, 13] and the lambda-calculus,
[18]. Later, this approach to modelling was championed by Plotkin [25, 26] and has
since been applied extensively and successfully for providing semantic descriptions of
simple programming languages and computational models [31, 21, 22, 15, 29, 1, 11, 8].
As these modelling techniques began to be applied to to larger scale languages, their
semantic descriptions became more complex [27, 28, 4, 9, 6, 3].

There has been a considerable research effort towards formalising operational be-
haviour of Java and Java-like languages, for example [4, 11, 16, 6, 9, 24, 3]. Indeed [3] is
a special volume journal dedicated to semantic techniques for the Java language which
collects together much of the interesting work on this topic to date. None of these, how-
ever, address the issue of program equivalence and extensional descriptions of object
behaviour. The papers cited above tend to analyse subsets of the Java language for is-
sues related to type safety rather than equivalence. Banerjee and Naumann [5] provide
a denotational semantics for a subset of Java, but do not prove a correspondence with
an operational model. With this in mind we propose an experimental class-based Java-
like language, designed to have a straightforward semantic description of the interactive
behaviour of its programs. We call this language Java Jr.

To address the issue of program equivalence in Java Jr. we make use of Morris’
theory of testing [23], later refined by Hennessy [15]. It is a robust theory based on

? This material is based upon work supported by the National Science Foundation under Grant
No. 0430175



observability of basic events during computation in context and has been applied to
many languages, including models of functional programming such as the λ-calculus
[2] and PCF [25], concurrent languages such as the π-calculus [10], and object-oriented
languages such as the σ-calculus [17].

The definition of testing equivalence involves a universal quantification over all pos-
sible test harnesses for programs, which often makes establishing equivalences difficult.
For this reason it is commonplace to investigate alternative characterisations of semantic
equivalence which offer simpler proof techniques. We provide an alternative character-
isation of testing equivalence in Java Jr. by describing sequences of interactions which
programs may engage in with arbitrary test harnesses. These are defined as traces de-
rived from a labelled transition system [7]. The key result we prove is that programs
which exhibit the same set of traces are exactly those which are testing equivalent. This
property of our trace model is known as full abstraction.

For the remainder of the paper, we will present an overview of the Java Jr. lan-
guage followed by its formal syntax and operational model. We will then discuss issues
of typeability and how well-typed object components can grouped together to form
larger, well-typed systems. In Section 4, we define our notion of testing equivalence
for Java Jr. and in the following section introduce the trace model. The full abstraction
result is outlined in Section 6 and we then close with remarks about future work.

2 The Java Jr. language

Java Jr. is a small, single threaded, subset of the Java language which allows for the
declaration of classes and interfaces in packages. It includes two extensions of Java:
it allows for packages to contain object declarations (rather than requiring them to be
static fields inside classes), and it allows for explicit specification of the signature of a
package. We shall discuss these in more detail below.

An example Java Jr. program is given in Figure 1: it provides a simple implementa-
tion of the Observer pattern from [12]. Observer objects can register themselves with a
Subject (in this case, we just provide a singleton Subject), and any calls to notify on
the Subject result in update calls on all the registered Observers.

We will use the following terminology throughout this paper: a package consists of
a sequence of declarations and a component consists of a sequence of packages. We
use the metavariables C,P and D to represent components, packages and declarations
respectively. We will also use the overbar notation to denote sequences, for example P̄
refers to a sequence of packages. The metavariable v is used throughout the paper to
refer to a fully specified object reference including the package name and object iden-
tity, using the usual Java p.o syntax. We also use the metavariable t to refer to types of
the language, that is, fully specified class or interface names. For example, in Figure 1,
observer.singleton is a fully specified object reference, and observer.Subject

is a fully specified interface name.
The notion of packages are central to Java Jr. They delimit our semantic descriptions

by identifying the boundaries of observable interactions. Statically, only interfaces and
public objects (and not classes or private objects) are visible across package boundaries;
dynamically, only publicly visible method calls (and not fields, constructors, or private
methods) are visible across package boundaries. In particular, code placed in a package

2



{ package observer;
interface Subject extends ε {

System.void addObserver (observer.Observer o);
System.void notify ();

}
interface Observer extends ε {

System.void update ();
}
class SubjectImpl extends Object implements Subject {

observer.List contents;
SubjectImpl (observer.List contents) { super (); this.contents = contents; }
public System.void addObserver (observer.Observer o) {

return (this.contents = new observer.Cons (o, this.contents), System.unit);
}
public System.void notify () { return this.contents.updateAll (); }

}
class List extends Object implements ε {

observer.List () { super (); }
public System.void updateAll () { return System.unit; }

}
class Cons extends List {

observer.Observer hd; observer.List tl;
Cons (observer.Observer hd, observer.List tl) { super (); this.hd = hd; this.tl = tl; }
public System.void updateAll () { return (this.hd.update(), this.tl.updateAll ()); }

}
object observer.SubjectImpl singleton implements observer.Subject {

contents = observer.list_nil;
}
object observer.List list_nil implements ε { }

}

Fig. 1. Definition of the observer package in Java Jr.

p, cannot create instances of objects using classes in a different package q. Nor can this
code access fields of objects created in q directly. In line with software engineering good
practice, each of these operations must be provided by factory, accessor and mutator
methods. Moreover, all packages in Java Jr. are sealed, that is new classes, objects and
interfaces may not be added to existing packages.

