2.2. THE NEAREST FOREIGN NEIGHBOR PROBLEM - 21

If the sets of sites § and T are in quadtree cells A and B that satisfy conditions
like these, the NI'N problem for their sites can be solved in linear time. Using this
observation in the straightforward recursion useful for the planar case results in
& non-linear algorithm, since many more subproblems are generated than in that
case. Suppose, however, that cells A and B correspond to the same cube, or are
two different equal-sized descendents of the same quadtree cell, so that they are
aligned in one or more dimension. Then at a given level of refinement, for a cell C
in A, the cells “pending” for C will be aligned with it in at least one coordinate.
That is, for the cells the size of C in B, all but those aligned with C' can have their
NI'N site with it determined in constant time, using Lemma 2.4". (The assumption
is made here that the quadtrees rooted at A and B are preprocessed so that for
each cell, the closest site to each corner of that cell is known.)

An algorithm using this observation is shown in pseudo-code in Figures 2.8a and
2.8b below. The heart of the algorithm is procedure Ezact NFN. Given quadtree
cells A and B, this procedure processes all quadtree cells in them down to the
number_of_generations level. After this processing, for every site s in such a cell
C' in A, closest sites to s are known, among all sites in cells of B not pending
for C. The processing is performed for all cells in A and B of a given size, and then
the information gained is used to determine the corresponding information for the
children of those cells.

Procedure Eract_NFN organizes equal-sized quadtree cells into layers in each of
the coordinate directions. Each cell appears in a layer of such cells aligned in the =,
coordinate, in another layer of cells aligned in the z, coordinate, and so on, being
represented at most d times. An aligned layer in A can be paired with an aligned
layer in B, such that all cells in the pair of layers are aligned. Such aligned pairs
of layers will be termed pending pasrs. The information gained by Ezact_ NFN can
be described in this terminology as follows: After the processing of C within the
j-loop in Eract_NIFN, closest sites to any site in C are known, among the sites in
B not in

U{s | s € D, D € Pending.B,C € Pending. A, Pending € Pending_Pairs ;}.
J

Such closest sites are known for each corner of €. The closest site for a corner is
the closest among sites for which that corner is a “separating point” from C, as in
Lemma 2.47.

We nexl describe how to preserve this condition, moving from one level of re-
finement of quadtree cells to the next. This “splitting step” is performed by
Split_Pending_Pair, shown in Figure 2.8b. For example, a given pending pair
aligned in z; at a particular step gives rise to two “child layers,” consisting of °
those children with higher z; coordinate, and those children with lower z; coordi-
nate. The high child layer in A forms a new pending pair with a high child layer in
B, and similarly for the low layers. The two pairs of child layers that are separated

22 CHAPTER 2: APPROXIMATION ALGORITHMS

procedure NFN(A, B : quad_tree_cell,
¢ : corner,
number_-of_generations : integer); co of cells to consider oc

co A corner of a cell is described using an array, indexed from 1 to d, of values that are High,
Low, or Aligned. 1f ¢; is High(Low), this indicates that B is above(below) A in the j dimension.
If ¢; is Aligned, B and A are aligned in the j dimension. The corner € has ¢; Low when ¢; is
High, and vice versa, and is Aligned when c; is Aligned.

Pending_Pairs is an array, indexed from 1 to d, of scts of pending pairs. A pending pair is a pair
of sets of quadtree cells that are aligned along a dimension. Pending pair Pending has the set of
cells Pending. A from A and Pending. 3 from B.

For acell C in A and a corner ¢, C.my_closest . denotes the closest site in C to the corner indicated
by ¢. The site C.other_closest. is a closest currently known site in B to the corner of C indicated
by e. oc;

begin
Preprocess A and B so that all their descendents to number_of_generations have defined my_closest
fields;
Pending_Pairs + Eract_NFN (A, B, ¢, number_of_gsnerations);
Projected NFN (Pending_Puirs, ¢, number_of_generations);

end;

procedure Projected NFN (Pending_Pairs : Pending_Pair_Array,

¢ : corner,
number_of_generations : integer);
begin

for j with ¢; = Aligned do
for Pending € Pending_Pairs; do

for C € Pending.A do make lower-dim. cell C' from C by projecting sites along jth coordinate
od;
for C & Pending. B do make cell C' by projecting along jth coordinate od;
Make quadtree B’ from from Pending .B similarly;
Make (d — 1)-corner ¢’ by deleting jth coordinate value from c¢;
NFN(A', B, ', Number_of_generalions);
for C € Pending. A do
Update C.other_closest. with the site corresponding to C'.other_closest .1;
od;
for C € Pending. B do
Update C.other_closest; with the site corresponding to C".odaer_dosestc—,
od;
od;od;
end;

Figure 2.8a. Procedures NI'N and Projected_NFN .

in the z; coordinate represent (d — 1)-dimensional problems. The closest sites for
these diagonal layers can be recursively determined, using Lzact_ NIFN. This recur-
sion, performed for cach of the diagonal layers, yiclds closest sites for a cell C in a
child layer ol A, among cach of the diagonal layers for C'. Comparing these closest
sites with that of the parent cell of C yields the closest sites in B to C, among those
sites not in the pending pairs containing C. It follows that the inductive condition
is preserved. ‘

