
Exploration of Contextual Constraints for Character Pre-Classification

Tin Kam Ho
Bell Labs, Lucent Technologies

tkh@bell-labs.com

George Nagy
Rensselaer Polytechnic Institute

nagy@ecse.rpi.edu

Abstract

We present strategies and results for identifying the
symbol type (lower-case, upper-case, digit, and punctu-
ation or special symbols) of every character in a text
document by using various kinds of information from
neighboring characters. In the expectation of reason-
able word and character segmentation for shape cluster-
ing, we designed several type recognition methods that
depend on cluster n-grams, shape codes, and within-
word context. On an ASCII test corpus of 925 arti-
cles that simulates perfect image-level processing, these
methods achieve a substantial improvement over default
assignment of all characters to lower case.

1. Introduction

OCR is usually based on “universal” concepts of the
generic shape of printed symbols, combined with lin-
guistic context. In document-specific systems, where
every occurrence of a given symbol has the same shape,
language context can be exploited to label bitmaps
whose shape does not conform to preconception.

The following aspects of printed text have been ex-
ploited to facilitate recognition.

1. Consistency of the shape of individual characters
within a document.

2. Font-independent characteristics, such as ascen-
ders, descenders, relative size and vertical position.

3. Ease of character and word-level segmentation in
many documents.

4. Stability of symbol-n-gram frequencies across doc-
uments.

5. Prevalence of lexicon words, which constitute a
small fraction of all possible combinations of sym-
bols.

6. Partial recognition of the text by an omnifont
recognition engine.

In most previous work - selectively cited below - such
information has been used for character or word recogni-
tion. In contrast, here we propose to use the information
in a preprocessor. Recognition is much easier if the sym-
bol shapes can be pre-classified into character-types, i.e.,
lower-case, upper-case, digit, and punctuation or special
symbols.

OCR based on context alone has already been
demonstrated when the text is segmented at the word and
character level, restricted to a single type-case, and all
digits, special symbols and punctuation are suppressed.
The clusters can then be mapped to the alphabet either
by considering the frequencies of N-grams of cluster-
labels [1] or by enforcing the lexical constraints con-
tained in a small (about 500 words) lexicon [8]. A more
recent, vastly superior method for solving very short (but
perfectly encoded) substitution ciphers is [2].

If there is some (imperfect) shape information al-
ready available, then at least two different “bootstrap-
ping” methods, based on linguistic context in the form
of commonly occurring ”stop” words, have been ex-
plored. Hull conjectured that word shapes are more ro-
bust than character shapes. Therefore if the stop words
can be identified from their shape and occurrence fre-
quency, the shapes of their constituent letters can be
used as prototypes for training a shape-based classifier
for most of the alphabetic classes [6]. Spitz constructed
an OCR system based on a specially-constructed lexi-
con and character shape codes [10]. Ho demonstrated
that the stop words can be reliably extracted using no
other information than the lengths of all word triplets in
the text [4]. In [5] we showed that a great portion of
symbol identities can be recovered using only clustering
information, with no prior knowledge of symbol shape.

All of these methods work best on single-case alpha-
betic text without extraneous symbols. It is therefore
desirable to partition the bitmaps into character types,
so that the most appropriate method for each type can
be applied to discover the character codes of clusters of
that type. At a minimum, the methods cited above will
yield the lower-case alphabetic portion of the text, which
may suffice for some information-retrieval tasks. They
may also be used with existing recognition engines to
resolve inter-type ambiguities (Z-2, l-1, !-I, etc.)



The remaining difficulty is imperfect clustering, due
either to shape confusions due to noise, or to character-
level segmentation errors that give rise to clusters of
fragmented or conjoined characters. However, the word-
based contextual methods are still applicable as long
as none of the clusters contain bitmaps from several
classes. Pure clusters can be guaranteed by setting
the similarity threshold in the clustering algorithm high
enough. This will, of course, result in multiple clusters
for many symbols, and also in non-conforming clusters
of fragmented and joined characters. Fortunately, the
lexicon-based substitution-cipher decoding algorithms
can still assign alphabetic labels to all the clusters which
contain at least one member that appears in a valid lexi-
con word.

