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Abstract. This paper describes the architecture and implementation of a con-
straint-based framework for rapid prototyping of distributed applications such as
virtual simulations, collaborations and games. Our framework integrates three
components based on (concurrent) constraint programming ideas: (1) Hybrid
cc, a (concurrent) constraint modeling language for hybrid systems, (2) Sisl, a
(discrete) timed constraint language for describing interactive services with flexi-
ble user interfaces and (3) Triveni, a process-algebraic language for concurrent
programming. The framework is realized as a collection of tools implemented in
Java. The utility of the ideas are illustrated by sketching the implementations of
simple distributed applications.

1 Introduction

The focus of this paper is rapid prototyping in the domain of systems that include hybrid
components, concurrency and reactivity, (virtual/code) mobility and distribution. The
following systems exemplify the applications of interest:

— Consider the computer simulation aspects of NASA’s Airport Surface Development
and Test Facility (see http://sdtf.arc.nasa.gov/sdtf), an airport operations simulator.
A typical virtual simulation in such a context involves large numbers of planes in
large sections of airspace around an airport.

— Consider the emerging area of distributed collaborative applications. In their sim-
plest forms (Instant Messaging, MSN Messenger Service, 1CQ etc.), this consists
of contact/buddy lists and automatic notification of presence of contacts and so
on. In more sophisticated virtual world scenarios, e.g., Gelernter’s vision of cy-
berbodies and lifestreams [19], this idea is generalized to mobile and distributed
repositories of information called cyberbodies. Chronological streams are the most
common kind of cyberbody, since time and causality are natural ways to organize
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information. The most common computational task is the exchange of information
between different such streams, e.g., exchange credit card information between a
shopper cyberbody and a bank cyberbody.

Both of these examples have the four conceptual components: (1) hybrid systems, (2)
concurrency, (3) interaction via flexible user interfaces and (4) mobility and distribution.

Hybrid systems. Reactive systems react with their environment at a rate controlled by
the environment. In each phase, the environment stimulates the system with an input
and obtains a response within a bounded amount of time. Continuous systems, such as
mechanical and physical systems, are those in which the system has the potential of
evolving autonomously and continuously. The description of this behavior is usually in
the form of differential equations that arise naturally in the description and modeling of
the behavior of physical systems. In contrast to the discrete notion of time in reactive
systems, the appropriate notion of time in continuous systems is dense, i.e. the rationals
or the reals. Complex applications are hybrid systems that combine both of these ideas.
Consider for example the model of the dynamics of the airplanes. It is a reactive system
responding to inputs from the sensors, the pilot program etc. Each plane is modeled
as an object with dynamics given by differential equations based on the physics of
flight. There are discrete changes in the motion of the plane based on inputs from the
pilots. Thus, the execution of the plane simulation alternates between open intervals in
which the state of the plane (e.g., the position or velocity) changes continuously in a
manner prescribed by the laws of flight, and points at which discontinuous change can
occur, such as when the pilots take an action. Similarly, the evolution of a lifestream is
naturally modeled as a hybrid system. In general, precise virtual simulation of physical
artifacts in collaborative spaces naturally leads to hybrid systems.

Concurrency: Concurrency is omnipresent in the above collection of examples. Con-
currency arises in two ways. Firstly, it arises in an intrinsic way because of the model-
ing of several independent activities, e.g., several aspects of the model of an airplane,
several virtual participants in a collaborative discussion. Secondly, it arises as an ab-
straction mechanism useful in the implementation of responsive user interfaces.

Interaction via flexible user interfaces. Modern interactive services are becoming in-
creasingly more flexible in the user interfaces they support. These interfaces incorporate
automatic speech recognition (ASR) and natural language understanding, and include
graphical user interfaces on the desktop and web-based interfaces using applets and
HTML forms. The key role of flexible and varied user interfaces in our target applica-
tion area is evident.

Mobility and distribution: In the collaboration and lifestreams examples, distribution
and mobility issues arise naturally in the context of geographically spread-out groups
of participants. In the airplane simulation, the potential for large number of airplanes
in large sections of airspace mandates the modular organization of the objects of the
simulation into “logical locations”, also termed “ambients” [8, 18]. For example, there
are ambients for each airplane object and for each section of the physical airspace. The



computations of each ambient are performed by (a collection of) computing nodes, and
the physical motion of the airplanes naturally leads to considerations of mobility in the
simulation.