Where Java Jr. differs significantly from Java is in the provision for statically avail-
able methods and members. Rather than modelling the intricacies of Java’s static

modifier, we allow packages to contain explicit object declarations of the form:

object t o implements t̄ { f1 = v1; , . . . , fn = vn;}

Such a declaration indicates that an object with identity o is an instance of class t with
initial field assignments fi = vi; which may change during program execution. Object
declarations also contain a list of interface types t̄ which the object is said to implement.
These are the externally visible types for the object, as opposed to the class name t,
which is only internally visible within the package. If the list of interface types is empty,
then the object is considered private to the package. For example, in Figure 1 we have:

– Object singleton is declared as having class SubjectImpl, and implementing
Subject, so within the observer package we have singleton:SubjectImpl

but externally we only have singleton:Subject.
– Object list_nil implements no interfaces, so within the observer package we

have list_nil:List but externally it is inaccessible.
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{ package observer;
interface Subject extends ε {

System.void addObserver (observer.Observer o);
System.void notify ();

}
interface Observer {

System.void update ();
}
extern observer.Subject singleton;

}

Fig. 2. External view of of the observer package

In Java, all packages are export packages, that is they contain both the signature of the
package and its implementation: in contrast, languages like C allow for importation of
externally defined entities, and for the importer to give the signature of the imported
entity. In defining a notion of equivalence for Java programs, we found it necessary
to be formal about the notion of package interface, since the external behaviour of a
package crucially depends on the types of external entities.

For this reason, our other extension of Java is to allow for import packages, which do
not contain class or object declarations, and instead only contain interface declarations
and extern declarations, of the form:

extern t̄ o;

Such an declaration within an import package p declares that any export package which
implements p must provide an object named o with public types t̄. For example, in
Figure 2 we give the external view of the observer package.

2.1 Formal syntax and semantics of JavaJr.

We present a formal grammar for the Java Jr. language in Figure 3. For the most part
this syntax is imported directly from Java.

The only novel Java Jr. expression is of the form E in p which has no effect upon
runtime behaviour but is used simply as an annotation to assist typechecking. This op-
erator is effectively a type coercion of the following form:

If the expression E is well-typed to run in package p with return type t, then
the expression E in p is well-typed to run in any package q with return type t,
as long as t is a visible type in q.

In order to present the dynamic and static semantics of our language we found it useful
to make recourse to a number of auxiliary, syntactically defined functions. The def-
initions of these are largely obvious and are too numerous to list here. One of the
most important of these is the updating function C +C′ which is an asymmetric op-
erator in which each declaration {package p;D} within C′ overrides any declaration
with the same full name present in C, is included in package p of C if C contains this
package, and is simply appended to C otherwise. We write C.p.n for the declaration
{package p;D} where package p in C declares D with name n. Another crucial defini-
tion is
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Components: C ::= P̄
Packages: P ::= {package p; D̄}
Declarations: D ::= class c extends t implements t̄ {K ḠM̄}

| interface i extends t̄ {N̄}
| object t o implements t̄ {F̄}
| extern t̄ o; (t̄ 6= ε)

Constructors: K ::= c(t̄ f̄ , ū ḡ){super (̄f ); this. ḡ = ḡ;}
Fields: F ::= f = v;
Field types: G ::= t f ;
Methods: M ::= public t m(t̄ x̄){return E;}
Method types: N ::= t m(t̄ x̄);
Expressions: E ::= v | x | E.m(Ē) | E. f | E. f = E

| new t (Ē) | (E == E ? E : E) | E,E | E in p
Compound names: p, . . . ,w ::= ā

Simple names range over Object, and a, . . . ,o and Variables range over this and x, . . . ,z. We also
assume that sequences of field identifiers and variables, f̄ and x̄, and names inP̄, D̄, F̄, Ḡ,M̄, N̄
are always pairwise distinct.

Fig. 3. Syntax of the Java Jr. language.

– C.p is an export package if there is a n such that C.p.n = {package p;D} where D
is either a class or an object declaration.

– C.p is an import package if it is not an export package.

2.2 Dynamic semantics

A Java Jr. component C, will exhibit no dynamic behaviour until a thread of execution
is provided. As Java Jr. is a single threaded language we need not concern ourselves
with thread identities and synchronisation and we may model the single active thread
simply by a Java Jr. expression E. Given this, it is not difficult to define a relation → of
the form

(C ` E) → (C′ ` E ′)

to model the evaluation of the thread E with respect to the component C. In order to
define the reduction relation it is useful to identify what is typically referred to as eval-
uation contexts [32]. The grammar of all possible evaluation contexts of the language
is given by

E ::= · | E .m(Ē) | v.m(v̄,E , Ē) | E . f | E . f = E | v. f = E | new t (v̄,E , Ē)
| (E == E ? ET : EF) | (v == E ? ET : EF) | E ,E | E in p

We also list, in Figure 4, the proof rules which define the reduction relation itself. For
the most part, these rules are reasonably straightforward. Two points of interest are:

– In the rule for generating new objects, the new object is always stored within the
same package as the class it is instantiating.