We now study the conjecture that the context pro-
vided by various information from an unknown charac-
ter’s neighbors can be used to map it into a character-
type code, given that the document is in English, of a sin-
gle typeface, and that the segmentation into words and
characters is reliable. The notion of a “context window”
has already proved useful for restoring diacritic marks
lost in e-mail or transcription [9][11]. Our method dif-
fers from these only in depending on arbitrary class la-
bels, instead of known symbol identity, in the context
window.

If the shapes of the symbols are indeed not ambigu-
ous within a single document, and the difference be-
tween the bitmaps corresponding to different symbols
is greater than the differences (due to “noise”) between
bitmaps corresponding to the same symbol, then it is
possible to cluster the patterns and to give each clus-
ter, and therefore every symbol, an arbitrary label. We
use an ASCII database to represent this situation. Our
first method uses the n-gram statistics of these labels.
If some crude knowledge is available about the charac-
ter shapes, such as their heights and locations relative
to the baseline, then the joint occurrences of such shape
descriptors within a context window may reveal some-
thing about the symbol types. Our second method ex-
plores the usefulness of coarse character shape codes in
context. Finally, we study the possibility of recovering
the symbol type of characters rejected by an omnifont
OCR, given that the neighboring characters are reliably
recognized for their identities or only pre-classified to
their symbol types.

2. Experimental Setup

Our test database is Reuters-21578 (Distribution 1.0),
a collection of news articles from Reuters. Specifically,
we used the first section of the database (reut2-000.sgm)
that consists of 925 articles, ranging from 14 words to
830 words (only 137 words on average), or 70 to 5219
characters (854 characters on average). The majority of
the articles (686 of 925) have less than 1000 characters,

and there is considerable variation among them from an
OCR perspective (many acronyms and proper nouns, nu-
merical tables, financial data).

All articles were pre-processed by removing the last
two words which are the signature of the agency. The
first 425 articles were used as the training set and the
remaining 500 as the test set. There are no obvious dif-
ferences in the type-statistics between the training and
testing articles, but there are large differences between
individual articles.

In each experiment, our goal is to (pre-)classify each
character found on a text page into one of four types:
Lower case (l), Upper case (u), Digit (d), or Punctua-
tion (p). Punctuation includes special symbols such as
$, /, *, %. Any number of consecutive spaces or line
breaks is considered as a single character of a known
type (Space, b). To simplify the following descriptions,
we use the word symbol to refer to a character identify
class (such as ‘A’, ‘a’), the word type to refer to its type
among the set

�
l, u, d, p, b � , or

�
LOWER, UPPER,

DIGIT, PUNCT, SPACE � , and we call a particular in-
stance of a symbol or type a character. Most of the ar-
ticles are dominated by lower case characters, but there
are exceptions. Table 1 shows variations in the size (to-
tal number of characters and words) and the proportion
of each symbol type across articles in the database. The
percentage of lower case letters shows the accuracy of a
default assignment of all characters to the type LOWER.

3. Selective N-gram and Within-Word Con-
text

We began by studying the n-gram statistics of the
types calculated from each training article. Assign-
ing one distinct label to each ASCII symbol, we calcu-
late the bigram frequencies of all label pairs (including
space) in each document. We observed that:

� PUNCTs are far more likely to be followed by
SPACE than preceded by it,� UPPERs are far more likely to be preceded by
SPACE than followed by it,� DIGITs usually occur at least once next to SPACE,
and� DIGITs are far more likely to be next to SPACE
than to any LOWER.

Based on these observations, we designed two heuris-
tic features that are ratios of relevant bigram frequencies
and attempted an iterative procedure to assign the char-
acter types. This simple procedure appeared to be suc-
cessful in separating most of the UPPERs and PUNCTs
from the rest. However, it failed almost entirely on DIG-
ITs, and they were trapped in the initial (default) as-
signment LOWER. Therefore we concluded that further
discriminating features and rules were necessary. This



Table 1. Size and proportion of characters in each type.
training set test set

Overall Min Max Mean Stddev Overall Min Max Mean Stddev
#Characters 334,353 38 4280 786.7 785.0 298,160 37 4035 596.3 611.1
%LOWER 88.9 28.8 97.4 85.8 10.6 88.7 30.6 97.1 83.7 13.3
%UPPER 3.9 0.7 43.3 4.5 2.9 4.1 1.1 17.4 5.0 2.9
%DIGIT 3.7 0.0 49.0 6.0 8.1 3.8 0.0 51.7 7.5 11.0

%PUNCT 3.5 0.0 25.0 3.7 2.2 3.4 0.0 12.9 3.8 2.2
#Words 66,254 12 828 155.9 152.8 59,303 12 761 118.6 118.2

preliminary study led us to the more elaborate method
described next.