1.1 Current Programming Practice and Shortcomings

The class of applications in which we are interested is implemented using concurrency,
say in the form of threads, and some form of distributed programming. For concrete-
ness, we phrase the following discussion about current programming practice in terms
of the Java language; however, we note that the Java language largely reflects current
popular practice. Monitors guard shared memory between threads, and these monitors
cause additional indirect communication between threads; threads can wait for access
to a monitored region, yield control of the monitor, and notify other threads waiting on
the monitor. Threads are equipped with priorities that facilitate scheduling of threads.
Finally, the thread groups of Java provide rudimentary structuring facilities for building
collections of threads that are controlled in unison. Java supports two different mecha-
nisms for distribution: RMI (remote method invocation) is Java’s RPC (remote proce-
dure call) mechanism, integrated with Java’s object-oriented approach; the Servlet API
provides infrastructure for the special case of client-server programming, especially
when the communication (between client and server) is handled via web-based infras-
tructure such as the hypertext transfer protocol (HTTP). These approaches suffer from
the following shortcomings.

— The model lacks support for a modularity notion of abstract behavior, which in

the systems of interest is essentially the interaction of the system with its envi-
ronment. For example, suppose one is given a computer model A of an airplane
that emits position readings, Pos (t) events, from time to time (perhaps among
others), and accepts Turn (dir) requests (perhaps among others). Consider the
task of implementing a controller for the plane, e.g., to accept Pos (t) events and
emit Turn (dir) events when appropriate. Furthermore, we would like to com-
pose our controller with A to yield an activity ControlledA that internalizes the
Turn (dir) event.
For modularity reasons, we would like to design and implement the controller
knowing only the interface of A described above, without access to the implemen-
tation fact that a behavior could be realized by one or more threads, potentially
based at several processors. The operations in Java, as briefly described above, do
not directly support this kind of software design.

— The model fails to provide coherence between the concurrent and distributed as-
pects. For instance, a user of a system cannot reason about system properties (such
as safety specifications and deadlock behavior) independently of the nature of dis-
tribution of the system (such as the location and communication of the individual
planes A and the other components of the system). We are not demanding uni-
formity of performance across different kinds of distribution; we are merely de-
manding a uniform view of distribution that does not violate the semantics of the
concurrent aspects of the programming language.

However, the operations in Java expose the programmer to the details of the distri-
bution of the program components. For instance, it is possible that a Java program



involving threads and RMI will be deadlock-free if the processors reside on the
same file system, but will deadlock if the processors reside on different file sys-
tems.

— Finally, the two different mechanisms for distribution in Java, namely RMI and
Servlets, are not presented in a unifying distributed programming model. There
is no direct support for parameterizing the basic program logic over the mode of
distribution. This in turn leads to duplication of effort/code and serious problems in
software maintenance.

1.2 Our Approach

In our prior work, we have explored declarative programming languages, inspired by
the constraint programming paradigm, targeted at some of these application areas.

— Hybrid cc [26,25,24] is an executable specification/programming language for
hybrid systems in the concurrent constraint programming framework [41]. Hy -
brid cc can be viewed as a declarative high-level programming notation for the
appropriate operational model for this context, namely hybrid automata [2].

— Triveni [12-14] is a programming methodology for concurrent programming
with threads and events. Triveni has its operational basis in formalisms from
concurrency theory, such as process algebras [37,31] and synchronous program-
ming languages [6, 30, 23, 29, 42]. The logical semantics of Triveni permits view-
ing Triveni programs as formulas in a fragment of linear-time temporal logic.

— Sis1 (Several interfaces, single logic) [3] is a deterministic constraint language [32]
for the description of interactive services with multiple user interfaces. Sis1 uti-
lizes its constraint programming foundations to allow users considerable flexibility
in the way they input their requests to such services.

In this paper, we present an architecture that combines these components smoothly in a
coherent framework for prototyping distributed applications of the kind described ear-
lier. This integration yields the following advantages with respect to the current (prag-
matic) state of the art.