– The result of a method call is to inline the method body E, say, within the current
evaluation context. Note that before doing this E is wrapped with the coercion
E in p where p is the package of the receiver. This facilitates type-safe embedding
of external code within a package at runtime.
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C.v = {package p;object t o implements t̄ {F̄}}
public u m( ū x̄){return E;} ∈C.t.methods

(C ` E [v.m( v̄)]) → (C ` E [E[v/this, v̄/ x̄] in p])

C.v = {package p;object t o implements t̄ {F̄}} f = w;∈ F̄
(C ` E [v. f ]) → (C ` E [w])

C.v = {package p;object t o implements t̄ {F̄}} ( f = u;) ∈ F̄
C′ = C +{package p;object t o implements t̄ {F̄ ′}} F̄ ′ = F̄ +( f = w;)

(C ` E [v. f = w]) → (C′ ` E [w])

C.p.c.fields = t̄ f̄ ; p.o /∈ dom(C)
C′ = C +{package p;object p.c o implements ε{ f̄ = v̄;}}

(C ` E [new p.c( v̄)]) → (C′ ` E [p.o]) (C ` E [v in p]) → (C ` E [v])

(C ` E [(v == v ? E : E ′)]) → (C ` E [E])

v 6= w
(C ` E [(v == w ? E : E ′)]) → (C ` E [E ′])

Fig. 4. Rules for reductions (C ` E) → (C′ ` E ′)

Note that the statically defined component C is modified during reduction as it also
models the runtime heap as well as the program class table.

2.3 Static semantics

As with Java itself, Java Jr. is a statically typed class-based language. It uses the package
mechanism to enforce visibility: in Java Jr., classes are always package protected, and
interfaces are always public, conforming to the common discipline of programming
to an interface. In order to check that a Java Jr. program respects package visibility,
the type system tracks the current package of each class, method and expression, for
example the type judgement for an expression is:

C ` E : t in p

This indicates that the expression E could potentially access all protected fields and
methods in p but cannot access anything outside of p except public methods declared
in interfaces.

We close this section by confirming that Java Jr. satisfies Subject Reduction for the
runtime type system.

Proposition 1 (Subject Reduction). For any well-typed component ` C : component

such that C ` E : t in p and (C ` E)→∗(C′ ` E ′) we have that ` C′ : component and
C′ ` E ′ : t in p.

3 Linking and Compatibility
A fundamental property of components ought to be that they should be compositional:
it should be possible to replace a subcomponent with an an equivalent subcomponent
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without affecting the whole system. In Section 4 we will discuss the dynamic properties
of equivalence, and in this section we will discuss the static properties. Our goal is to
provide a characterisation for when we can replace a subcomponent of a well-typed
system and ensure that the new system is still well-typed.

When first need to discuss what linking means in the context of Java Jr. Consider
two components C1, which contains an import package p, and C2, which contains an
export package p. As long as C1 and C2 are linkable, we should be able to find a com-
ponent C1 !C2 where C1’s import of p is satisfied by C2’s export.

We can now define when it is possible to link two declarations. Declarations D1 and
D2 are linkable if one of the following cases holds:

– D1 is object t o implements t̄ {F̄} and D2 is extern t̄ o;
– D2 is object t o implements t̄ {F̄} and D1 is extern t̄ o;
– D1 = D2 and are interface or extern declarations.

We define when it is possible to link two packages of the same name. Given packages
P1 and P2 we say that these are linkable if one of the following cases holds:

– P1 is an export package and P2 is an import package, and for each v such that
P2.v = {package p;D2} we have that P1.v = {package p;D1} where D1 and D2 are
linkable.

– Symmetrically, when P1 is an import package and P2 is an export package.
– P1 and P2 are both import packages, and for each v such that P1.v = {package p;D1}

and P2.v = {package p;D2} we have that D1 = D2.

We define when it is possible to link two components: C1 and C2 are linkable if

– for any P1 ∈ C1 and P2 ∈ C2 with name(P1) = name(P2) we have that P1 and P2

are linkable.

The above definitions outline the formal requirements for two components C1 and C2 to
be linked to form the larger component C1 !C2 given by:

C1 !C2 = (C1.imports+C2.imports)+(C1.exports+C2.exports)

where C.exports is the component containing all of the export packages of C, and sim-
ilarly for C.imports.

Proposition 2. If ` C1 : component and ` C2 : component and C1 and C2 are linkable
then ` C1 !C2 : component.

We can now address our goal of providing a characterisation for when we can replace
a subcomponent C1 of a well-typed system C1 !C by a replacement component C2

and be sure that C2 !C is still well-typed. We shall call such components C1 and C2

compatible, defined as:

for all C, C and C1 are linkable
if and only if C and C2 are linkable
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This definition, although appealing for its intuitive character, may be a little intractable
due to the use of the quantification over all components C. For this reason we seek to
provide a direct syntactic characterisation of compatibility. Two components C1 and C2

are interface compatible when:

for all t, C1.t = {package p; interface i extends t̄ {N̄}}
if and only if C2.t = {package p; interface i extends t̄ {N̄}}

Two components C1 and C2 are extern compatible when:

for all v, C1.v = {package p;extern t̄ o;}
if and only if C2.v = {package p;extern t̄ o;}

Two components C1 and C2 are object compatible when:

for all v and t̄ 6= ε, C1.v = {package p;object t1 o implements t̄ {F̄1}}
if and only if C2.v = {package p;object t2 o implements t̄ {F̄2}}

Two components C1 and C2 are package compatible when:

for all p, p ∈ dom(C1) and C1.p is an export package
if and only if p ∈ dom(C2) and C2.p is an export package

For readers familiar with Java’s notion of binary compatibility [14, Chapter 13], these
are stronger requirements, justified by the following result.

