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ABSTRACT
Constraint-based languages can express in a concise way the com-
plex logic of a new generation of interactive services for applica-
tions such as banking or stock trading, that must support multiple
types of interfaces for accessing the same data. These include auto-
matic speech-recognition interfaces where inputs may be provided
in any order by users of the service. We study in this paper how to
systematically test event-driven applications developed using such
languages. We show how such applications can be tested automati-
cally, without the need for any manually-written test cases, and effi-
ciently, by taking advantage of their capability of taking unordered
sets of events as inputs.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; D.2 [Software]:
Software Engineering; D.2.4 [Software Engineering]: Software /
Program Verification; D.2.5 [Software Engineering]: Testing and
Debugging

General Terms
Languages, Reliability, Verification

Keywords
Constraint-Based Languages, Verification, Testing, Model Check-
ing, Interactive Services, State Explosion, State-Space Reduction

1. INTRODUCTION
Today, it is becoming more and more commonplace for mod-

ern interactive services, such as those for personal banking or stock
trading, to have more than one interface for accessing the same
data. For example, many banks allow customers to access per-
sonal banking services from an automated teller machine, bank-by-
phone interface, or web-based interface. Furthermore, telephone-
based services are starting to support automatic speech recognition

and natural language understanding, adding further flexibility in
interaction with the user. When multiple interfaces are provided
to the same service, duplication can be a serious problem in that
there may be a different service logic (i.e., the code that defines
the essence of the service) for every different user interface to the
service. Moreover, to support natural language interfaces, services
must allow users considerable flexibility in the way they input their
service requests. Thus, it is desirable for the programming idioms
and methods for such services to provide the following capabilities:

� allow requests to be phrased in various ways (e.g., needed
information can be provided in any order),

� prompting for missing information,

� correction of erroneous information,

� lookahead (to allow the user to speak several commands at
once), and

� backtracking to earlier points in the service logic.

Constraint-based languages (for a foundational overview, see [16,
19]) provide a suitable paradigm to support the required flexibil-
ity in user inputs. Examples of such languages in dialogue man-
agement include methods based on frames [1], forms [9, 15], ap-
proaches based on AND/OR trees [22] and Sisl (Several Interfaces,
Single Logic) [4].

The powerful expressiveness of constraint-based languages al-
lows the construction of succinct programs with complex reactive
behavior. This motivates the need for reliable yet cost-effective
testing techniques and tools suitable to check the correctness of
business-critical applications developed using such languages. We
study in this paper how to automatically and efficiently check tem-
poral properties of programs written in constraint-based languages
for interactive services.

We first present a nondeterministic algorithm for systematically
testing the logic of a program in a constraint-based language. The
possible use of arbitrary host language code and potential elaborate
access to external data (such as database lookups) in a full program
makes the use of classical constraint satisfaction and model check-
ing techniques problematic. Consequently, this algorithm assumes,
as is usually done in testing, that the user specifies a fixed set of pos-
sible data values for each user input. The algorithm then dynami-
cally detects at run-time the set of input events that an application
is currently ready to accept, and uses that information to drive the
execution of the application by sending it inputs selected nondeter-
ministically. Used in conjunction with the systematic state-space
exploration tool VeriSoft [11], which supports a special system call



(called VS toss) simulating nondeterminism, this nondeterministic
test driver can systematically generate all possible behaviors of any
such program. These behaviors can then be monitored and checked
against user-specified safety properties. This algorithm thus elimi-
nates the need for manually-written test cases, and is automatically
applicable to any program. This testing technique is made possi-
ble by the structured interface that an event-driven constraint-based
program provides to its environment.

Unfortunately, the expressiveness of constraint-based languages
makes this algorithm quite inefficient. For instance, a service that
awaits 10 inputs from the user (in no particular order) has 10! dif-
ferent paths to collect the inputs. However, the flip side of this
ability to accept unordered sets of inputs that can be provided in
any order, is the inability of constraint languages to (observation-
ally) distinguish permutations of the unordered sets of inputs. Thus,
generating all these sequences is not always necessary to check the
temporal properties that we are considering. Our second algorithm
makes systematic testing significantly more efficient by exploiting
this observation and taking advantage of a form of symmetry in-
duced by constraints and their ability to specify sets of input events
rather than single events.

While the basic problems and ideas that we discuss in this work
are common to any deterministic constraint-based language in our
domain of interest, our concrete presentation is in the context of
the Sisl language mentioned earlier. Sisl includes a deterministic
constraint-based domain-specific language for developing event-
driven reactive services. It is implemented as a library in Java.
Sisl supports the development of services that are shared by multi-
ple user interfaces including automatic speech recognition based or
text-based natural language understanding, telephone voice access,
web, and graphics based interfaces. Sisl is currently being used to
prototype a new generation of call processing services for a Lucent
Technologies switching product.

This paper is organized as follows. In the next section, we de-
scribe the Sisl language and formalize its semantics. Then, we
present algorithms for automatically and efficiently checking safety
properties of Sisl programs. These algorithms have been imple-
mented and implementation issues are discussed in Section 4. A
simple example of Sisl application is presented in Section 5. Re-
sults of experiments with this example are then discussed. Finally,
we present concluding remarks and compare our results with other
related work.