Concurrent composition as a first class primitive. Our approach takes the point of view
of formalisms from concurrency theory, such as process algebras and concurrent con-
straint programming — these formalisms are designed from the start around behaviors,
termed processes. These paradigms then describe a algebra of processes in which, for
instance, the concurrent composition of two processes yields a process. Extending the
viewpoint of Triveni to distributed situations, combinators in our framework oper-
ate on behaviors and the result of the combinators are behaviors: the implementation
yields the correct combination of behaviors. Thus, our framework enables concurrent
composition to be used freely for the modular decomposition of designs. The concur-
rent composition of programs yields programs that are indistinguishable from simple
ones (in much the same way that a complex function in functional programming has
the same status as a simple function). The correct dispatch of events sent by concurrent
components is done automatically by our framework, and thus, the implementation of
a program can closely reflect its design.



Parameterization over distribution. With regard to distribution issues, our architecture
provides a framework to describe the essential features of the program logic without
specifying the distribution mechanism. Thus, in our framework, we can informally think
of a program P as the concurrent composition of its logic P10 and its distribution
mode Py;s.. Thus, the distribution becomes a “pluggable” parameter to the program
and enables the sharing of the program logic across different distribution mechanisms.
We re-emphasize that our aim is not to ensure identical performance or even behavior
across different distribution mechanisms. Rather, our approach enables us to achieve:

— Reuse of the extensive work done in the protocols and frameworks for distributed
communication, such as Ensemble [40], which provide the ability to combine mod-
ularly basic protocol layers that implement simple properties.

— Parametric, with respect to distribution mode, reasoning about program logic by
providing a clear “slot” for assumptions about the guarantees (e.g., total order or
causal broadcast) provided by the distribution model.

Enlarging domain of applicability of Hybrid cc. Hybrid cc is a synchronous
programming language that operates on a “global clock” assumption. This tunes it for
modeling systems of tightly coupled hybrid components where subcomponents evolve
at approximately similar rates. Thus, the following desiderata remain.

— There is tremendous overhead in using the models constructed by Hybrid cc as
subcomponents in a general asynchronous environment. For example, in our work
on the model of the Sprint AERCam [1], the model is interfaced with an animation
interface to allow a user to interact with the model as it evolves. This interaction
was achieved by traditional concurrent programming, and the synchronization code
consumed almost half the total time spent in implementation.

— Secondly, we have observed (e.g., [1]) that the synchronous hypothesis of Hybrid
cc leads to inefficiencies when the model has several loosely coupled hybrid sub-
components. For instance, in the airport simulations, each airplane mainly interacts
with nearby airplanes, thus any discrete actions it takes affect only nearby planes.
However the synchronicity assumption underlying Hybrid cc forces each such
discrete action to cause a global synchronization point involving all the objects in
the simulation, including those that are not affected by the action.

The framework of this paper provides a structured methodology to arrange the interac-
tion of Hybrid cc components in a general context of asynchrony and distribution.

1.3 Rest of the Paper

The rest of the paper is organized as follows. In Section 2, we review our earlier work on
Hybrid cc, Triveni and Sisl, and we present a comparison with related work.
In the following section, we describe the architecture and give an overview of its cur-
rent implementation. We illustrate the ideas in the context of some concrete examples
that have been realized using the framework: an n-player variation of the board game
Battleship (using two different distribution mechanisms), as well as a multi-user instant
messaging application.



2 Background

21 Hybrid cc

Hybrid cc is an executable specification/programming language for hybrid
systems [26] in the concurrent constraint programming framework [41]. Hybrid cc
can be viewed as a high-level programming notation for hybrid automata [2], much as
synchronous programming languages are high level notation for discrete automata *.

Hybrid cc incorporatestwo key ideas — (1) Continuous constraint systems (ccs)
and (2) extending (concurrent) constraint programming over (real) time. We sketch
these ideas here, referring the reader to [26] for a precise foundational description. In-
tuitively, continuous constraint systems express the information content of initial value
problems in integration. Continuous constraint systems support an integration opera-
tion, [ init(a)Acont(b) which determines the effect of b holding continuously in the
interval (0, r), if a held at time 0. For example, f7 init(z = 3)Acont(z' =4) Fz =
31. [26] describes a set of axioms for continuous constraint systems — these include
intuitive properties of integration such as the monotonicity and continuity of integra-
tion, and some computability axioms to enable finite description and implementation.
We add a single temporal control to the untimed (concurrent) constraint programming:
hence A. Declaratively, hence A imposes the constraints of A at every time instant
after the current one. [26] shows how hence can be combined in very powerful ways
with ask operations to yield rich patterns of temporal evolution, e.g., do A watching P
— execute A at every time point beyond the current one until the first time instant at
which P is true, assuming that there is, in fact, a first time instant at which P is true.