After rcfining number_of_generations times, it remains to determine closest sites
among those sites in A and B cach in a pending pair. This can be done approxi-
mately by “collapsing” each pending pair to a (d — 1)-dimensional subproblem, and

2.2. THE NEAREST TFOREIGN NEIGHBOR PROBLEM 23

function Fract NFN (A, B : quad_tree_cell,
¢ : corner,
number_of_generalions : integer)
return Pending_Pairs : Pending_ Pair_Array;
begin
if ¢; # Aligned for all § then
Update A.other_closest. with B.my_closest=;
Update B.other_closestz with A.my_closest ;
else .
Pending. A +— {A}; Pending.B — {B};
for j with ¢; = Aligned do Pending_Pairs ; < {Pending} od;
for { +— 1 to number_of_generations do
for j with ¢; = Aligned do
New_Pending_Pairs ; « {%
for Pending € Pending_Pairs; do
[Low_Pending , High_Pending] «— Split_Pending_Pair (Pending ,c, 1, 7);
New_Pending_Pairs ; < New_Pending_Pairs ; U Low_Pending U Iigh_Pending;
od;od; :
Pending_Pairs <+ New_Pending_Pairs;
co A pruning step might be performed at this point oc;

od;
fi;
end; ,
function Spht_Pending_Pair (Pending: Pending_Pair
c : corner,

level : integer, co of refinement of cells in Pending oc
j @ dimension)
return [Low_Pending , High_Pending : Pending_Pair|;
begin
Low_Pending.A «— {C | C € Children(D), D € Pending.A,
C has lower jth coordinate among such children};
Determine Low._Pending. B, High _Pending analogously;
Give cells in Low_Pending and High_Pending the other_closest sites of their parents;
co Solve the problems resulting from the layers separated in z;: co
Make quadtrees Al, BL from cells in Low_Pending;
Make quadtrees AH, BH from cells in High_Pending;
cH «- ¢; cH j « High;
Fzact NFN (AL, BH , cH level + 1);
el «— ¢; cl:j «— Low;

Bract NFN (A, BL, cL, level + 1);
end;

Figure 2.8b. Procedures Ezact_NFN and Sp!it.-Pending_Pqir of NI'N .

solving that problem recursively, as in Projected_NFN, shown in Figure 2.8a. The
result will be that the NI'N distances are determined within da’, where o' is the
side length of the smallest quadtree cells considered. The main algorithm NI'N
simply initializes the quadtrees, calls Ezact_NI'N, and then calls Projecied_NIF'N,
I'rom the above discussion, we have the following theorem.

Theorem 2.5. Let A and B be quadtree cells that correspond to the same
cube, or arc equal-sized distinct descendents of the same quadtree cell. When
called for these quadtree cells, and with number_of_generations set to some
value 3, algorithm NIFN determines the nearest foreign neighbors for sites
in A and B to accuracy da', where o' =277, The sidelength of A and B is
the unit of measure of accuracy.

24 CHAPTER 2: APPROXIMATION ALGORITHMS

Using induction on the dimension, we will show that the time needed by NFN and
Ezact_NFN , for processing cells to the number_of_generations = lg(d/a) level, is
O(klog®(1/a)), for k descendents of A and B at the lowest level. This results in
a final accuracy of . Using the inductive hypothesis, Split_Pending_Pair requires
O(log? !(1/a)) work for cach cell in the pending pairs input to it, since the work
per cell is dominated by the work for a (d — 1)-dimensional call to Ezact. NFN.
Thereflore, Ezact_NFN requires O(log? *(1/a)) for each quadtree cell in A and
in B. Since there are O(klog(1/a)) such cells, the total work in Ezact_ NFN
is O(klog®(1/a)). It follows that the work in NFN is O(klog®(1/c)), plus the
time required for Projected_NFN. Projected_NFN requires linear time, plus the
time for (d — 1)-dimensional calls to NFN, with each of the k cells in exactly d
of those calls. The work performed by NFN is therefore O(klog®(1/a)). Since
k = O(n+m), where n = | Contents(A)| and m = | Contents(B)|, the total work is
O((n -+ m)log®(1/a)). We have proven

Theorem 2.6. Algorithm NFN requires O((n+m) log®(1/a)) time to solve
the necarest foreign neighbor problem for quadtree cells containing n and m
sites, under the conditions of Theorem 2.5,

When only the closest NFN pair is desired, and not the NFN distance for every
site, a modification can be made in the algorithm that would probably improve its
performance in practice. This modification is also important for achieving a better
time bound in the MST algorithms of the [ollowing section. The change is to move
procedure Projected NFN into Fzact_NFN, so that an upper bound on the NI'N
pair distance can be known at each step. If this is done, then any cell examined
in the course of algorithm that can be ruled out using this upper bound may be
“pruned”, and its descendents not examined subsequently. The result is a smaller
number of cells to examine, and the guarantee that each cell examined contains an
approximate ncarest neighbor site.