2. SISL: SEVERAL INTERFACES, SINGLE
LOGIC

2.1 Overview of Sisl
Sisl applications consist of a single service logic, together with

multiple user interfaces. The service logic and the interfaces com-
municate via events: the user interfaces collect information from
the user and send it to the service logic in the form of events. The
service logic reacts to the events, and reports to the user interfaces
its set of enabled events; i.e. the set of events it is ready to ac-
cept in its current state. The user interfaces utilize this information
to appropriately prompt the user. Any user interface that performs
these functions can be used in conjunction with a Sisl service logic.
For example, in the context of an interactive natural language ser-
vice that browses and displays organizational data from a corpo-
rate database, Sisl may inform the natural-language interface that
it can accept an organization e.g., if the user has said “Show me
the size of the organization.” The interface may then prompt the
user, e.g. by saying “What organization do you want to see?” If

the user responds with something that the natural-language inter-
face recognizes as an organization, the interface will then generate
a Sisl event indicating the organization was detected. This event
will then be processed by the Sisl service logic.

In Sisl, the service logic of an application is specified as a reac-
tive constraint graph, which is a directed graph with an enriched
structure on the nodes. The traversal of reactive constraint graphs
is driven by the reception of events from the environment: these
events have an associated label (the event name) and may carry
associated data. In response, the graph traverses its nodes and exe-
cutes actions; the reaction of the graph ends when it needs to wait
for the next event to be sent by the environment. Predicates on
events play an important role in reactive constraint graphs. In par-
ticular, nodes may contain an ordered set of predicates, which in-
dicate a conjunction of information to be received from the user.
Upon receipt of the appropriate events, predicates in the current
node are evaluated in order. Satisfaction of all predicates at a node
triggers a node change in the graph, as may violation of any predi-
cate.

Reactive constraint graphs are implemented as a Java library. An
important aspect of reactive constraint graphs is that nodes may
have associated actions, consisting of arbitrary Java code, which
is executed upon entry into/exit from the node. These actions can
hence have side effects on local and global variables of the Java
program, or on external databases. We note that individual predi-
cates do not have actions associated with them.

2.2 The Sisl process algebra
In this section, we describe a process algebra to succinctly de-

scribe Sisl programs.
Events. We begin with a description of the events used in the

process algebra.

� A set of (input) labels I .

� A set of values V , that are carried on labels from I .

A label with an associated value is called an event, and we write e
to range over [I � V]. A signature is a subset of I . We use � for a
signature, and j�j for its size. A predicate � over a signature � is a
boolean valued function from Vj�j ! Bool; that is, it maps every
set f(a; v)ja 2 �; v 2 Vg to ftrue; falseg. The signature of a
predicate � is sometimes written �(�).

Syntax. Terms of the process algebra have the following abstract
syntax (where P , Pi, Pnext and P i

viol
denote processes).

P ::= null

j P1;P2 (Sequential composition)
j

P
(ai; vi):Pi (Choice)

j constraint(Pnext; h(�i; �(�i)); P
i

viol
ii = 1 : : : n)

(Constraint)

We refer to P i

viol as the target node of predicate �i.
Informal dynamic semantics. The process combinators have the

following intuitive meaning. Sequential composition is standard:
“P1;P2” means that P1 is executed first and P2 is executed after
P1 terminates.

Choice,
P

(ai; vi):Pi functions like prefixing in process alge-
bras: the process waits for an event with label in the ai’s and with
data vi. Such a term corresponds to a “choice” node in the reac-
tive constraint graph, and represents a disjunction of events to be
received from the user. For every event in this set, the Sisl ser-
vice logic automatically sends out a corresponding prompt to the
user. The choice node then waits for the user to send an event in
the specified set. When such an event arrives, the corresponding



transition is taken, and control transfers to the child node. To en-
sure determinism of the Sisl program, all events (ai; vi) must be
distinct.
constraint(Pnext; h(�i; �(�i)); P

i

viol
ii = 1 : : : n), the con-

straint combinator, has the most interesting dynamic behavior. Such
a term corresponds to a “constraint” node in the reactive constraint
graph, and has an associated ordered set of predicates �i on events.
Intuitively, a constraint node is awaiting all the events in [i�(�i).
Thus, this node represents a conjunction of information to be re-
ceived from the user. These events can be sent to the constraint
node in any order. When the control reaches the constraint node,
the Sisl service logic automatically sends out a prompt event for ev-
ery event that is still needed in order to evaluate some predicate. In
addition, it automatically sends out a optional prompt for all other
events mentioned in the predicates — these correspond to informa-
tion that can be corrected by the user. In every round of interaction,
the constraint node waits for the user to send any event that is men-
tioned in its associated predicates. Each predicate associated with
a constraint node is evaluated in order as soon as all of its events
have arrived. If an event is resent by the user interfaces (i.e, infor-
mation is corrected), predicates with that event in their signature
are re-evaluated in order.

There are two ways to exit a constraint node.

� All of its predicates have been evaluated and are satisfied. In
this case, control transfers to Pnext .

� Some predicate i with non-null P i

viol
evaluates to false,

and all predicates j with j < i evaluate to true. That is,
predicate i is the first predicate in order that is false, and its
P i

viol
is non-null. In this case, control transfers to P i

viol
.

As mentioned earlier, node changes may cause side-effecting ac-
tions to be executed; however, evaluation, satisfaction, or violation
of individual predicates do not cause any side effects to occur, other
than the node changes described above.

2.3 Sisl: The state machine semantics
We will describe a associated space of state machines associated

with Sisl, and describe the semantics of Sisl processes as state ma-
chines.