While conceptually simple to understand, hence A requires the execution of A at
every subsequent real time instant. Hybrid cc is made computationally realizable
by exploiting the basic intuition we exploit is that, in general, physical systems change
slowly, with points of discontinuous change, followed by periods of continuous evo-
lution. Computation at a time point establishes the constraint in effect at that instant,
and sets up the program to execute subsequently. Computation in the succeeding open
interval determines the length of the interval r and the constraint whose continuous
evolution over (0, r) describes the state of the system over (0, ). We recall:

— Hybrid cc is declarative [26] — programs can be understood as formulas that
place constraints on the (temporal) evolution of the system, with concurrent com-
position regarded as conjunction.

— Hybrid cc is amenable to the tools developed for the verification of hybrid sys-
tems [24] — for any Hybrid cc program, there is a hybrid automaton whose
valid runs are precisely execution traces of the program; and for any given safety
property expressed in (real-time) temporal logic, there is a Hybrid cc program
that “detects” if the property is violated.

— We have implemented Hybrid cc [9,25] and used this implementation for sev-
eral examples, e.g., an (executable) model of the paper path of a photocopier [27],
an (executable) model and controller for a robotic camera of the Space Shuttle [1].

! Functional Reactive ANimation [17], built on functional programming, has similar goals.



22 Triveni

Triveni [12-14] is a programming methodology for concurrent programming with
threads and events. Triveni has its basis in formalisms from concurrency theory,
such as process algebras [37, 31, 38] and synchronous programming languages [6, 28,
30,42]. Communication is via broadcast of (labeled) events that are abstractions of
names of communication channels. In addition to the usual process-algebraic combi-
nators of event emission, concurrent composition and waiting for events, Triveni
supports exceptions via preemption combinators in the style of synchronous program-
ming languages.

The semantic study of Triveni [14] includes an operational semantics that in-
cludes a precise formalization of the fairness assumptions of the current implementa-
tion, and a denotational semantics based on (fair) traces. Furthermore, the logical se-
mantics of Triveni proceeds via a compilation of the Triveni control combinators
as constructions on Buchi automata. In the light of the automata-theoretic approach to
temporal logic [44], this shows that Triveni programs constitute a carefully chosen
fragment of linear time (temporal) logic [35].

The current implementation of Triveni (in Java) makes Triveni compatible
with existing threads standards such as P-threads and Java threads, and includes an
integrated specification-based testing environment that automates the testing of safety
properties. We have used this implementation to perform a case study from telecommu-
nication [13], to prototype a domain specific language for writing flexible interactive
services [3], and in the classroom as an environment and tool for teaching the rudi-
ments of designing, implementing, and reasoning about concurrent programs [15].

23 Sisl

The context of Sis1 is modern interactive services. It is now common for such services
to have more than one interface for accessing the same data, e.g., personal banking ser-
vices from an automated teller machine, a bank-by-phone interface, or a web-based in-
terface. Furthermore, telephone-based services are starting to support automatic speech
recognition and natural language understanding. In this context, it is desirable for the
programming methodology to provide the following capabilities:

— allowing requests to be phrased in various ways (e.g., needed information can be
provided in any order),

— prompting for missing information,

— lookahead (to allow the user to speak several commands at once), and

— backtracking to earlier points in the service logic.

In sis1, the service logic (i.e., the code that defines the essence of the service) of an
application is specified as a reactive constraint graph, which is a directed acyclic graph
with an enriched structure on the nodes. The traversal of reactive constraint graphs is
driven by the reception of events from the environment: these events have an associated
label (the event name) and may carry associated data. In response, the graph traverses
its nodes and executes actions; the reaction of the graph ends when it needs to wait for
the next event to be sent by the environment.