Proposition 3. Components ` C1 : component and ` C2 : component are compatible
if and only if they are interface, extern, object and package compatible.

4 Contextual equivalence

The question of whether two programs are equal lies at the heart of semantics. An initial
requirement for equivalence clearly should be that the programs, or components, are at
least compatible. Further to this, we adopt an established means of defining equivalence
by making use of contextual testing [15, 23]; programs are considered equal when they
pass exactly the same tests.

In the case of Java Jr., a test is any component which can be linked against the com-
ponent being tested, and the resulting system passes a test by printing an appropriate
message using a chosen method System.out.print(Object). The remainder of this
section will now formalise this notion of testing.

Define a special component System as:

{ package System;
interface Output { Object print(Object msg); }
extern System.Output out;

}

We say that a component C accepts System if C and System are linkable and C.System
is not an export package. Note that if System 6∈ dom(C) then C trivially accepts System.

8



For compatible components ` C1 : component and ` C2 : component which accept
System, define C1 .C2 as:

for all ` C : component linkable with C1 and C !C1 ` E : Object in ∗ and for all
C ` v : Object in ∗ we have

(C !C1 ` E) →∗ (C′
1 ` E1[System.out.print(v)]) implies

(C !C2 ` E) →∗ (C′
2 ` E2[System.out.print(v)])

We say that well-typed C1 and C2 are contextually equivalent, C1 'C2 whenever both

C1 .C2 and C2 .C1.

Although this definition is appealing in the sense of being extensional and robust, it is
rather intractable as a means of identifying equivalent programs, due to the quantifi-
cation over all well-typed components C. We will now establish a simpler trace-based
method for establishing contextual equivalence for Java Jr.

5 Trace semantics

We will now discuss the trace semantics of Java Jr., which provides a description of
the external behaviour of a component as a series of method calls and returns. The
semantics of a component describes all possible interactions it could engage in with
some unknown testing component. Each interaction takes the form of a sequence of
basic actions α given by:

γ ::= v.m(v̄) | return v | new(v) . γ
a ::= γ? | γ! α ::= a | τ

Each visible action is either a method call v.m(v̄) or method return v. They are decorated
γ? if the message goes from the environment to the process, or γ! if the message comes
from the process to the environment. Moreover, actions may mention new objects which
have not previously been seen: these are indicated by new(v) . γ. The final action τ is
used to represent interaction internal to the component under test.

We define traces as sequences ā of visible actions, considered up to alpha equiva-
lence, viewing new(v) . ā as a binder of v in ā:

ā .new(v̄) . b̄ ≡ ā .new(w̄) . b̄[w̄/v̄] when w̄ 6∈ b̄

We will now describe the rules which generate traces from the component syntax. Be-
fore we can do this though it is useful to present an auxiliary notion.

The downcasting of imported names C + extern t v; is given by:

C + extern t v; = C (when C ` v : t in ∗)

C + extern t v; = C +{package p;extern t̄, t o;}

(otherwise, where C.v = {package p;extern t̄ o;}

and C.t̄.headers∪C.t.headers are compatible)
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Similarly, the downcasting of exported names C +object t v; is given by:

C +object t v; = C (when C ` v : t in ∗)

C +object t v; = C +{package p;object u o implements t̄, t {F̄}}

(otherwise, when C.v = {package p;object u o implements t̄ {F̄}}

and C ` u <: t in p and t̄ 6= ε)

Notice that downcasting with t v has no effect in case the object reference v is already
known to the component at the (public) type t. Otherwise, the appropriate import or
export declaration is updated.

In order to generate traces we need to describe all possible interactions of compo-
nents with an unknown testing component and unknown thread. We build these inter-
actions up from sequences of single basic actions which the component can engage in.
There are essentially two modes of interaction we need to consider here. One is the sit-
uation in which the unknown testing component and thread is executing in its code and
may call in to a method of the component under test. The other is the situation in which
the component under test has been called and is executing some of its known code. We
represent these two scenarios using the following states:

Σ ::= (C ` E : tB Ē : t̄ → ū) | (C ` blockB Ē : t̄ → ū)

where block represents unknown code being executed by the testing environment and Ē
represents the component C’s view of the evaluation stack. In fact this stack is formed
from a sequence of evaluation contexts as the view of the full evaluation stack is only
partial. The types of these evaluation contexts is also recorded and uses the notation
E : t → u to indicate that the hole in E is to be filled with an expression of type t, and
doing so will yield an expression of type u.

We now define a relation Σ ===
b̄
⇒ Σ′ between (well-typed) states which describes

the sequences of actions a component can engage in. The defining rules for this relation
are presented in Figure 5. From here we are now in a position to define the semantics
of a component as

Traces(C) = {ā | (C ` blockB ε : ε) ===
b̄
⇒ Σ and ā ≡ b̄}

In Figure 6, we show an example of our Observer example above. We define a compo-
nent Test which contains (an external declaration of) an object which will be registered
with the observer service:

{ package observer.test;
interface Test { void run (); }
extern observer.test.Test test;

}

Note that during this example the type of the test object changes: initially it is just
observer.test.Test, but after the first action it also has type observer.Observer.