A state machine in the Sisl semantics is a tuple (I; S; s0; T; F )

where I is the set of input labels, S is a set of states, s0 is the
unique start state, F � S is the set of final states, and the transition
relation T � S � [I � V ]� S is deterministic, i.e., given a state s
and any event e, there is at most one s0 such that (s; e; s0) is in the
transition relation. In this case, we write s

e

! s0. Final states do
not have any outgoing transitions.

Constructions
We will describe the denotations of Sisl combinators as construc-

tions on the state machines. In this section we will use P (perhaps
with super/subscripts) to range over the members of the given class
of state machines.

The state machine corresponding to null has a single state that
is both the start state and the final state. It has no transitions.

Sequential composition This is described in a standard fashion
by assumption on final states. All arcs into the final states of P1 are
redirected to the unique start state of P2 in P1;P2. Formally, the
sequential composition of state machines P1 = (I1; S1; s1; T1; F1)

and P2 = (I2; S2; s2; T2; F2) is the state machine P = (I1 [
I2; S1 [ S2; s1; T; F2) where T = T2 [ f(s; e; s0) 2 T1js

0 62
F1g [ f(s; e; s2)js 2 S1 and (s; e; s0) 2 T1 for some s0 2 F1g

Choice:
P

(ai; vi):Pi This is described by building the state ma-
chine for Pi, and adding a new start state with transitions labeled

(ai; vi) to the start state of the state machine for Pi. Formally,
given state machines Pi = (Ii; Si; si; Ti; Fi), the resulting state
machine P is (I; S; s; T; F ), where I =

S
i
Ii, S =

S
i
Si, s is a

new state, F =
S
i
Fi, and T = (

S
i
Ti)[f(s; e; si)je = (ai; vi)g.

Constraint: constraint(Pnext; h(�i; �(�i)); P
i

viol
ii = 1 : : : n)

Let K = [i�(�i). The set S of intermediate states the Sisl
program goes through while collecting events in K are determined
by partial maps f : K ! V . Intuitively, the domain of a partial
function f , written dom(f), indicates the labels on which data has
been received. With this intuition, it is clear that the information
still required to satisfy the requirements of this constraint node is
given by the transitions that are enabled at this state, and have labels
fa j a 2 K; f(a) undefinedg. Furthermore, the start state is given
by the partial map with empty domain, since no information has
been received.

We write g = f +(a; v) if g(a) = v and f; g are identical on all
other labels.

� f is consistent if f is such that for all predicates �i, if dom(f)
includes �(�i), then �i(hvii) = true, where vi = f(ai) for
all ai 2 �(�i).

f is inconsistent otherwise, i.e., there is some predicate �i
such that dom(f) includes �(�i) and �i(hvii) = false,
where vi = f(ai) for all ai 2 �(�i).

� f is complete, if dom(f) = K, incomplete otherwise.

All four combinations of the above two parameters are possible.
Formally, the set S of states is all partial maps f : K ! V , where
K = [i�(�i), such that f is either inconsistent or incomplete. Let
transition relation T on states in S be defined as follows:

� Let g = f + (a; v) be a consistent and complete map. There
is a transition labeled (a; v) from state with label f to Pnext .
That is, Pnext is the target of transitions that make the infor-
mation contained in a state complete in a consistent fashion.

� Let g = f +(a; v) be an inconsistent map, with �i being the
first i that is falsified in g. If P viol

i is not null, then there
is an arc labeled (a; v) from state with label f to the start
state of P i

viol
. That is, causing a predicate violation with a

non-null target node causes control to move to that node.

� There is a transition labeled (a; v) from a state with label f
to a state with label g = f + (a; v) if either:

– g is consistent and incomplete, or
– g is inconsistent, and P viol

i is null, where �i is the
first predicate in order that is falsified in g.

That is, if no predicates are violated, or if a predicate with
a null target node is violated, then control remains in the
constraint node.

A transition labeled (a; v) adds or changes information on label a
at a state. If it changes the information, it is called an overwrite
event: (a; v) is an overwrite event if it causes a transition from
some state f in which a 2 dom(f).

The start state is given by the partial map with empty domain.
The final states are given by the union of the final states of Pnext

and the non-null P i

viol
’s.

Formally, given state machines Pnext = (Inext; Snext; snext; Tnext; Fnext),
and the non-null P i

viol
= (Ii; Si; si; Ti; Fi), the resulting state

machine is P = (IP ; SP ; sP ; TP ; FP ) where IP = Inext[
S
i
Ii[S

i
�(�i), SP = S[Snext[

S
Si, sP is the partial map with empty

domain, TP = T [ Tnext [
S
Ti, and FP = Fnext [

S
Fi.

In the following we write target(�i) to refer to the target node
of predicate �i.



3. AUTOMATIC TESTING OF SISL PRO-
GRAMS

In this section, we show how Sisl programs can be automatically
and systematically tested for violations of safety properties using
nondeterministic testing algorithms. Used in conjunction with the
systematic state-space exploration tool VeriSoft [11], which sup-
ports a special system call “VS toss” simulating nondeterminism,
these nondeterministic testing algorithms can systematically drive
the execution of the Sisl application being tested in order to exhibit
all its possible behaviors.

Safety properties can be represented by prefix-closed finite au-
tomata on finite words [3]. We assume such a representation AP ,
and define a safety property L(P ) as the set of finite words ac-
cepted by the finite automaton AP .

Let O be the alphabet of AP . By construction, O is contained
in the set of input events I of the state machine M representing the
Sisl program to be tested. We call input events in O observable
events. Let wjO denote the projection of a word w 2 I� over a set
O � I .