The key kind of node is constraint(Prexs, ((¢i,00:, Plior))i = 1...n), where
the ¢; are predicates on events. Intuitively a constraint node is awaiting all the events
in U;o(¢;). These events can be sent to the constraint node in any order. When control
reaches the constraint node, the Sis1 service logic automatically sends out a prompt
event for every event that is still needed in order to evaluate some constraint. In addi-
tion, it automatically sends out a optional prompt for all other events mentioned in the
constraints — these correspond to information that can still be corrected by the user. In
every round of interaction, the constraint node waits for the user to send any event that is
mentioned in its associated predicates. Each predicate associated with a constraint node
is evaluated as soon as all of its events have arrived. If an event is re-sent by the user
interfaces (i.e, information is corrected), all predicates with that event in their signature
are re-evaluated.

Sisl is implemented as a library in Java and supports the development of ser-
vices that are shared by multiple user interfaces including automatic speech recognition-
based or text-based natural language understanding, telephone voice access, web, and
graphics-based interfaces. Sis1 has been integrated with VeriSoft [20], a systematic
state-space exploration tool, and hence supports automated and efficient testing of sis1
applications [21]. sis1 is currently being used to prototype a new generation of call-
processing services for a Lucent Technologies switching product.

2.4 Related Work

We have already referred to several pieces of work that have inspired and influenced
this paper. [43] is an eminently readable survey of concurrent logic programming lan-
guages. This line of work has now developed into extensive work on temporal logic
programming languages with perhaps some notions of distribution (e.g., [7,4,5,39,
36, 22]). Our work differs from this literature in that our approach has tended to em-
phasize the reuse of the extensive existing work in the design, implementation and
analysis of (concurrent) programming languages. For example, the compatibility of our
work with existing threads standards and event models, such as P-threads and Java-
Beans, has enabled us to easily use our languages and framework in the context of
concrete applications. More substantially, our methodology is significantly influenced
by ideas from process algebras and synchronous programming languages. This is re-
vealed in the explicit treatment of operational notions such as fairness in our framework,
and has permitted our study to be compatible with the extensive analysis methodolo-
gies/tools developed for testing and verifying concurrent systems in this context, such
as computer-aided verification via model checking (e.g., [20,11, 34, 10] to name but
a few) and specification-based testing of temporal properties (e.g., [16]). Indeed, both
Triveni and Sisl support a systematic and efficient testing architecture based on
these methods.

3 Examples

In this section, we discuss two examples with respect to their hybrid, reactive, and
distributed characteristics. MyMessaging is an multi-user instant messaging applica-
tion. This system has has rich multi-modal reactive and distributed behavior. Battle,



an n-player variation of the 2-player board game Battleship, is a modified version of an
example from [13]. This game has a significant hybrid component to model the motion
of the ships, in addition to the evident reactive and distributed behavior. We have used
both examples as projects in courses.

Contact List. Each user has a contact list (“buddy list”) of people with whom he or she usually
communicates. The contact list can be managed by adding or removing users and organizing
them by category. The contact list can be viewed in different ways, including by current online
status.

Online Satus. Each user can change between different online statuses: online, do-not-disturb,
offline, etc.

Messaging. A user can send different types of messages to one or more users. Message types
include text messages, files or URLSs, and chat invitations.

Fig. 1. Features of MyMessaging

Loss. A player loses when all his/her ships are destroyed.

Oceans. Each player has a collection of ships on an individual ocean grid. The n ocean grids
are disjoint. Each player’s screen displays all n oceans, but a player can see only his/her own
ships. A player’s ships are confined to the player’s ocean. Each ocean has a surface current that
causes its ships to drift in the direction of the current.

Ships. Each ship occupies a rectangular sub-grid of the player’s ocean and sinks after each
point in its grid area has been hit. Ships can move on the surface of the player’s ocean. Once
set in motion, a ship moves along a straight line that factors in the surface current. If a ship hits
an edge of the ocean, it bounces back. If it collides with another ship, the usual conservation of
energy and momentum laws apply.

Moves. A player can move as fast as the user-interface/reflexes allow. Player i can make 3
kinds of moves:

1. Fire a round of ammunition on a square of another player j’s ocean by clicking on it. The
ammunition may hit a previously unmarked point on one of player j’s ships, in which case
amark is displayed at that point in player j’s ocean on all players’ screens. No information
is reported in case of a miss.