Using the same labels that represent symbols of un-
known identities, we calculated the n-gram frequencies
of all symbols, symbol pairs and triplets observed in the
document. For each symbol, we also observed how often
it appears in the document, its position (averaged over all
members of the corresponding cluster) in the words con-
taining it, and the average length of such words. Based
on these we calculated 11 numerical features to describe
each symbol cluster. Each feature is a single frequency
estimated from a whole document. The definition of
these features, together with their Fisher’s discriminant
ratio for the 6 pairs of classes (measured using the train-
ing set as a single, long document) are shown in Table
2, where N(.) is the count, CharCount and WordCount
are the document length in terms of character and word
counts. An example calculation of the features for the
symbol ‘a’ in a one-sentence document is shown below.

<Example document>
Isaac’s papa saw a large aardvark.

<CharCount for document> = 29
<WordCount for document> = 6
<Features for the symbol ‘a’>
f1: 10/29 = 0.3448 f2: 2/10 = 0.2
f3: 0/10 = 0.0 f4: 2/10 = 0.2
f5: 1/10 = 0.1 f6: 2/10 = 0.2
f7: 0/10 = 0.0 f8: 1/10 = 0.1
f9: (2/7+3/7+1/4+3/4+1/3+0/1+

1/5+0/9+1/9+5/9)/10 = 0.2914
f10: (7+7+4+4+3+1+5+9+9+9)/10 = 5.8
f11: 10/6 = 1.6667

From these measures it appears that the bigram fre-
quency from SPACE to character or Position-in-Word
are useful for separating UPPERs from the rest. There is
at least one good feature to separate any character type
from any other type; all but p,d have at least two dis-
criminating features. Other effects are less obvious, and
there may be joint effects among the features that cannot
be revealed by these single-feature Fisher ratios. There-
fore we proceeded to build a statistical classifier using
these features.

These vectors of 11 elements were standardized
and then used in a nearest neighbor classifier using
Euclidean distance. The classes are the four types�

l,u,d,p � . A key question in this method is how per-
formance is affected by deviations of test article n-gram
statistics from those estimated with large corpora, es-
pecially when the test articles are very short. To study
this effect, we trained two separate classifiers. Classi-
fier 1 used the training set as if it were a very long doc-
ument, i.e., all features were calculated using one sin-
gle set of bigrams and trigrams, and there are 78 refer-
ence (training) vectors corresponding to the 78 observed
symbols. Classifier 2 used the training set as separate
articles, i.e., bigram and trigram frequencies were cal-
culated on a per-article basis, so there were 18604 refer-
ence (training) vectors (many symbols did not occur in
each article). Both classifiers were tested on each test
article as well as the entire test set treated as one long
article.

Table 3 summarizes the results using each classifier
in both testing setups. With the test set as one single,
long article of 298K words, the overall correct rate us-
ing Classifier 1 is 99.96%, (298042 / 298160), Classifier
2 is 93.34% (278305 / 298160). Classifier 1 is thus far
more accurate, and both classifiers are far better than the
default assignment of every cluster to the type LOWER
(accounting for 88.72% of all characters). Classifier 1
makes only 2 errors (assigning ‘X’ to LOWER and ‘(’
to UPPER). Classifier 2 makes more diverse errors and
the most common type is the assignment of UPPERs�

B,C,D,E,H,M,O,W � to LOWER.
Arguably the n-gram statistics are good with such a

long test text, so the more interesting results are those
for individual test articles. As expected, Classifier 1 did
not perform very well with such noisy estimates, but
Classifier 2 is substantially better. The per-article re-
sults are shown in Figure 1. For 449 of the 500 test
articles (89.8%), Classifier 2 is better than the default
assignment. The eleven-feature vector of an unknown
symbol in a test article is often similar to the feature vec-
tor representing that symbol in one of the documents in
the reference set. The improvement is most obvious for
shorter articles, especially those with only a few hun-
dred characters. With Classifier 1, the increase in error
rate over using the entire test set as a single article shows



Table 2. Features used for type discrimination.
Normalization Fisher’s discriminant ratio

�
Description factor d,l d,u p,d p,l p,u u,l

1 Frequency N(x) CharCount 1.11 1.35 0.13 1.20 0.03 1.28
2 Bigram Diagonal N(xx) N(x) 0.26 0.42 0.36 0.05 0.01 0.19
3 Trigram Diagonal N(xxx) N(x) 0.12 0.12 0.12 0.10 0.00 0.11
4 Beginning of Word N(bx) N(x) 0.07 3.39 0.04 0.00 2.19 5.87
5 Beginning of Word N(bxx) N(x) 2.66 1.71 0.03 0.07 0.04 0.29
6 End of Word N(xb) N(x) 0.17 2.34 0.04 0.15 0.55 0.40
7 End of Word N(xxb) N(x) 0.24 0.27 0.14 0.02 0.04 0.01
8 Singlet Word N(bxb) N(x) 0.00 0.11 0.04 0.02 0.03 0.09
9 Position-in-Word(x) N(x),length(w) 0.00 2.56 0.34 0.30 2.17 2.59

10 WordLength(x) N(x) 3.26 2.08 2.16 0.46 0.95 0.36
11 WordCount(x) WordCount 1.11 1.37 0.13 1.21 0.03 1.28

Table 3. Type classification accuracies compared to default assignment.

Classifier Test case #Characters % Correct % LOWER
1 entire test set 298,160 99.96% 88.72%
2 entire test set 298,160 93.34% 88.72%

(unweighted average over the set of articles)
1 individual article 596 85.53% 83.71%
2 individual article 596 90.06% 83.71%

the effect of noisy n-gram statistics in very short articles.
Often the n-gram statistics must be estimated from only
one or two instances of a symbol! However, we can see
that if the classifier (such as Classifier 2) is built using
the same kind of noisy estimates, it is still possible to
have fairly reliable type identification.

4. Type Identification in a Context Window

To what extent is the symbol type determined by its
neighbors? In this section, we examine this question un-
der alternative assumptions.

4.1. Coarse Estimates of Character Height and
Vertical Location

Instead of shape clustering, we now consider the util-
ity of reliable, coarse measures of character height and
vertical location relative to baseline. Using a broad cat-
egorization of all characters into three shape categories�

ascender, x-height, descender � , we encoded each char-
acter with a pair of numbers according to its category.
Ascender characters were encoded with (2,0), x-height
characters (1,0), and descender characters (1,-1). Space
was encoded as (0,0). We refer to these as height codes,
because they are locations of the upper and lower bounds
of the character relative to baseline, measured in units
of x-height. To include context information, we used a
sliding window that is centered at the unknown charac-
ter and includes three neighboring characters from each

side. Recall that all contiguous white spaces were col-
lapsed into one single SPACE character, and line breaks
were ignored. Thus each character was associated with a
feature vector of 14 elements which are the height codes
of itself and three neighbors on each side. For exam-
ple, the letter ‘u’ in the word ‘drought’ has the feature
vector (2,0,1,0,1,0,1,0,1,-1,2,0,2,0). The position of the
character relative to the word containing it is implicitly
described by the context window.

The feature vectors computed from the training set
were used to train a decision forest classifier [3] for the
four symbol types. On the test set, the classifier scored
a correct rate of 89.18%.

4.2. Recovering Symbol Types of OCR Rejects

Next, we considered the case when an OCR engine
has reliably recognized most of the characters on the
page, and rejected the rest. We wanted to see how well
the type of those rejected characters can be identified if
only the types of its six neighbors are known. To inves-
tigate this, we numerically coded the type of each char-
acter, and trained a decision forest classifier on symbol
type using these codes. This classifier scored 94.6% cor-
rect over all characters in the test set.