DEFINITION 3.1. Let M = (I; S; s0; T ) be the state machine
defining the semantics of a Sisl program as defined in the previous
section but with F = S (which is therefore omitted). Let s

w

) s0

denote an execution of M that goes from state s to state s0 after
receiving a finite sequence w of events which does not include any
overwrite events. Let O � I denote a set of observable events.
We define the set of observable behaviors of M as the language

LO(M) on finite words on O� such that LO(M) = fwjs0
w

0

)
s ^ w = w0

jOg.

In other words, the set of observable behaviors of a Sisl program
with respect to a set of observable events O is defined as the set of
finite sequences of observable events that the Sisl program can take
as inputs excluding overwrite events. For technical convenience
and efficiency reasons, we deliberately ignore overwrite events in
this definition since their occurrence is an artifact of the user-interface
of the system that does not affect transitions from nodes to nodes,
and hence the logic of the Sisl program.

The problem we address in this work is thus how to check auto-
matically and efficiently that LO(M) � L(P ).

A naive solution to this problem consists of driving the execu-
tion of the Sisl program by a test driver that nondeterministically
sends any enabled input event and associated valid data value to
M whenever M is ready to take a new input, the execution of
the nondeterministic test driver being itself under the control of
VeriSoft. Checking LO(M) � L(P ) can then be done by mon-
itoring all possible executions of M in conjunction with this test
driver, and checking that all its observable behaviors are accepted
by AP . However, this naive approach would generate a state space
typically so large that it would render any analysis intractable: for
instance, any input event that takes a 32-bit integer as argument
would immediately generate a branching point with 232 branches.
Clearly, data values are the cause of this unacceptable state explo-
sion.

In the case of constraint nodes for instance, one could think that
an analysis of the predicates associated to such nodes using con-
straint satisfaction techniques might be used to generate automat-
ically data values. However, this approach is problematic in our
context since predicates in Sisl programs are implemented by ar-
bitrary Java code, can be quite elaborate and may involve accesses
to external data (for instance, the evaluation of a predicate may in-
volve database lookups to fetch and test provisioning data for the
subscriber of the service). Also, the evaluation of a predicate on

a same set of input data values may change over time (when the
evaluation of a predicate may depend on data previously modified
during the current execution). How to close automatically any open
reactive (Java) program with its most general environment is an
interesting but hard problem [5] that is beyond the scope of the
present work.

Therefore, we will simply assume here, as is usually done in
testing, that the user specifies a fixed set values(a) of possible data
values for each input event a in I . Whenever event a is provided as
input to the Sisl program during testing, a data value v in values(a)
is chosen nondeterministically by the test driver and then passed as
argument of event a to the Sisl service.

For a given set V of sets values(a) of data values, we define the
restriction of M by V as follows.

DEFINITION 3.2. Let M = (I; S; s0; T ) be the state machine
defining the semantics of a Sisl program as defined in the previous
section. Let V be a (complete) valuation function that associates
with each input event a a finite nonempty set values(a) of data
values: 8a 2 I : V (a) = values(a). We call the restriction of
M by V the state machine MV = (I; S; s0; TV ) such that T 0 =

f(s; a(v); s0)j(s; a(v); s0) 2 T ^ v 2 V (a)g.

The restriction of M by V is thus the set of states the Sisl program
represented by M can reach when data values associated to input
events are taken from V exclusively. Note that, since Sisl programs
are deterministic, the successor state s0 reached after receiving an
input event a(v) in a state s is always unique.

In the remainder of this section, we discuss a restricted version
of our original problem, namely how to check automatically and
efficiently that LO(MV ) � L(P ), instead of LO(M) � L(P ).

A simple algorithm for checking whether LO(MV ) � L(P ) is
presented in Figure 1. At any reached state, this algorithm non-
deterministically selects an enabled input event a (Step 2.b) and a
data value v in values(a) (Step 2.c), and then sends a(v) to the
Sisl program being tested (Step 2.d). Nondeterminism is simulated
by the special operation “VS toss” supported by VeriSoft. This
operation takes as argument a positive integer n, and returns an in-
teger in [0; n]. The operation is nondeterministic: the execution of
a transition starting with VS toss(n) may yield up to n + 1 differ-
ent successor states, corresponding to different values returned by
VS toss.

The execution of this nondeterministic and nonterminating test-
driver algorithm is controled by VeriSoft. VeriSoft provides the
value to be returned for each call to VS toss in order to systemat-
ically explore all the possibilities. It also forces the termination of
every execution when a certain depth is reached. This maximum
depth is specified by the user via one of the several parameters
that the user can set to control the state-space search performed by
VeriSoft, and is measured here by the number of calls to VS toss
executed so far in the current run of the algorithm.

Checking LO(MV ) � L(P ) can be done as follows. Whenever
an event a(v) is sent to the Sisl service SSV to be tested, the au-
tomaton AP representing the property P is evaluated on a(v). If
a 2 O, the automaton may move and reach a new state. By con-
struction, if AP reaches a non-accepting state, this means that the
property P is violated. An error is then reported, and the search
stops. The last scenario executed is saved in memory, and can be
replayed later by the user with the VeriSoft simulator.

The algorithm of Figure 1 generates all possible sequences of in-
put events (and associated data values) that can be taken as input
by the Sisl program. In the rest of this section, we show that gener-
ating all these sequences is actually not necessary to check the type
of safety properties we consider here. Precisely, we show that the



1. Initialize the Sisl service SSV .

2. Loop forever:

(a) Let E be the set of non-overwrite events in I that are enabled in the current state s. If E = ;, halt.