2. Impart a velocity to a battleship that lasts until it receives another velocity command or
until it collides with an edge or another battleship.

3. Raise a shield over his/her entire ocean for a game-specific interval of time, during which
player i’s ships are invulnerable. When a player raises an ocean-wide shield, his/her ocean
becomes dim on the screens of all players. Each player has a limited supply of shields.

Fig. 2. Features of Battle



4 Architecture

This section describes the architecture of our framework and its use of multiple in-
teracting constraint-based paradigms. The framework exploits the capabilities of each
paradigm and decouples application-specific from application-independent aspects.

Building upon existing implementations of Hybrid cc (21,000 lines of C code
and 1000 lines of Yacc code; used from within Java through the Java Native Interface
(JNI)), Triveni (7,000 lines of Java code), and Sisl (5,000 lines of Java code),
the framework consists of about 1,900 lines of application-independent Java code; this
includes support for both RMI-based and servlet-based physical distribution. The proto-
type implementation of Batt1e contains about 2,200 lines of application-specific new
code: 700 lines of Triveni code for the control logic, 1500 lines of Java code for user
interface and animation, 100 lines of Hybrid cc code for the physical model, and 400
lines of Java code for hooking the application together with the servlet-based distribu-
tion architecture. The prototype implementation of MyMe s saging contains about 400
lines of application-specific new Java code: 300 lines for the control logic and support
classes, and 100 lines for the user interface.

In the remainder of this section, the figures depicting the various aspects of the
architecture use shaded shapes for application-specific components and unfilled shapes
for application-independent components.

4.1 Logical Architecture

We first consider the logical architecture of a virtual simulation. A simulation consists
of zero or more scenes, zero or more dialogs, and a control logic. These components
coexist using Triveni’s concurrent composition combinator (| |) and communicate
through logical events; the simulation system constitutes the environment in which
these events are visible. >

/)
Simulation System
C=D
(] I Il (]
Scene k Dialog n

) T )

— A scene models a collection of closely interacting physical objects. A scene occa-
sionally emits events that describe the scene by providing information such as the
position, speed, direction, or other attributes of certain objects. A scene responds to
incoming events that control the objects in the scene.

— A dialog provides interaction with outside systems such as users. A dialog receives
input from outside systems and emits corresponding events into the simulation. A
dialog receives response events from the simulation and transmits the correspond-
ing information back to the outside system.

— The control logic specifies how the scenes and dialogs of the simulation interact.

Scene. A simulation scene has three interacting components. Concurrency and com-
munication between these components is again managed through Triveni:



— The application-independent simulator simulatesaHybrid cc programand com-
municates with the other components via events and methods. The Hybrid cc
program provides the physical model for the objects in this scene.

The Hybrid cc simulator instance is wrapped inside a suitable Triveni com-
ponent and can be controlled as needed via the START, INTR, and REWIND
events. The ADD and UPLOAD events are used to make changes to the Hybrid
cc program; this capability is necessary for controlling the physical model from
the outside.

The simulator occasionally emits events that inform the other components about
the state of the simulation. SAMPLE is emitted whenever a data sample from the
simulation is available. STOPPED is emitted in response to an incoming INTR
event to indicate that the simulator has in fact stopped.

— The controller is responsible for converting logical events to pieces of Hybrid
cc code that are uploaded to the simulator for controlling the scene.

— The animator is responsible for converting data samples into logically meaningful
events that describe the status of the scene.

Scene

HecSimulator

ADD(code) | |SAMPLE REWIND|

UPLOAD(code) descriptive
o evens

control
Controller

Examplel. In Battle, the Hybrid cc program provides physical modeling of the
ships in a single ocean using Newtonian laws of motion in the form of differential
equations. For instance, the fragment that governs collisions between ships and edges
looks as follows:

Edges = () {
always forall Battleship(X) do {
if (X.px = hw || X.px = xMax - hw) then {
XEdgeCollision,
X.ChangeX, X.vx = - prev(X.vx)

i% (X.py = hh || X.py = yMax - hh) then {
YEdgeCollision,
X.ChangeY, X.vy = - prev(X.vy)
11}
The controller converts move events coming from the player to the corresponding
changes in the Hybrid cc program. The animator simply renders ships on the screen

using the Java 2d package.