§2.3 Minimum Spanning Trees

In this section an algorithm will be described for computing an approximation to
a minimum spanning tree for a set of sites. In §2.3.1, the problem of computing
an approximate MST is reduced to that of solving the nearest foreign neighbor
pair problem approximately. In §2.3.2, this reduction is further refined, and time
bounds are given for the case when the L; NIFN algorithm of the last scction is
used. In §2.3.3, these ideas are illustrated with an algorithm for finding MSTs in
_ the 3D Euclidean case.

2.3.1 MST = NFN

Several of the algorithms for geometric minimum spanning trees mentioned in §1.1.3
find an MST supergraph G’ with O(n) edges, using Voronoi diagrams, relative

2.3. MINIMUM SPANNING TREES 25

procedure Find MST_Fdges (P);
co P is a connected component of cells oc;
begin
Cell_Diameter «— diameter of a cell in P;
S + quadtree children of P;
for each connected component P; of S do
Find_MST_Fdges(FP;);
for each cell C in P; do
for each cell D in § not in F;
with dy,in(C, D) < 2Cell_Diameter do
for cach edge-cell A of C do
for each edge-cell B of D do
Find the NFN pair for A and B and add corresponding edge to G';
od; od; od; od; od;

end.

Figure 2.9. The reduction from MST to NFN.

neighbor graphs, or nearest geographic neighbor graphs. In this section, it will
be shown that it is possible to find an MST supergraph by solving a number of
nearest foreign neighbor pair problems. A constant number of NFN pair problems
are solved for each cell, down to the singleton cell size, of the quadtree for the input
sites. Each NFN pair subproblem results in one edge of G’, so that the resulting
G' has O(nlog o) edges, since the number of quadtree cells examined is O(nlog o).
This reduction can be used for sites in a space of any dimension d, and with any
L, metric. ')

Furthermore, using this reduction, an algorithm that solves the nearest foreign
neighbor pair problem approximately can be used to find an MST approximately,
so that the algorithms of the last section can be used. In this respect the reduc-
tion given is more useful than the more direct one involving Boravlka’s algorithm

(|Tar2], p. 72).

Once an MST supergraph is found, the MST may be found using the algorithm of
Fredman and Tarjan [I'T]. An alternative procedure is to sort the edges by length
and then use Kruskal’s algorithm. When finding an approximate MST within 14 p
in weight of an MS', only log o + log(1/p) bits of precision are nceded to represent
the weights of the edges. Hence a radix sorting procedure ([Knu|, §5.2.5) may be
performed, in time O(n(logo + log(1/p))), before employing Kruskal’s algorithm.

A pseudo-code version of the algorithm Find _MST_FEdges is shown in Figure 2.9.
In order to understand its operation, we need the notion of a neighbor-connected
component of quadtree cells:

Consider all the cells in a quadtree of a given size. Call two such cells
neighbor-connected il they share at least one corner. The neighbor-connected
components ol the cells are the connected components of the resulting im-
plied graph.

Let T be the root cell of the quadtree containing the input sites S. Procedure
Find_MST_Edges is called with the neighbor-connected component {T'}, and re-
cursively calls itselfl with neighbor-connected components as input. Specifically, if -

26 CHAPTER 2: APPROXIMATION ALGORITHMS

P is the input component, then Find_MST_Edges calls itself with the neighbor-
connected components Py, Py, ..., Py of the children of the cells in P. (For example,
see Figure 2.10.) After Find _MST_Edges processes P, no further edges are found
within P by the algorithm. That is, no edge corresponding to a pair of sites that
are both in P is added to G'. This implies that after calling itself for Py, Ps, ..., Pk,
the only edges Find_MST _Idges will add to G’ from P will be between these child
components. These edges will correspond to pairs of sites s and t, with s in P,
t in P;, and © # 7. Procedure Find_MST_Edges does not find all possible such

edges, however. We will show that the edges not added to G’ need not be in an
MST supergraph for G.

—

Lam
-

Figure 2.10. Finding edges between connected components.

One restriction that Find _MST_FEdges places on the edges between child compo-
nents is that such edges be between cells that are close together. Let the diameter
of a cell in P be Cell_Diameter. Then Find_MST_FEdges finds no edges between
cells C and D with d,,;,,(C, D) > 2Cell_Diameter. We will show that such edges
cannot be in an MST for GG, and thercfore need not be included in G'. Consider
sites s ¢ C and t € D. Since P is a ncighbor-connected component, there is a path
m G between s and { consisting of edges that are all no longer than 2 Cell_Diameter.
Thereflore, since ||s — t|| is greater than 2Cell_Diameler, the edge corresponding to
the pair of sites s and ¢ is the uniquely longest edge in a cycle of G. By Fact 1.3,
stich a longest edge is not in any MST of G. It follows that when finding edges be-
tween child components of P, IFind_MST _FEdges need only consider edges between
sites in cells that are no farther apart than 2 Cell_Diameter.