6 Full Abstraction
Having built our trace model of components we now need to verify that the notion of
equivalence induced by the model (equality on trace sets), does actually coincide with
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(C ` E) → (C′ ` E ′)

(C ` E : t B Ē : t̄ → ū)
τ
- (C′ ` E ′ : t B Ē : t̄ → ū)

Silent transitions

C.v is an export C ` v : u in ∗ s m( s̄ x̄);∈C.u.headers C′ = C + extern s̄ v̄;

(C ` blockB Ē : t̄ → ū)
v.m( v̄)?

- (C′ ` v.m( v̄) : sBĒ : t̄ → ū)

C′ = C + extern t v;

(C ` blockB E , Ē : t → u, t̄ → ū)
return v?

- (C′ ` E [v] : uB Ē : t̄)

Input transitions

C.v is an import C ` v : u in ∗ s m( s̄ x̄);∈C.u.headers C′ = C +object s̄ v̄;

(C ` E [v.m( v̄)] : t BĒ : t̄ → ū)
v.m( v̄)!

- (C′ ` blockB E , Ē : s → t, t̄ → ū)

C′ = C +object t v;

(C ` v : t B Ē : t̄ → ū)
return v!

- (C′ ` blockB Ē : t̄ → ū)

Output transitions

C.p is an import package p.o 6∈ dom(C) p.o ∈ fn(γ?)
C′′ = C +{package p;extern Object o;}

(C′′ ` blockB Ē : t̄ → ū)
γ?
- (C′ ` E ′ : t ′ B Ē ′ : t̄ ′ → ū′)

(C ` blockB Ē : t̄ → ū)
new(p.o).γ?

- (C′ ` E ′ : t ′ B Ē ′ : t̄ ′ → ū′)

C.p.o = {package p;object u o implements ε{F̄}} p.o ∈ fn(γ!)
C′′ = C +{package p;object u o implements Object{F̄}}

(C′′ ` E : t B Ē : t̄ → ū)
γ!
- (C′ ` blockB Ē ′ : t̄ ′ → ū′)

(C ` E : t B Ē : t̄ → ū)
new(p.o).γ!

- (C′ ` blockB Ē ′ : t̄ ′ → ū′)

Fresh name transitions

Σ ===
ε
⇒ Σ

Σ ===
ā
⇒ Σ′ ===

ā′
⇒ Σ′′

Σ ===
ā ā′
⇒ Σ′′

Σ
τ
- Σ′

Σ ===
ε
⇒ Σ′

Σ
a
- Σ′

Σ ===
a
⇒ Σ′

Concatenating actions

Fig. 5. Generating rules for labelled transitions
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(C0`blockBε:ε)

=====================
singleton.addObserver(test)?

⇒ (C1`singleton.addObserver(test):voidBε:ε)
===⇒ (C3`unit:voidBε:ε)

========
returnunit!

⇒ (C3`blockBε:ε)

==============
singleton.notify()?

⇒ (C3`singleton.notify():voidBε:ε)
===⇒ (C3`test.update(),list test nil.tl.updateAll():voidBε:ε)

=========
test.update()!

⇒ (C3`blockB·,list test nil.tl.updateAll():void→void)

========
returnunit?

⇒ (C3`unit,list test nil.tl.updateAll():voidBε:ε)
===⇒ (C3`unit:voidBε:ε)

========
returnunit!

⇒ (C3`blockBε:ε)

C0 = Components System, Test and that defined in Figure 1.

C1 = C0 +{package observer.test; extern Test, Observer test; }

C2 = C1 +{package observer; object Cons list_test_nil { hd=test; tl=list_nil; }}

C3 = C2 +{package observer; object SubjectImpl singleton ... { contents = list_test_nil; }}

Fig. 6. Example trace of observer

the intuitive notion of testing equivalence ' defined earlier. This is the content of the
Full Abstraction Theorem.

Theorem 1 (Full Abstraction). For all well-typed components C1 and C2, we have

Traces(C1) = Traces(C2) if and only if C1 'C2

The proof of this theorem is non-trivial and unfortunately too long to present in full here.
It breaks in to two parts, soundness and completeness, which together are sufficient
to show full abstraction. For the remainder of this section we will outline the proof
technique.

6.1 Soundness of trace inclusion for testing

We show the soundness of our model with respect to testing equivalence, that is,

Traces(C1) ⊆ Traces(C2) implies C1 .C2.

To demonstrate this we observe that the traces are defined in such a way as to guarantee
that every (internal) interaction between Ci and a test component can be decomposed
in to complementary traces (traces which are identical except for the reversal of the
! and ? annotations) and conversely that pairs of complementary traces can also be
(re)composed to obtain an internal reduction. This is a not a straightforward property
to express as the result of an active thread in C1 and C is typically an intertwining of
code from each component. To describe the possible states of the system we overload
the notation ! to define how to merge complementary states of the labelled transition
system.

Define t̄1 → ū1 and t̄2 → ū2 to be mergeable for t as:

12



– ε and ε are mergeable for Object.
– If t̄2 → ū2 and t̄1 → ū1 are mergeable for u

then t̄1 → ū1 and t → u, t̄2 → ū2 are mergeable for t.