(b) Let i =VS toss(jEj � 1); let a be the ith element of E.

(c) Let j =VS toss(jvalues(a)j � 1); let v be the jth element of values(a).
(d) Send a(v) to SSV .

Figure 1: Simple Algorithm

algorithm of Figure 1 can be optimized so that it does not generate
all possible sequences of input events enabled in constraint nodes
provided that these events are not observable.

EXAMPLE 3.3. Let P be a sisl program, and let �1; �2; �3 be
any predicates, with signatures given by �1; �2; �3. Consider
constraint(P; h�1; �1; nulli; h�2; �2; nulli; h�3; �3; nulli).

Let O, the set of observable events be empty. All interleavings of
unobservable input events that drive the system to a same successor
node of a constraint node have the same void effect on the property
being checked; so, there is no need to generate all of these. Conse-
quently, the testing of this constraint node requires the generation
of one sequence of input events rather than the ([i��i

)! sequences
generated by the naive algorithm.

On the other hand, if O is ([i��i
), the testing of this constraint

node requires the generation of all the ([i��i
)! sequences gener-

ated by the naive algorithm.

This observation is exploited in the algorithm of Figure 2. This
algorithm behaves as the previous one except in the case of con-
straint nodes. In that case (Step 2.c), the algorithm starts (Step
2.c.ii) by nondeterministically choosing a data value va to be asso-
ciated with each input event a enabled in the constraint node. Then
(Step 2.c.iii), it evaluates successively all the predicates �i of the
constraint node. Predicates �i that are violated by the selected set
of data values va for each a 2 E are added to a set Marked of
violated predicates unless there exists another predicate �j previ-
ously added in Marked whose signature �(�j) is contained in the
signature �(�i) of �i, or whose signature �(�j) contains the same
set of observable events as �(�i) and target(�j) = target(�i)

(Step 2.c.iii.A). If the selected set of data values does not satisfy all
the predicates of the node (Step 2.c.iv), one violated predicate �i in
the set Marked such that target(�i) 6= null is nondeterministi-
cally chosen, and the input events in its signature are selected in the
set S of events to be provided to the Sisl program (Step 2.c.iv.E);
otherwise, all predicates are satisfied, and set S is the set of all en-
abled input events that are enabled in the node (Step 2.c.v). Then,
all unobservable input events in set S (if any) are sent to the Sisl
program (Step 2.c.vi). Finally, all remaining (hence observable) in-
put events in S are sent to the Sisl program one by one in some
random order picked nondeterministically among the set of all pos-
sible interleavings of these events (Step 2.c.vii).

The correctness of the algorithm of Figure 2 can be proved by
showing that there is a weak bisimulation between the nodes reached
during the execution of the algorithm and the nodes of MV , the re-
striction of M by V . This in turn guarantees that all observable
behaviors of MV can be observed during the nondeterministic ex-
ecutions of the algorithm of Figure 2. Let node(s) be the current
node the Sisl program when it is in state s. We write n

w

! n0 to
denote that there exists a sequence of non-overwrite input events

w0 such that s
w

0

) s0, w = w0
jO , node(s) = n, node(s0) = n0,

and no node other than n and n0 are traversed during the transition
from s to s0.

THEOREM 3.4. Let MV = (I; S; s0; TV ) be the restriction of
the state machine M defining the semantics of a Sisl program by a
valuation function V . LetM 0 = (I; S; s0; T

0) be the state machine
defined with the set T 0 representing the set of state transitions per-
formed by the Sisl program when it is being tested by the algorithm
of Figure 2. Then, for any reachable state s in MV , we have for
n = node(s):

� if n
w

! n0 in MV , then n
w

! n0 in M 0; and

� if n
w

! n0 in M 0, then n
w

! n0 in MV .

PROOF. (Sketch) The proof is immediate if n is not a constraint
node. Consider the case where n is a constraint node. Let s be
a reachable state in MV such that n = node(s). To simplify the
presentation, assume s is the first state reached when entering node
n during that visit of n. (Other cases can be treated in a similar
way.) Let us show that every node transition n

w

! n0 in MV can
be matched by a node transition n

w

! n0 in M 0 (the converse is
immediate).

Since n
w

! n0, there exists a sequence of non-overwrite input

events w0 such that s
w

0

) s0, w = w0
jO, node(s) = n, node(s0) =

n0, and no node other than n and n0 are traversed during the transi-
tion from s to s0. For simplicity, assume that s0 denote the first state
reached when entering node n0 when executing w0 from s. (Again,
other cases can be treated in a similar way.)

If n0 is the node Pnext reached when all predicates in n are sat-
isfied, then the set fvaja 2 w0g of data values associated to input
events provided during the execution of w0 from state s to s0 satisfy
all the predicates in n. Thus, there exists an execution of the algo-
rithm of Figure 2 that can select this set of data values in Step 2.c.ii.
In that case, none of the predicates of node n will be marked, the
algorithm will select all the input events in w to be sent to the Sisl
program (Step 2.c.v), and there exists one execution of the algo-
rithm that will send all the observable events in w0 in the same
order as in w (Step 2.c.vii).