Suppose C is in child ‘component P;, D is in child component P;, 2 # 7, and
* dyin(C, D) € 2Cell_Diameter. Then Find MST _Edges returns only O(1) pairs of
sites from C and D as edges of G'. These are edges from edge-cell pairs. Edge-cells
are defined as follows:

An edge-cell of a cell C € P is a largest descendent cell of C that has a
diameter less than half the sidelength of C. '

2.3. MINIMUM SPANNING TREES 27

That is, if A is an edge-cell of C, Diameter(A) is less than half the side length
of C, and the parent of A has a diameter greater than this value. Note that
if A is an edge-cell of C’, and B is an edge-cell of D, then dmiu(A,B) is larger
than Diameter(A) = Diameter(B), since C and D are in different child connected
components. We will show that only one edge between A and B need be included
in G'. Suppose that {s, ¢} and {s',¢'}, with 5,5’ € A and ¢,t' € B, are two edges
between A and B. Then ||s' — s|| < ||s — ¢||, and ||t — || < ||t — &’|, so that {s,t}
and {s’,t'} are the two longest edges in a cycle of G. Therefore, by Fact 1.3, at
most one of these edges need be included in G’. This reasoning implies that only
the edge corresponding to an NFN pair for A and B need be included in G’.

We have shown that when processing component P, the only edges that procedure
Find_MST_Edges need find between child components are those corresponding to
NI'N pairs from the pairs of cells A and B, where: A is an edge-cell of C, B is
an edge-cell of D, C and D are in different child components, and d,;,,(C,D) <
2Cell_Diameter. The following lemima results by induction:

Lemma 2.7. When called with quadtree cell {T'} as input and using an ex-
act NFN algorithm, procedure Find_MST_Edges finds an MST supergraph
for the sites contained in 7.

Supposc that instead of an exact NFN algorithm, an approximate one is used.
Note that NI'N pairs are found between edge-cells that are farther apart than their
diameter. The absolute error in the NFN pair found, measured as a fraction of the
input cell diameter, is therefore a relative error in the length of the edge found.
Instead of an MST supergraph, an “approximate” MST supergraph results:

Lemma 2.8. If an NIFN algorithm is used in Find_MST _Fdges that has an
absolute error « relative to the problem scale, then the set of edges returned
will contain a spanning tree with weight within 1 + a of the minimum.

The size of the supergraph produced is O(nlog o), where n = |Contents(T')|. It is
easy to sce that each edge-cell contains endpoints of a bounded number ol edges of
the resulting MS'T supergraph, and the number of edge-cells is proportional to the
number of quadtree cells.

2.3.2 Bounding the time for NFN subproblems

The reduction above, when applicd using a linear time NI'N algorithm, can take
(n?) time, since there are (n) subproblems to be solved for the MST problem,
some with (n) sites involved. In this section a modification of the above reduc-
tion, together with a more careful accounting, will yield an MST algorithm with
the bound claimed. We will first sketch the main idea behind this modification,
assuming that the L; NFN algorithm of the previous section is used.

The modiflication to Find_MST_Edges is a pruning step that removes certain
quadtree cells from consideration in the course of solving NI'N pair subproblems.

23 CHAPTER 2: APPROXIMATION ALGORITHMS

As a result of this pruning step, cach quadtree cell (down to singleton-cell size) is
examined within NI'N pair subproblems a total number of thmes that is bounded by
a constant dependent on the dimension. The time required by Find _MST_Edges
therefore is proportional to the time required per quadtree cell by the NI'N pair al-
gorithm, multiplied by the number of quadtree cells examined, which is O(nlog o).

The crucial effect of the pruning step, that implies the bound on the number of
times a quadtree cell is examined, is that a certain region near an examined quadtree
cell contains no sites. IPor example, supposc that an NIFN pair is desired between
edge-cells A and B, and cell ¢ in A may have an NI'N pair with cell b in B. Then
the region B, M By, as shown in Figure 2.13 (p. 32) will not contain any sites (if the
pruning step is used). (The nature of regions B, and B, will be described below.
For the f. MST problem, these regions will be spheres, as shown. For the Ly
case, these regions will be L; balls, which arc octahedra.) This implics that no
NI'N subproblem will be solved for another (smaller) edge-cell containing a, and
an edge-cell in B, N By,. After a bounded number of NIFN subproblems examining a,
a region completely surrounding a will be empty of sites, and there can be no
edge-cells for which there is an NIFN pair problem involving a.

We will first show how the NFN algorithm used by Find_MST_FEdges may be
modified so that a quadtree cell ¢ in edge-cell A is examined only if there is a
region in A that is empty of sites. We next show how a pruning step involving
several edge-cells may be used, so that a larger region near an examined quadtree
cell will be empty of sites.