Define (C1 ` E : tB Ē1 : t̄1 → ū1) and (C2 ` blockB Ē2 : t̄2 → ū2) are mergeable when

– C1 and C2 are linkable and t̄1 → ū1 and t̄2 → ū2 are mergeable for t

We define the partial merge Ē1 ! Ē2 of context stacks as

ε! ε = ·

Ē1 ! (E2, Ē2) = (Ē2 ! Ē1)[E2]

When Σ1 and Σ2 are mergeable we define Σ1 !Σ2 as the state given by:

(C1 ` E1 : t1B Ē1 : t̄1 → ū1)! (C2 ` blockB Ē2 : t̄2 → ū2)
= (C1 !C2 ` (Ē1 ! Ē2)[E1])

Proposition 4. If ` Σ1 : state and ` Σ2 : state are mergeable and Σ1 ! Σ2 = (C ` E),
then ` C : component and C ` E : Object in ∗.

We write ā−1 for the trace ā with the input and output annotations reversed. We
also define the external ordering, C vext C′ as the preorder on components generated by
C vext C +object t v;. Note that whenever C vext C′ then C′ differs only in that it may
contain more external interface types for object definitions.

Proposition 5 (Trace Composition/Decomposition). If Σ1 and Σ2 are mergeable such
that Σ1 !Σ2 = (C ` E) then

1. If Σ1 ===
ā
⇒ Σ′

1 and Σ2 ===
ā−1

⇒ Σ′
2 then (C ` E)→∗(C′ ` E ′) where either

– Σ′
1 and Σ′

2 are mergeable such that Σ′
1 !Σ′

2 = (C′′ ` E ′) with C′ vext C′′, or
– Σ′

2 and Σ′
1 are mergeable such that Σ′

2 !Σ′
1 = (C′′ ` E ′) with C′ vext C′′.

2. If (C ` E)→∗(C′ ` E ′) then there exists ā such that Σ1 ===
ā
⇒ Σ′

1 and Σ2 ===
ā−1

⇒ Σ′
2

where either
– Σ′

1 and Σ′
2 are mergeable such that Σ′

1 !Σ′
2 = (C′′ ` E ′) with C′ vext C′′, or

– Σ′
2 and Σ′

1 are mergeable such that Σ′
2 !Σ′

1 = (C′′ ` E ′) with C′ vext C′′.

Theorem 2 (Soundness of traces for may testing). For compatible C1 and C2 which
accept System, if Traces(C1) ⊆ Traces(C2) then C1 .C2.

Proof:(Sketch) Suppose that Traces(C1) ⊆ Traces(C2) and also suppose that C is a
testing component such that C ! C1 prints the message “Hello” during evaluation.
We can use Trace Decomposition on the interaction between C and C1 which caused
this string to be produced. This gives a pair of complementary traces. Now, because
Traces(C1) ⊆ Traces(C2) we also know that C2 must perform the same traces as C1.
Therefore, when we link C with C2, because these components can respectively per-
form the given pair of complementary traces, these may be re-composed using Trace
Composition to give an internal evaluation of C !C2 which will also print the message
“Hello”. This can be done for any testing component and any message. So this serves
to demonstrate that C1 .C2 ¤
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6.2 Completeness

The converse property, completeness,

C1 .C2 if and only if Traces(C1) ⊆ Traces(C2)

also relies on the Trace Composition/Decomposition property (Proposition 5). In ad-
dition to this though we also need to show a definability result which states that for
every (odd length) trace from a well-typed component we can find a component and
expression which will exhibit this trace, and only this trace (up to renaming of fresh
names).

Proposition 6 (Definability). If we have ` C : component and (for ā of odd length)

(C ` blockB ε : ε) ===
ā
⇒ ·· · then we can find C′, E such that ` C′ : component, C and

C′ are linkable, C′ ` E : Object in ∗ and (C′ ` E : ObjectB ε : ε) ===
b̄
⇒ ·· · (for b̄ of

odd length) if and only if b̄ ≡≤ ā−1.

Theorem 3 (Completeness of traces for may testing). For compatible C1 and C2, if
C1 .C2 then Traces(C1) ⊆ Traces(C2).

Proof:(Sketch) Suppose that C1 . C2 and also suppose that C1 has a trace ā. We can
suppose (wlog) that ā is even length. We must show that C2 also has this trace. We
do this by first applying our definability result to the complement of ā extended with
a visible action of an outgoing call to System.print with message, “Hello”, say. This
yields a component C def. Given this, we use Trace Composition with ā and its comple-
ment by linking C def and C1 to yield an internal evaluation which will ultimately print
“Hello”. Because, C1 .C2 and because C def acts as a test, we know that C def!C2

must also evaluate and eventually print the message “Hello”. We use Trace Decompo-
sition to split this internal evaluation into separate traces to see that C2 must perform
some trace complementary to that of C def. But, given that C def performs the unique
(up to ≡) trace ā−1, we must have that C2 has the trace ā also. ¤