Dialog. A dialog has two components:

— The application-independent pluggable external user interfaces that convert back
and forth between concrete input and output events and the corresponding abstract
dialog events. In a model-view-controller architecture [33], these components can
be viewed as the view/controller pairs of the interaction.



— The application-specific Sis1 code that describes the logical interaction with an
outside system. In a model-view-controller architecture, this component can be
viewed as the model of the interaction. The Sis1 code is responsible for medi-
ating between abstract dialog events and logical simulation events.

Sisl provides the ability to switch between or combine multiple concrete user inter-
faces without changing the abstract dialog. Examples of such interfaces include graph-
ical user interfaces, speech recognition and synthesis, web browsers using applets or
HTML, voice browsers using Voice XML, and other XML-based interfaces.

Dialog

" HTML|
Ty e

abstract
dialog
events

logical
output
events

Example 2. In Battle, the player can interact with ships by clicking on or dragging
them with the mouse. Alternatively, the player can use speech to cause ships to move
or to shield his/her ocean.

Control Logic. The control logic mediates between the scenes and the dialogs via
events and is provided as a Triveni component.

Example 3. In Battle, the control logic is responsible for a number of tasks, includ-
ing enforcement of the rules of the game. The following code defines the top-level logic
for one player.

ReadyAbortButton
|| await Ready -> Shield(container, numOfShields, shieldDuration)
|| await Ready -> suspend Shield [playerOcean] resume Unshield
|| await Ready 0 -> OpponentOcean(0)
. (except this player’s ocean)
|| await Ready n -> OpponentOcean(n = maxNumOfPlayers-1)

The following code fragment ensures that a player can use a shield only as long as

shields are still available.

Shield (numOfShields, shieldDuration) =
local OutOfShields in
do shieldBtn Watching OutOfShields
|| loop
await Shield -> if (--numOfShields == 0) emit OutOfShields
|| rename Start, Finish to Shield, Unshield in Act (Timer (duration))

4.2 Distribution — Logical and Physical

As stated above, the components of a simulation system communicate through logi-
cal events. There are two conceptually different degrees of communication coupling
between components. Communication between components on a single node is syn-
chronizing, that is, components can wait until an emitted event has been received by all



other components in the sub-system — all communication inside Hybrid cc and a
significant portion of the communication inside Triveni is of this kind. On the other
hand, communication between components on two distinct nodes is is better carried out
asynchronously. Components that require synchronizing communication logically be-
long to the same subsystem, whereas components that do not require tight coupling log-
ically belong to distinct subsystems. The logical distribution is a partitioning of scenes,
dialogs, and control logic into logical nodes and involves breaking the control logic
up into suitable pieces — this process is facilitated by the explicit concurrent/parallel
composition combinator supported in our framework.

Consider now the physical architecture of a virtual simulation, which allows dis-
tribution over (possibly) multiple physical nodes. In our architecture, communication
between nodes is provided in a way that is completely transparent to the local simula-
tions. This allows us to decouple the logical architecture of the simulation system from
its physical distribution architecture and topology. Concretely, on each node, the local
simulation system is paired with a communication component that is responsible for
transmitting nonlocal events between the local simulation and other nodes. The remote
client hides the details of the specific distribution mechanism used. The pairing between
the simulation and communication components occurs as concurrent composition at the
Triveni level. Thus, the physical distribution architecture becomes a pluggable pa-
rameter of the former in the following two senses.

Client Node

Simulation

System Client

>

— Firstly, it is possible to switch between distribution mechanisms without making
changes to the simulation system. For example, we support the following distribu-
tion architectures: applet/servlet, remote method invocation (RMI), and sockets.

— Secondly, mechanisms that guarantee reliable communication over asynchronous
networks, particularly those based on protocol stacks such as Ensemble [40], are
naturally incorporated in this architecture as layers around the communication com-
ponents.

Example4. In Battle, each logical node consists of a single scene for modeling the
player’s ocean, a single dialog for interaction with this player, and the control logic. In
the RMI-based implementation, the physical nodes use RMI for communication and are
arranged in a clique topology with a central server for initial client registration. In the
servlet-based implementation, the physical nodes use HTTP and sockets for communi-
cation and are arranged in a star topology around a central server for client registration
and routing.
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