When an Ly MST is desired, and algorithm NFN of §2.2 is used, then the modifi-
cation mentioned is simply that described at the end of §2.2.2. With this change, at
cach level of relinement of NFN, only those cells are considered that contain sites
that are approximately nearest neighbors. Suppose the NI'N pair problem is being
solved [or edge-cells A and B, where A is in some neighbor-connected component
P;. Then for cell @ in A examined at a step, a region near a and containing cell
D is [ree of sites of A. I @ contains an approximate NI'N pair with cell b in B,
this region consists of points known to be closer (within the current accuracy) to
sites in b than are the sites in a. If there were a site in that region, a would have
been eliminated earlier in the processing of the algorithm, and not examined. Thus,
further NI'N calls for which a is examined cannot come from that region in A.

When another approximation algorithm for the NI'N pair problem is used, this con-
dition is not so directly obtained, since such an algorithm may not used quadtrees
at all. However, a similar condition may still be obtained, by using the given algo-
rithm as a “black box” within a quadtree-based algorithm. In such an approach,
when edge-cells A and B are input, the black box is called with an input consist-
ing of representative points of the quadtiree children of A and B, and the NFN
pair distance determined for those points. Such representative points might be,
[or example, the centers of those quadtree children. Using the NI'N pair distance
estimate resulting, some of the quadtree children may be eliminated from consid-

2.3. MINIMUM SPANNING TREES - 29

For all edge-cell pairs of a given size in processing a connected component, determine
the required NFN values in parallel as follows. Include in the MST supergraph all edges
between NF'N pairs for active edge-cells.

for i + 1 to number_of_generations do
for each active edge-cell pair {A, B} do pathmaz (A, B) + NFNn.x(A, B) od;
for cach active edge-cell pair {A, B}
and edge-cell A’ with dyax(A, A') < 2Diameter (A) do
if NFN,,in (A, B) > pathmaz(A', B) then
make {A, B} inactive;
pathmaz (A, B) « pathmaz(A’, B);

]
od;
od;

Figure 2.11. The MST pruning step.

eration, if they provably cannot contain a site from an NFN pair. This process is
then repeated for these children of those cells, and so on. Although some time may
be wasted at each step, since the black box algorithm works from scratch each time,
some speed may be gained due to the described climination of “fruitless” quadtree
cells. In addition, just as with the modified L; NI'N algorithm described above, for
each examined quadtree cell there will be an empty region near it in the edge-cell
containing it.

Thus no matter what NIFN pair approximation algorithm is available, the emptiness
condition for an examined quadtree cell will hold. We will assume in the following
that an algorithm Approzimate_NFN is available, with processing that results in
this condition. Now we will show that a [urther pruning step will result in the
stronger condition described above.

The pruning step is shown in Figure 2.11, under the following assumptions. When
processing a connccted component, first Find_MST _Edges determines all pairs of
edge-cells for which Approzimate NI'N will be called to find an NFN pair. This
set ol edge-cell pairs is processed by Approzimate NFN “in parallel,” so that the
algorithim proceeds in phases ol refinement steps. At each refinement step, upper
and lower bounds, denoted NFN,,.x(A, B) and NFN,,i,.(A, B), will be known for
the NI'N pair distance between edge-cells A and B for which a NFN pair is being
found. The differcnce between these bounds will be twice the diameter of the cells
being cxamined at that step in the “paralle]” NI'N algorithm. At each refinement
step, it will be possible to eliminate some edge-cell pairs from consideration in
the NFN algorithm because an edge between them cannotl be in an MST. Such
pairs will be termed tnactive. Associated with an inactive pair {A, B} is a value
pathmaz (A, B),. indicating that there are paths from every site in A to every site
in B, all with edges shorter than pathmaz (A, B). This value will also be defined
for active edge-cell pairs {A, B}, taking pathmaz(A, B) as NFN.x(A, B).

30 CHAPTER 2: APPROXIMATION ALGORITHMS

Ai

N

\

1

Figure 2.12. Some edge-cell pairs can be pruned away.

We will first show that the pruning step preserves correctness, and then show that
the condition wanted for the time bound holds.

Lemma 2.9. If Find_MST_Edges is modified to incorporate the pruning
step of Figure 2.11, then the set of edges returned will still contain an MST.

Proof. Suppose, at some point, that NFN,;,(A, B) > pathmaz (A’, B), for edge-
cell pairs {A, B} and {A4’, B}, and in addition, dy.x(A, A") < 2Diameter (A). (As
in Figure 2.12.) Since the edge-cells have a diameter less than half the side-length
of the component cell size, it follows that pathmaz(A',B) > dyaz(A4,A’). As a
result, there is a path by way of A’ between sites in A and in B with edges no
longer than pathmaz (A’, B). This path forms a cycle with any edge between A and
B, and since
NFN i (A, B) > pathmaz (4";-B);

that edge is the longest on the cycle. By Fact 1.3, such an edge is not in any MST.
Therefore the pair {A, B} may be made mactlw, and the set of edges return(,d will
still contain an MST. n

As suggested above, the following lemma allows an improved time bound for finding

an MST.

Lemma 2.10. If procedure Find_MST . [Edges is modified to incorporate
the pruning step, then a quadtree cell @ will be explicitly considered in an
NI'N pair computation O(1) times.