Otherwise, n0 is the (non-null) target node target(�i) reached
after a predicate �i of n is violated. This means that the set fvaja 2
w0g of data values associated to input events provided during the
execution of w0 from state s to s0 violates predicate �i. Since
target(�i) is reachable, this also means that no other predicate
�j with j < i and such that �(�j) � �(�i) is violated (other-
wise, target(�j) would be reached instead of target(�i) when
executing w0 from s). There exists an execution of the algorithm of
Figure 2 that can select in Step 2.c.ii the set of data values fvaja 2



1. Initialize the Sisl service SSV .

2. Loop forever:

(a) Let E be the set of non-overwrite events in I that are enabled in the current state s. If E = ;, halt.
(b) If the current node of SSV is NOT a constraint node:

i. Let i =VS toss(jEj � 1); let a be the ith element of E.

ii. Let j =VS toss(jvalues(a)j � 1); let v be the jth element of values(a).
iii. Send a(v) to SSV .

(c) If the current node of SSV is a constraint node:
i. Let �1; : : : �m be the sequence of predicates associated with the constraint node.

ii. Loop through all events a in E (in any order):

A. Let j =VS toss(jvalues(a)j � 1); let va be the jth element of values(a).
iii. Loop through all i from 1 to m (in order):

A. If �i is violated by the data values fvaja 2 Eg AND
80 < j < i : �j 2Marked implies

�(�j) 6� �(�i) ^ (target(�i) 6= target(�j) _ (�(�i) \O) 6= (�(�j) \ O));

then add �i to set Marked.
iv. If jMarkedj > 0:

A. Remove from Marked all �i such that target(�i) = null.
B. If jMarkedj = 0: halt.
C. Let i =VS toss(jMarkedj � 1).

D. Let �i be the ith element of Marked.
E. Let S = �(�i).

v. Else:
A. Let S = E.

vi. For all a 2 (S nO), send a(va) to SSV .
vii. Loop until (S \O) = ;:

A. Let i =VS toss(jS \Oj � 1); let a be the ith element of S \O.
B. Send a(va) to SSV .
C. Remove event a from set S.

Figure 2: Optimized Algorithm

w0g. This set of data values violates predicate �i, which will then
be added to the set Marked in Step 2.c.iii of the algorithm, unless
there exists another violated predicate �j with j < i, previously
added in Marked and such that target(�i) = target(�j) and
(�(�i)\O) = (�(�j)\O); in that case, violating this other pred-
icate �j also leads to node n0 via a sequence w00 of input events
such that w00

jO = w. In any case, a predicate whose violation leads
to n0 via a sequence w000 of events such that w000

jO = w is added
to Marked. If this predicate is selected in Step 2.c.iv of the algo-
rithm, all the events in its signature (which includes all events in w)
are then sent to the Sisl program, and there exists one execution of
the algorithm that will send all the observable events in w000 in the
same order as in w (Step 2.c.vii).

An immediate corollary of the above theorem is that all observable
behaviors of MV are generated by the algorithm of Figure 1, which
can thus be used to check whether LO(MV ) � L(P ).

We can also prove that the optimization for constraint nodes per-
formed by Step 2.c of the algorithm of Figure 2 is optimal in the
following sense.

THEOREM 3.5. LetMV = (I; S; s0; TV ) andM 0 = (I; S; s0; T
0)

be defined as in Theorem 3.4. Let s be any reachable state s in MV

such that n = node(s) and n is a constraint node. For any given
set fvaja 2 Eg of data values associated to input events enabled

when the node is entered, if n
w

! n0 in MV with n 6= n0, then there
exists exactly one transition n

w

! n0 in M 0.

PROOF. (Sketch) By contradiction. Assume that there exists
two transitions n

w

! n0 in M 0. This implies that there exist two
predicates �i and �j of n that are both violated by the set fvaja 2
Eg of data values, whose signatures are not included in each other,
and such that target(�i) = target(�j) = n0. Since both transi-
tions n

w

! n0 are labeled by w, we have (�(�i) \O) = (�(�j) \
O) = faja 2 wg. Therefore, by the condition of Step 2.c.iii.A of
the algorithm of Figure 2, �i and �j cannot be both be added to the
set Marked, and hence the algorithm cannot visit node n0 twice
by executing from s two different sequences of events w0 and w00

such that w0
jO = w00

jO = w.

4. IMPLEMENTATION ISSUES
To automatically and systematically test Sisl programs for vi-

olation of safety properties using the algorithms presented in the
previous section, we have integrated VeriSoft and Sisl.

VeriSoft is a tool for systematically exploring the state spaces of
systems composed of several concurrent processes executing arbi-
trary code written in any language. The state space of a system is
a directed graph that represents the combined behavior of all the



components of the system. Paths in this graph correspond to se-
quences of operations (scenarios) that can be observed during ex-
ecutions of the system. VeriSoft systematically explores the state
space of a system by controlling and observing the execution of
all the components, and by reinitializing their executions. VeriSoft
drives the execution of the whole system by intercepting, suspend-
ing and resuming the execution of specific operations (system calls)
executed by the implementation being tested. Examples of opera-
tions intercepted by VeriSoft are operations on communication ob-
jects (e.g., sending or receiving a message), and the VS toss(n)
operation mentioned earlier, which simulates nondeterminism and
introduces a branching point with n+1 branches in the state space
whenever it is executed. VeriSoft can always guarantee a complete
coverage of the state space up to some depth; in other words, all
possible executions of the system up to that depth are guaranteed
to be covered. Since VeriSoft can typically generate, execute and
evaluate thousands of tests per minute, it can quickly reveal be-
haviors that are virtually impossible to detect using conventional
testing techniques. More details about the state-space exploration
techniques used by VeriSoft are given in [11]. VeriSoft has been
applied successfully for analyzing several software products devel-
oped in Lucent Technologies, such as telephone-switching applica-
tions and implementations of network protocols (e.g., see [12]).