Then we examined the situation if the identities of a
character’s six neighbors are known. For this we numer-
ically coded the identity of each character, and trained
another decision forest classifier on symbol type using
those identity codes. The classifier scored a correct rate



30

40

50

60

70

80

90

100

30 40 50 60 70 80 90 100

C
la

ss
if

er
 2

 A
cc

ur
ac

y 
(%

 c
or

re
ct

)

Default Accuracy (% correct)

 

(a)

-100
-80
-60
-40
-20

0
20
40
60
80

100

100 1000 10000

D
ef

au
lt 

A
ss

ig
nm

en
t E

rr
or

s 
R

ec
ov

er
ed

 (
%

)

Document length in character count

 

(b)

Figure 1. (a) Classifier 2 accuracy versus
default assignment accuracy. (b) (%) Er-
rors of default assignment of all symbols
to LOWER that are recovered by Classifier
2.

of 97.0% over the test set. Interestingly, most errors are
mistaking UPPERs for LOWERs, or PUNCTs for LOW-
ERS, and the digits were decided very reliably (97.4%
correct).

Notice that here we did not assume any shape clus-
tering. When reliable shape clusters are available, these
methods can be improved with voting within the clus-
ters, or combined with Classifier 2 of the previous sec-
tion.

5. Conclusions

We presented several methods to determine the type
of a character from its context. Assuming reliable seg-
mentation and shape clustering to determine the bene-

fits of contextual information under ideal conditions, we
found that a classifier trained on features of the n-gram
statistics was useful and performed much better then the
default assignment of all characters to lower case. Alter-
native assumptions of knowing approximate character
heights, or neighboring types or identities also yielded
satisfactory results.

From a pattern recognition point of view, we have
the unusual situation of having discriminating features
but immense variation in the frequencies of symbols and
character types among the documents. It is possible that
this situation calls for different types of classifiers than
the ones we used.

These methods have good potential for improving
recognition accuracy, especially for the cryto-analysis
based methods, which may gain popularity with the ad-
vent of symbol-matching techniques for document com-
pression. They can also be used with existing recogni-
tion engines to resolve conflicts and recover rejects.

References

[1] R. Casey, G. Nagy, Autonomous reading machine, IEEE
Trans. Comput., C-17, 5, May 1968, 492-503.

[2] G. Hart, To decode short cryptograms, Commun. ACM,
37, 9, Sept 1994, 102-108.

[3] T.K. Ho, The Random Subspace Method for Construct-
ing Decision Forests, IEEE Trans. PAMI, 20, 8, Aug
1998, 832-844.

[4] T.K. Ho, Stop Word Location and Identification for
Adaptive Text Recognition, Int’l. J. of Document Analy-
sis and Recognition, 3, 1, Aug 2000, 16-26.

[5] T.K. Ho, G. Nagy, OCR with No Shape Training, Proc.
of 15th ICPR, Barcelona, Sept 3-8, 2000, 27-30.

[6] S. Khoubyari, J.J. Hull, Font and Function Word Identi-
fication in Document Recognition, Computer Vision and
Image Understanding, 63, 1, Jan 1996, 66-74.

[7] D.D. Lewis, Reuters-21578 text categorization test col-
lection, Distribution 1.0, Sept 26, 1997.

[8] G. Nagy, S. Seth, K. Einspahr, Decoding Substitution
Ciphers by Means of Word Matching, IEEE Trans.
PAMI, 9, 5, Sept 1987, 710-715,

[9] G. Nagy, N. Nagy, M. Soubourin, Signes diacritiques:
perdus et retrouves, Actes du 1er Colloque International
Francophone sur l’Ecrit et le Document, Quebec, 1998,
pp. 404-411.

[10] A.L. Spitz, An OCR Based on Character Shape Codes
and Lexical Information, Proc. of 3rd ICDAR, Montreal,
August 14-18, 1995, 723-728.

[11] D. Yarowsky, A comparison of corpus-based techniques
for restoring accents in Spanish and French text, Proc.
2nd Workshop on Very Large Corpora, Kyoto, 1994,
319-324.