Proof. The lemma follows from the fact that, because of the modification to
procedure Approzimaie_NFN mentioned, and the addition of this pruning step,
there is a conical region near a cell examined in an NFN call that is free of sites. At
the end of a pruning step, if an edge-cell pair {A, B} is not made inactive, then for
any edge-cell pair {A’, B} with dp,.x(A’, A) < 2Diameter(A), it will be true that

NFN 5. (A, B) < pathmaz(A', B).

2.3. MINIMUM SPANNING TREES 31
This means that if {A’, B} is active, then
NF-ATIIIill(A) B) s NFNmax(Ar:B) < NFNmJn(AI:B) +

where o is the current accuracy to which the NFN is known. This accuracy is
proportional to Diameter(a). If {A’,B} is inactive, then NFN;,(A,B) is no
larger than the last computed value of NFN,;,(A’, B). Therefore, in either case,
no site in A’ is closer than NFN,,;, (A, B) — « to any site in B. A cell a in A is
considered at a step only if there is a cell b in B with

dmin(aab) S NFNI!J{!.X{A‘J'B) S NFNmin(A: B) + o

Therefore, there are no sites in the intersection of the interiors of balls B, and By,

defined by:

B. is a ball centered at the center of cell a, with radius at least the edge-cell
diameter, and

By is a ball centered at the center of cell b, with radius no less than the
distance between a and b, less twice Diameter (a).

(See Figure 2.13.) Now, because the bounded ratio of the edge-cell size to the size
of the component cells currently being processed, it follows that only a bounded
number of Approzimate_NFN calls in which a is touched will occur before all such
calls are due to sites in B,. F'urthermore, only a bounded number of NFN calls will
occur that are due to sites that are farther from a than 2 Diameter(a). This follows
from the fact that the intersection of a narrow cone C with B, will contain no sites
that are in By: The radius of B, is less than that of B;, and so by the definition of
narrow, any site in C N B, is also in B,. Finally, only a bounded number of NI'N
calls involving a can come from cells closer to a than 2Diameter(a), so that there
are only a constant total number of times that a quadtree cell a will be touched in
an NFN call over the course of the MST algorithm. »

Using the previous three lemmas, the following theorem results.

Theorem 2.11. If the nearest foreign neighbor problem can be solved for
site sets S and T in time O(f(|S| + |T'|,«)) with absolute error o, then the
geometbric minimum spanning tree problem can be solved with relative error

a in O(f(n,a)logo).

When algorithm NFN in particular is used, the previous lemmas and the time
bound for NFN imply the following theorem.

Theorem 2.12. Procedure Find_MST_Edges, employing algorithm NFN
and modified to include the pruning step, requires O(n]ogd_l(]‘/p) log o)

time to find a set of edges whose MST has total weight within 1 4 p of the
MST weight.

32 CHAPTER 2: APPROXIMATION ALGORITIMS

b

B

Figure 2.13. The lune from a is free of sites of P;.
2.3.3 The 3D Euclidean case

As an example of Theorem 2.11, for the three-dimensional Euclidean case the MST
problem can be solved in O(n(logn 4 1/a)log o) time by using an approximation
algorithm for the NFN problem based on two-dimensional Voronoi diagrams. In
such an algorithm, a quadtree cell is split into slabs « thick. In cach slab, the
sites are projected to a square. To solve the post office problem approximately
for the sites in the slab, project a 3-d query site onto the planc containing the
square for the sites, and solve the post office problem for the projected site, (Sece
Figure 2.14.) Thus the post oflice problem for n sites in three dimensions can be
solved with O(nlogn) preprocessing and O(1/a - logn) query time. Therefore,
the NI'N problem can be solved in time bounded by O((|S| 4 |T|)(logn + 1/a)),
yielding a corresponding MST algorithm. When (log o)/ is a function of n that is
o(n‘”‘r’], this algorithm compares favorably in running time with Yao’s [Y1], which
has a running time of O((nlogn)%/®).

[SEFRETE S————

.

Figure 2.14. Solving the 3-d post office problem by projection.

CHAPTER 3.
A PROBABILISTIC ALGORITHM

In this chapter, a probabilistic algorithm for solving the all nearest neighbors prob-
lem will be described. Probabilistic algorithms employ randomization, such as
random sampling, so that their running time for a fixed input is a random variable.
Their performance is usually measured by the expected time required, averaging
over that randomization. In an influential paper by Rabin [Tral, it is shown that the
closest pair of sites in a set can be found in linear expected time, using randomiza-
tion. In many cases, there are deterministic algorithms with worst-case performance
nearly matching the expected performance of probabilistic algorithms. However,
probabilistic algorithms are often notable for their simplicity and practicality.

The algorithm presented here has two main phases: the construction of an auxiliary
data structure, called a celltree, in probabilistic O(nlogn) time, and the use of that
data structure to solve the ANN in O(n) worst-case time. Before these phases_ are
described in §3.1 and §3.2, the motivation for the use of celltrees will be indicated,
and also their basic structure.