In order to use VeriSoft for controlling the execution of the non-
deterministic algorithms from Section 3, we have built a ”VeriSoft
interface” to Sisl. This interface provides the necessary information
requested by the algorithms of the previous section (such as the cur-
rent set of enabled input events, etc.). These algorithms were im-
plemented in a straightforward manner in Java. Calls to the external
operation VS toss were performed using the Java Native Interface.
VeriSoft can then control the execution of the resulting single pro-
cess formed by the combination of the Sisl application being tested
and its nondeterministic test driver, by intercepting calls to VS toss
and providing the value returned by these calls, and by creating and
destroying the Java Virtual Machine to reinitialize the program.

For testing of safety properties, we used the specification-based
testing package of Triveni [6], a framework for event-driven con-
current programming in Java. This implementation uses a standard
algorithm [20] to translate a given safety formula in propositional
linear-time temporal logic formulas into a finite-state automaton
whose language is the set of finite event sequences that violate the
formula.

5. EXAMPLE AND EXPERIMENTS
Consider Table 1 which describes an interactive banking service

called the Teller.
To motivate the Sisl implementation of this service, we describe

the transfer of funds in more detail. The transfer capability estab-
lishes a number of constraints among the three input events (source
account, target account, and transfer amount) required to make a
transfer:

� the specified source and target accounts both must be valid
accounts for the previously given (login,PIN) pair;

� the dollar amount must be greater than zero and less than or
equal to the balance of the source account;

� it must be possible to transfer money between the source and
target accounts.

These constraints capture the minimum requirements on the in-
put for a transfer transaction to proceed. Perhaps more important
is what these constraints do not specify: for example, they do not

specify an ordering on the three inputs, or what to do if a user has
repeatedly entered incorrect information.

Figure 3 depicts the Sisl service logic for the Teller, specified
as a reactive constraint graph. It uses constraint nodes to describe
the requirements on the transfer capability, deposit capability, and
withdrawal capability. In particular, there is a constraint node for
each transaction type. In order to enter the service, the user must
first provide a startService event (e.g. dialing into the service or
going to the web page); this is not depicted in Figure 3. The user
then must successfully log in with a valid login and pin combi-
nation. Since the login and pin may be provided in either order, a
constraint node expresses this requirement. For expository simplic-
ity, we assume that the login and pin must be identical for the login
to be successful. After the user has successfully logged in, the ser-
vice provides a choice among the different transaction types. If a
startTransfer event is provided, for example, control flows to the
transfer constraint node. The user is then prompted for a source ac-
count, target account and amount, in any order. If the user provides
a source account and an amount which is greater than the balance
of the source account, for example, the constraint amt <= Bal-
ance(src)will be violated. Since no explicit failure target nodes
have been specified, control flow will remain in the current node.
If the user provides consistent information about both accounts and
the amount, the transfer will be performed and control reverts back
to the choice node on transaction types. The self-loop annotated
with “!has Quit” on the choice node indicates that the the subgraph
from this node will be repeatedly executed until the precondition
becomes false (i.e. the user has quit the service).

Some temporal properties of interest for the Teller include:

� The service can accept a source account only if the current
transaction type is either a withdrawal or transfer.

� The service can accept a target account only if the current
transaction type is either a deposit or transfer.

� The service can begin a deposit transaction only if the user
has given a login and pin in the past and has not quit the
service.

Each property described above in English has an equivalent for-
mula in propositional linear-time temporal logic. In our terminol-
ogy, the set of observable events when analyzing each property is
the set of events that occur in the corresponding formula. For ex-
ample, the set of observable events when analying the first property
is fsrc,startWithdrawal, startDeposit, startTransferg; in particular,
the reference to the “last” transaction type necessitates the startDe-
posit event to occur in the corresponding formula.

In our implementation, the two valid accounts are checking and
savings, and transfers are permitted only between accounts of dif-
ferent types; i.e. between checking and savings, and vice-versa.
Money market accounts are not considered to be valid accounts in
this example. Initially, the balance on all accounts is zero, and the
hasQuit variable is set to false.

Our implementation of this portion of the Teller consists of ap-
proximately 200 lines of text in a mark-up language, which is auto-
matically translated by the Sisl toolset into approximately 500 lines
of Java code. It currently has applet, HTML, automatic speech
recognition, and VoiceXML [21] interfaces, each about 300 lines,
all sharing the same service logic.

5.1 Results of Experiments
To evaluate our approach and compare the efficiency of the algo-

rithms presented in Section 3, we performed systematic state-space
explorations on the Teller service.



The Teller is an interactive banking service. The service is login protected; the customer must authenticate themselves by entering an
identifier (login) and PIN (password) to access the functions. As customers may have many money accounts, most functions require the
customer to select the account(s) involved. Once authenticated, the customer may:

Make a deposit.

Make a withdrawal. The service makes sure the customer has enough money in the account, then withdraws the specified amount.

Transfer funds between accounts. The service prompts the customer to select a source and target account, and a transfer amount, and
performs the transfer if (1) the customer has enough money in the source account, and (2) transfers are permitted between the two accounts.

Quit the service.

Table 1: A high-level description of the Teller.