7 Conclusions and further work
We have described a novel core Java-like language, Java Jr., which allows package and
class-based definitions of object systems. The language is specifically designed to be
semantically clean by using the packaging system to enforce all cross-package interac-
tion to be limited to method invocation and return. We provided Java Jr. with a static
type system, whose types act as interfaces to components for building large systems and
we presented a simple notion of linking for plugging well-typed components together.
This notion of linking was also used to give an extensional definition of a component’s
suitability for substitution with other components from a structural, or static point of
view. We proceeded to develop an extensional definition of a component’s suitabil-
ity for substitution from a behavioural, or dynamic point of view, drawing on a body
of work in the literature on process testing [15]. Importantly, our trace semantics for
Java Jr. components turn out to capture the notion of behavioural testing precisely. This
Full Abstraction property is a major result of this work and is the first such result for a
class-based object language with packages and subtyping.
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Although the core language only supports a limited number of Java features, it al-
ready has enough power to encode some of the more sophisticated control-flow opera-
tions and, to some extent, is robust enough to allow the addition of extra features without
disrupting the higher-level semantics, as long as these new features do not create new
cross-package interaction. For instance, it is straightforward, but slightly cumbersome
to include primitive types and constants in Java Jr. These would not seriously affect the
validity of the full abstraction theorem. We also anticipate that Java exceptions could
readily be included within our framework, although this would require exception inter-
faces in addition to Java’s exception classes, if we want Java Jr. exceptions to be thrown
and caught across package boundaries.

Unfortunately, some of Java’s features have significant impact on our model: in
particular, explicit downwards typecasts and concurrency. Downwards casts affect our
trace semantics in a fairly significant way. At present we maintain strict public interfaces
to classes and only release objects at given interfaces. This type security is maintained
in Java Jr. as there is no possibility for code to use a received object at any lower type.
This is reflected in the trace semantics by recording lists of interface types at which
component and environment object names have been leaked. Allowing downwards casts
would enable code in a given package to receive objects declared in a different package
and discover their private types. This breaks the programming to an interface discipline
of Java Jr.

Similarly, the trace model is built around the notion of a single thread of control. The
straightforward alternation of control between component and environment in the trace
semantics is a direct consequence of this. Fortunately, introducing named threads and
providing an interleaved trace model is achievable. Earlier work of ours [17] provides
such a model for a small concurrent object-based calculus. The extra complications of
classes and subtyping present are unlikely to affect the integration of the concurrent
thread model within Java Jr.
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A This appendix is only in the online version

Preliminary definitions and type rules

In order to present the semantics of Java Jr., we need to make use of a number of conve-
nient auxiliary (partial) functions and relations defined on the Java Jr.syntax. Firstly, we
define and equivalence relation on programs which identifies those which are identical
up to reordering of the declarations and packages:

Define D̄1 ≡ D̄2 whenever these are equal up to reordering of declarations, that is,
the equivalence generated by:

D̄1D̄2D̄3 ≡ D̄2D̄1D̄3

Define P̄1 ≡ P̄2 whenever these are equal up to reordering of packages and declarations,
that is, the equivalence generated by:

P̄1P̄2P̄3 ≡ P̄2P̄1P̄3

{package p; D̄1}P̄ ≡ {package p; D̄2}P̄ if D̄1 ≡ D̄2

Define dom(C) as:

dom(P1 . . .Pn) = dom(P1)∪·· ·∪dom(Pn)

and dom(P) as:

dom({package p; D̄}) = {p.n | n ∈ dom(D̄)}∪{p}

and name(P) as:

name({package p; D̄}) = p

and dom(D̄) as:

dom(D1 . . .Dn) = {name(D1), . . . ,name(Dn)}

and name(D) as:

name(class c extends s implements s̄{K ḠM̄}) = c

name(interface i extends s̄{N̄}) = i

name(object t o implements t̄ {F̄}) = o

name(extern t̄ o;) = o

(ditto for fields and methods). Define C.p as

C.p = {package p; D̄} (when {package p; D̄} ∈C)

. Define C.p.n as:

C.p.n = {package p;D} (when {package p; D̄} ∈C, D ∈ D̄ and name(D) = n)

17



We define a partial function on components C.t.supertypes as:

C.Object.supertypes = ε
C.t.supertypes = s, s̄

(when C.t = {package p;class c extends s implements s̄{K ḠM̄}} )

C.t.supertypes = s̄

(when C.t = {package p; interface i extends s̄{N̄}} )

We say that a component C is acyclic if C.t.supertypes satisfies

there is no t1, . . . , tn such that ti+1 ∈C.ti.supertypes for 1≤ i < n and tn ∈C.t1.supertypes.

For the remainder of the paper we will always assume that C is acyclic.
Define C +C′ as:

C + ε = C

C +{package p; D̄}C′ = C{package p; D̄}+C′ (when p 6∈ dom(C) )

(C1{package p; D̄}C2)+{package p; D̄′}C′ = (C1{package p; D̄+ D̄′}C2)+C′

and D̄+ D̄′ as:

D̄+ ε = D̄

D̄+(D′D̄′) = (D̄D′)+ D̄′ (when name(D′) 6∈ dom(D̄) )

(D̄1DD̄2)+(D′D̄′) = (D̄1D′D̄2)+ D̄′ (when name(D) = name(D′) )

(ditto M̄ + M̄′, N̄ + N̄′, F̄ + F̄ ′ and Ḡ+ Ḡ′).
Define C.t.methods as:

C.Object.methods = ε
C.t.methods = C.s.methods+ M̄

(when C.t = {package p;class c extends s implements s̄{K ḠM̄}})

and C.t.headers as:

C.Object.headers = ε
C.t.headers = C.s.headers+ M̄.headers

(when C.t = {package p;class c extends s implements s̄{K ḠM̄}})

C.t.headers = C.s̄.headers+ N̄

(when C.t = {package p; interface i extends s̄{N̄}})

where M.headers is:

(public t m(t̄ x̄){return E;}).headers = (t m(t̄ x̄);)

and t̄.headers is:

t1.headers+ t2.headers+ · · ·+ tn.headers
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(similar for M̄.headers)
Define C.t.fields as:

C.Object.fields = ε
C.t.fields = C.s.fields+ Ḡ

(when C.t = {package p;class c extends s implements s̄{K ḠM̄}})

We define headers N̄ are compatible as:

t m(t̄ x̄);∈ N̄ and u m(ū ȳ);∈ N̄ implies t = u and t̄ = ū

Define:

– C.p is an export package if there is a n such that C.p.n = {package p;D} where D
is either a class or an object declaration.

– C.p is an import package if it is not an export package.

Define C.exports to be the component containing all of the export packages of C, and
similarly for C.imports.

We define the internal ordering, C vint C′ as the preorder on components generated
by C vint C +{package p;object t o implements t̄ {F̄}} where either

– p.o 6∈ dom(C) and t̄ = ε or
– C.p.o = {package p;object t o implements t̄ {F̄ ′}}.

Note that whenever C vint C′ then C′ differs only in that it may contain more object
definitions and may have different stored values for fields.
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Well-typed class C ` t : class in p:

C.t = {package p;class c extends s implements s̄{KḠM̄}}

C ` t : class in p C ` Object : class in p

Well-typed interface C ` t : interface in p:

C.t = {package q; interface i extends s̄ {̄N}}

C ` t : interface in p

Well-typed type C ` t : type in p:

C ` t : class in p
C ` t : type in p

C ` t : interface in p
C ` t : type in p

Subtype C ` t <: u in p:

C ` t : type in p
C ` t <: t in p

C ` t : type in p
C ` t <: Object in p

C ` t <: u in p C ` u <: s in p
C ` t <: s in p

u ∈C.t.supertypes C ` t : type in p
C ` t <: u in p

Fig. 7. Type rules for checking valid types and subtyping.
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Well-typed expression C;Γ ` E : t in p:

C.v = {package p;object t o implements t̄ {F̄}}

C;Γ ` v : t in p

C.v = {package p;object t o implements t̄ {F̄}} u ∈ t̄
C;Γ ` v : u in q

C.v = {package p;extern t̄ o;} u ∈ t̄
C;Γ ` v : u in q

t x;∈ Γ C ` t : type in p
C;Γ ` x : t in p

C;Γ ` E : u in p C;Γ ` Ē : t̄ in p t m(t̄ x̄);∈C.u.headers

C;Γ ` E.m(Ē) : t in p

C;Γ ` E : u in p t f ;∈C.u.fields

C;Γ ` E. f : t in p

C;Γ ` E : u in p C;Γ ` E ′ : t in p t f ;∈C.u.fields

C;Γ ` E. f = E ′ : t in p

C ` p.c : class in p C;Γ ` Ē : t̄ in p C.p.c.fields = t̄ f̄ ;
C;Γ ` new p.c(Ē) : p.c in p

C;Γ ` E1 : u in p C;Γ ` E2 : u in p C;Γ ` ET : t in p C;Γ ` EF : t in p
C;Γ ` (E1 == E2 ? ET : EF ) : t in p

C;Γ ` E : t in p C ` t <: u in p
C;Γ ` E : u in p

Fig. 8. Type rules for checking valid expressions.

Well-typed method C ` M : method in p.c:

C ` t : type in p C ` t̄ : type in p C; t̄ x̄; p.c this;` E : t in p
C ` public t m(t̄ x̄){return E;} : method in p.c

Well-typed method header C ` N : header in p.i:

C ` t : type in ∗ C ` t̄ : type in ∗

C ` t m(t̄ x̄); : header in p.i

Fig. 9. Type rules for checking valid methods.
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Well-typed declaration C ` D : declaration in p:

C ` s : class in p C ` s̄ : interface in p C ` ū : type in p C `̄M : method in p.c
C.t.headers ⊆C.p.c.headers for all t ∈ s, s̄ C.s.fields =t̄ f̄ ;

C ` class c extends s implements s̄
{c(t̄ f̄ , ū ḡ){super (̄f ); this. ḡ = ḡ;} ū ḡ;̄M} : declaration in p

C ` s̄ : interface in p C `N̄ : header in p.i
C.t.headers ⊆C.p.i.headers for all t ∈ s̄

C ` interface i extends s̄ {̄N} : declaration in p

C ` t : class in p C ` t <: t̄ in p C ` t̄ : type in ∗
C.t.fields = ūf̄ ; C ` v̄ : ū in p

C ` object t o implements t̄ { f̄ = v̄;} : declaration in p

C ` t̄ : type in ∗ C.t̄.headers are compatible C.p is an import package
C ` extern t̄ o; : declaration in p

Well-typed package C ` P : package:

C ` D̄ : declaration in p
C ` {package p; D̄} : package

Well-typed component ` C : component:

C = P̄ C ` P̄ : package

` C : component

Fig. 10. Type rules for checking declarations, packages and components.
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