While algorithin ANN , deseribed in §2.1, has several appealing features, the de-
pendence of its running time on the numerical parameter ¢ is perhaps inelegant
and potentially could result in slow performance. If the sites are evenly distributed,
then o will be about n=Y/4 and ANN, will require O(nlogn) time. Unlortunately,
such a smooth spread of sites is not necessarily present, as a cell may have a con-
centration of a large number of sites in a small volume, so that a cell may have
only one descendent for some arbitrarily large number of generations. That is, the
quadtree explored by the algorithm may have arbitrarily long paths without any
branching. To use the basic approach of ANN ,, but avoid this problem, a celltree
will be used. A celltree is simply a quadtree, but with the non-branching paths
replaced by single edges. A simple quadtree, and the corresponding celltree, are
shown in Figure 3.1. The leal nodes of the celltree, with no celltree children, are
singleton cells. These leal cells are the only singleton cells in the celltree. Note that
celltrees are related to quadtrees in basically the same way that “Patricia” search
tries are to digital scarch tries ([Knu], §6.3).

34 CHAPTER 3: A PROBABILISTIC ALGORITHM

T 7N

LILI0

 Figure 3.1. Example quadtree and celltree.
§3.1 Building a Celltree

A celltree can be built using the divide-and-conquer algorithm Build Celltree,
shown in Figure 3.2. At cach call of this algorithm, the input is a quadtree cell T°
and a set of objects (sites and celftrces) within T'. Initially, the set of objects is
just the set of sites, but as the algorithni proceeds, some parts of the celltree are
built recursively. These parts, which are celltrees themselves, then [orm part of the
input to the algorithm.

In the dividing step of Build_Celliree, a quadtree cell called a splitting cell is found,
A splitting cell satisfies two conditions:

»It is the smallest quadtree cell containing the objects within it, and also

»it contains between € and 1 — € of the objects in T', where € = 1/(2d + 1).

Having found a splitting cell C, a celltree rooted at C is built, and the celltree for T°
is built with the objects in C represented by C alone. This approach is similar to
that of the sorting procedure Quicksort ([lloal,[Knul, p. 114). In Quicksort, values
arc partitioned into those smaller and those larger than some partitioning value.
In this case, the objects are partitioned into those inside and those outside the
splitting cell.

The first condition for a splitting cell ensures that the result of the algorithm is
actually a celltree, and has no nonbranching paths. The second condition guaran-
tees that each of the two subproblems solved is relatively smnall. As in Quicksort,
if the total time for the dividing step is O(n), for input size n, then the total time
required is O(nlogn). The function Find_ Splitting_Cell, shown in Figure 3.2 and
described below, requires ©(k?) time in the worst case to find a splitting cell for k
objects. However, when this function is applied to a random sample of the objects,
with a nonzero probability the result is a splitting cell for the whole set of objects.
This technique is analogous to the use in Quicksort of the median of three randomly
chosen values as the partitioning value. The result is that Build_Celltree requires
O(nlogn) time on the average, for any input set of sites, as shown below.

3.1. BUILDING A CELLTREE 35

function Build_Celltree (T : cell, Objects : sef_of objects)
return celltree_root;
co It should be true that T' = Smallest_Cell{ Objects) oc;
co Function Smallest_Cell is described in the text. oc;
begin
if |Objects| < K
then return Buld_Celliree_Deterministically (T, Objects)
else
choose random § C Objects;
co should have €|S| > 1 to avoid degeneracy oc
C « Find Splitting_Cell(T, S);
Objects_In_C « {z | = € Objects, = geometrically inside C};
T! « Build_Celliree (C, Objects_In_C);
return Build_Celiiree (T, Objects U T' \ Objects_In_C');
fi;
end;

function Find_Splitting_Cell(T : cell, 5 : set_of_objects)
return celliree_root;
co It should be true that the number of objects in T is greater than (1 — €) |S| o¢;
begin
for D € Children(T') do
Objects_In_ D « {z | z € S, T geometrically inside D};
Proporlion_In_D « |Objects_In_D| [|S|;
C « Smallest_Cell{ Objects_In_D);
if Proportion_In_D > 1 — € then return Find_Splitting_Cell(C, 8) fi;
if € < Proportion_In. D < 1 — € then return C fi;
od;

end;

Figure 3.2. Function Build_Celltree.

The size s = | S| of the sample used for Find_Splitting_Cell must be larger than 1/e,
to avoid the degenerate case where a cell containing one site might be a splitting
cell. (In this degenerate case, the spliiting cell cannot satisly the second condition
above without being an “infinitely small” quadtree cell.) Furthermore, there is a
tradeofl between the time needed by Find_Splitting_Cell for a larger sample, and
the improvement in running time for Build_Celllree due to the higher probability
of a splitting cell being found. Also, for small input to Build_Celliree, it may be
better to build a celltree by “brute force.” Thus for a small constant K > |S], a
celltree is built deterministically.