! hasQuit

login==pin

isValid(src)

amt > 0

amt <= Balance(src)

Do the withdrawal
and notify

isValid(tgt)

amt > 0

Do the deposit
and notify

isValid(src)

isValid(tgt)

amt > 0

amt <= Balance(src)

transferPermitted(src,tgt)

Do the transfer
and notify

startWithdrawal

startDeposit

startTransfer

Choice NodeupMainMenu

hasQuit:=false

userQuit

Figure 3: The Reactive Constraint Graph for the Teller

We first selected the following data to be associated to each
event: the name and pin events each were assigned two names from
the same set fJohn, Maryg, the src, tgt, amt events each were as-
signed three types from the set fchecking, savings, moneymarketg,
and the amt event was assigned values from the set f0; 100g.

For the analysis, we first tested the following temporal prop-
erty: the service can accept a target account only if the current
transaction type is a deposit. The set of observable events of this
property is ftgt, startDeposit, startWithdrawal, startTransferg. As
expected, both algorithms reported a violation trace in which the
current transaction type is a transfer and a target account was ac-
cepted.

We then ran a set of experiments in which the set of observable
events was empty, in order to measure the efficiency of the algo-
rithms. This actually tests that there were no uncaught run-time
exceptions in the Sisl (Java) program along all paths up to a cer-
tain depth, as measured in the number of events sent to the service
logic. We ran these tests in succession, each time increasing the
maximum depth of the paths to be explored. Our results are sum-
marized in the Figure 4. The plot on the left depicts the number
of paths explored by the algorithms against the maximum depth of
paths to be explored, while the plot on the right depicts the running
time of the algorithms in seconds against the maximum depth of
paths to be explored.

Some interesting observations can be made about the experimen-
tal data. First, as expected, the running times of both algorithms are
proportional to the number of paths explored. Second, consider the
rate at which the number of paths and running times increase with

respect to the maximum path depth; this rate is significantly less
for the optimized algorithm.

An important observation about the experimental data is that for
maximum depths of 5 and 6, the optimized algorithm explores the
same number of paths and hence has the same running time! This
phenomenon occurs because the optimized algorithm performs the
bulk of its work upon entry into a constraint node. This is espe-
cially true in the case of an empty set of observable events: in this
case, all the work is done by the optimized algorithm upon entry
into the constraint node. For example, in the Teller, paths of depth
4 consist of a startService event followed by a consistent name and
pin event in either order, followed by a transaction type. At depth
5, control enters one of the transaction constraint nodes. The opti-
mized algorithm performs all its work in choosing the event data,
computing the marked predicates, and choosing a marked predicate
upon entry into the node. It then merely sends the corresponding
(hidden) events in a fixed order. Hence the set of paths is explored
is identical at depths 5 and 6, and the running time is the same
(except for the extremely minor activity of sending an additional
event). The similar phenomenon occurs at depths 8, 9, and 10.

The results show that even for small examples such as the Teller,
the optimized algorithm can provide a significant improvement in
efficiency: for example, at depth 11, the simple algorithm takes
over one and a half hours to complete, while the optimized algo-
rithm takes only eleven minutes. Hence, the latter can be used
to efficiently and systematically test much more complicated ser-
vices.
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Figure 4: Experimental Results for Number of Paths Explored (left) and Running Time in Seconds (right) vs. Path Depth

6. CONCLUDING REMARKS

6.1 Sisl Applications
We are currently using Sisl in several projects involving multi-

modal interactive services. For example, Sisl is being used to proto-
type a new generation of call processing services for a Lucent Tech-
nologies switching product. As part of this research/development
collaboration, we are developing some call processing features that
may form the basis of new product offerings. The service logics
for these features are expected to be quite complex, and need to be
tested thoroughly. We are planning to use the techniques and tools
presented in this paper to test these applications.

We are also planning to test two other Sisl applications being de-
veloped at Lucent Technologies: an interactive service based on a
system for visual exploration and analysis of data, and some col-
laborative applications in which users may interact with the system
through a rich collection of devices.

6.2 Related Work
We conclude with a comparison of our approach with other re-

lated work.
Combining an open reactive system with its most general envi-

ronment is related to the idea of “hiding” a set of visible actions of
a process in a process calculus [13, 17].

Closing automatically open reactive (event-driven) programs for
systematic testing (model-checking) purposes has been studied in [5,
8]. For sequential (data-driven) programs, numerous algorithms
have also been proposed to automatically generate a set of input
data that is sufficient to exercise and test all the possible paths in
the control-flow graph of a program, for instance. This previous
work makes extensive use of static analysis techniques (e.g., [7, 18,
2]), which automatically extract information about the dynamic be-
havior of a sequential program by examining its text. In contrast,
the algorithms presented here dynamically detects at run-time the
set of input events that the application under test is currently ready
to accept, and uses that information to drive its execution, without
using any static analysis techniques. This makes our algorithms di-
rectly applicable to any host language (Java, Perl scripts, etc.) and
environment (including external databases, etc.).

The observation exploited by our second algorithm, namely that
interleavings of input events at a constrained node have sometimes
the same effect on the overall behavior of the system, is some-
what similar to the intuition behind partial-order reduction algo-
rithms used in model-checking to prune the state spaces of con-
current systems (e.g., see [10]). A major difference is that these
algorithms exploit a notion of “independence” (commutativity) on
actions executed by interacting concurrent processes. In contrast,

constraint-based programs are purely sequential. The reduction we
obtain here is derived directly from the structure of the program
and takes advantage of a form of symmetry induced by constraint
nodes and their ability to specify sets of input events rather than sin-
gle events. Another example of programming language construct
inducing symmetry that can be exploited during verification (sys-
tematic testing) is the “scalarset” [14].
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