Before giving a proof of the time bound for Build_Celliree, we will consider the
processing within Find_Splittzng_Cell in more detail. The heart of this function is
the function Smallest_Cell, that answers the following query:

Given a set of sites, whal is the smallest quadtree cell containing those sites?

To process such a query, Smallesi_Cell requires the use of the floor, logarithm,
and bitwise exclusive-or functions, and is the only algorithm in this chapter that
does so. The purpose of Smallest_Cell is to help in skipping over the nonbranching
paths in a quadtree.

36 CHAPTER 3: A PROBABILISTIC ALGORITHM

The function operates in the following way. Assume without loss of generality that
the root cell of the a quadtree has side length 1. Observe that every quadtree cell
of side length 2% has the‘ form ®1Sj£d[?}j2_k, (z;+1)27F), .whcrc each 7, satisfies
0 < 1; < 2F. Let point p™" have jth coordinate satisfying pyt = min{p; |p € S},
and similarly define p™*. Then clearly a cell contains S if and only if it contains
p™® and p™**. So for each coordinate, the largest k is sought such that there is
a suitable 2; with 7;27% < P 5 p** < (i; 4+ 1)27%. Thus if function f(z,y)
computes such a value k given p™?* and p™2*, the subdivision level b of the cell to
be found is equal to min;<;<y f(Pmin:P];mx). Given this value b, the cell desired

3
hasig; = [p;?‘i“2bj.

Another way to describe f(z,y) is that it is the largest k for which the integer parts
of 2z and 2%y are equal. This is the number of common leading bits of z and %. In
the exclusive-or 2@y, these leading bits result in zeros, and the first pair of different
bits results in a one. The number of leading zeros in z @y may be recovered as
—|lgz®y| — 1, for 0 < z,y < 1. The function f(z,y) might be termed the least
common ancestor of z and y: If the binary representation of a number corresponds
to a node in a binary tree, then the function f(z,y) corresponds to the level of the
least common ancestor in that tree of the nodes corresponding to z and y.

Given Smallest_Cell, the function Find_Splitting_Cell works as follows. In the
general recursive step, the input cell has at least (1 — ¢) of the objects in S. This
implies that one of its children D must have at least es objects, since there are
only 2¢ = 1/e — 1 children. Either D contains no more than (1 — ¢)s objects, and
Smallest..Cell (D) is a splitting cell, or the algorithm may be applied recursively to
Smallesi_Cell(D). By applying Smallesi_Cell to the contents of D before the re-
cursive call, the invariant is maintained that every cell input to Find_Splitting_Cell
has at least two children, cach containing at least onc object from S. Therefore
the number of objects from S in the cell examined decreases by at least one at
cach recursive call. Since the execution of Find_Splitting_Cell requires O(s) time,
except for the recursive call, we have the following lemma.

Lemma 3.1. When applied to a set of s objects, function Find_Splitling_Cell
requires time proportional to s? (hence O(1)) to find a splitting cell, where
the constant is dependent on the dimension.

For exanmple, in the square in Iigure 3.3, with a total of 15 sites, a square is sought
with more than 3 and less than 12 sites. No child of the root square will do, so the
heavy upper right square with 13 siles is examined. Within this square, the lower
left square will do, so we take as C’ the smallest quadirce square containing all of
- the sites within that lower left square. At the second recursive call, with 7 objects
in the square (6 sites and a square), again no child of the root will do, so the heavy
upper right corner subsquare will be examined. This time, the upper right corner
of the subsquare will do.

3.1. BUILDING A CELLTREE 37

Figure 3.3. Finding a splitting cell,

Now for a proof of the time bound for Build_Celltree:

Theorem 3.2. Procedure Build_Celltree requires O(nlogn) expected time
to build a celltree for n sites.

Proof. As for the correctness of the procedure, note that if the input cell T
salisfies the condition that T' = Smallest_Cell(Objects), then this condition will
always be true for the inputs to Build_Celliree and Find_Splitting_Cell. Thercfore,
assuming the correctness of Bu:ild_Celltree_Deterministically, the tree returned w1ll
be a celltree.

As for the time bound, note first that all processing requires linear time, except for
the recursive calls to Build _Celltree. Let T, denote the expected time required by
Buald_Celltree to find a celltree for n objects. If ay denotes the probability that
the cell found by Find_Splitiing_Cell has k objects, then

T. <Cin+) ox[Te +Tookril,
1<k<n

where Cyn, for some C'; > 0, bounds the time required, except for the recursive call.
We know that &y = e, = 0 because the splitting cell returned will always have at
least two sample objects in it, and will not contain all of the sample objects. Note
that the aj probabilities will be different for different sets of n objects. However,
let m denote some value greater than 1 that will be chosen later. Let (,Sm denote
the smallest possible value of ¢,,,, which will defined as

D

Kon <k <ti—km
for a given set of n objects, where k,, = |[en/m]. A lower bound for b that

is independent of n will be proven shortly. This will provide a time bound for
Build_Celltree, by the following lemma.

Lemma 3.3. For sufliciently large n, T, < Conlnn, where
_ Cy m .

i €

