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Bell Labs — 1986'

e Mid 1985, John gets a phone call
from a pushy South African, say-
ing he would rather work at Bell

Labs than UBC.

e Lager beaver Hastie joins dept in
1986 - within two weeks visited
by Yehuda and Vijay, and told to

slow down.

e Very exciting times for a young
researcher, with JMC an ideal

mentor and role model.

' TREVOR
HASTIE

Bell Laboratories
e R
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The White Book'

e Just finished the GAM book — ex-

hausted — but could not resist be- |
ing a co-editor of this exciting project STATISTICAL
MODELS IN
with JMC.
e That was before I'd heard of “code S
review”’!

e Just when Daryl and I thought we’d
nailed the formula parser, JMC pro-
duced his “theorem” (Sec 2.4.1) and

cleaned up. John M. Chambers

Trevor J. Hastie

e [ am very proud of this collaboration

and project.
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‘Rest of the Talk: Regularization Paths.

Some of the things I have been doing since leaving the fold.

e Least Angle Regression and the Lasso (with Brad Efron, Tain
Johnstone and Rob Tibshirani).

e The SVM path (with Saharon Rosset, Ji Zhu and Rob
Tibshirani).
—
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Lasso and Boosting'

Lasso Forward Stagewise
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Boosting Linear Regression'

Here is a version of least squares boosting for multiple linear

regression: (assume predictors are standardized)

(Incremental) Forward Stagewise

1. Start with r =y, 31, B2,... 8, = 0.

2. Find the predictor x; most correlated with r
3. Update §; < (; + d;, where §; = € - sign(r, x;)

4. Set r <+ r — 9; - x; and repeat steps 2 and 3 many times

d; = (r,x;) gives usual forward stagewise; different from forward

stepwise

Analogous to regression boosting, with trees=predictors
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Lasso (Tibshirani, 1995)'

e Assume y =0, z; =0, Var(x;) =1 for all j.

e Minimize Zz(y% — Zj sz‘jﬁj)Q subject to Zj |ﬁj| <s

e With orthogonal predictors, solutions are soft thresholded

version of least squares coefficients:

sign(5;)(15j] — 7)+
(v is a function of s)

e For small values of the bound s, Lasso does variable selection.

See pictures
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Least Angle Regression — LARI

Like a “more democratic” version of forward stepwise regression.

1. Start with r = v, Bl, Bg, .. .Bp = 0. Assume z; standardized.
2. Find predictor x; most correlated with 7.

3. Increase (3; in the direction of sign(corr(r,z;)) until some
other competitor x; has as much correlation with current

residual as does T

4. Move (Bj, Bk) in the joint least squares direction for (z;, xx)
until some other competitor x, has as much correlation with

the current residual

5. Continue in this way until all predictors have been entered.

Stop when corr(r,z;) =0V j, i.e. OLS solution.
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o 11 X1 ¢ V1

The LAR direction us at step 2 makes an equal angle with x; and

X9.

10
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LAR vs Lasso'

e A modification of LAR fits the entire Lasso path.

e Start with LAR. If a coefficient crosses zero, stop. Drop that
predictor, recompute the best direction and continue. This

gives the Lasso path

e Proof (lengthy): use Karush-Kuhn-Tucker theory of convex

optimization. Informally:

2
5y X8I+ OMCUEL

=

(xj,1) = gsign(ﬁj) if 3; # 0 (active)

12
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| Benefits '

Possible explanation of the benefit of “slow learning” in

boosting: it is approximately fitting via an L; (lasso) penalty

new algorithm computes entire Lasso path in same order of
computation as one full least squares fit. Splus/R Software on

my website or CRAN.

Degrees of freedom formula for LAR:

After k steps, degrees of freedom of fit = k (with some
regularity conditions)

For Lasso, the procedure often takes > p steps, since predictors

can drop out. Corresponding formula (conjecture):

Degrees of freedom for last model in sequence with k predictors

is equal to k.
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‘Maximal (Soft) Margin Classiﬁer'

& =&/118]]
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min| 9]

subject to y;(zl B4+ 80) > 1—&, & >0, >, & < B (Budget)
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SVM via Loss + Penalty'

g | —— Binomial Log-likelihood
o ——  Support Vector Wlth f(ﬂ?) — xTB e 50 and
i} y; € {—1, 1}, consider

2, N

- min > [1-y: f (:) ++—||5||2
S z:l
3 This hinge loss criterion
o is equivalent to the SVM,

B » B 0 . , ; with A ~ B.
yf(z) (margin)
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Quadratic Programming I
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along with the KKT conditions

a;(1 —yif(z;) = &) = 0
vi&i = 0
l—aj=—v = 0

16
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‘Implications of the KKT conditions'

Observations are in one of three states:

L =Ai:y;f(x;) <1, o =1}, L for Left of the elbow
E={i:yif(x;) =1, 0 < ; <1}, & for Elbow
R ={i:y;f(z;) >1, a; =0}, R for Right of the elbow

- Start with A large, and the margin very wide. All a; = 1. As

A | 0, the margin gets narrower.

- For the narrowing margin to pass through a point, it’s « has to
change from 1 to 0 (or from 0 to 1). While this is happening,
the point has to linger on the margin. Hence the point moves
from L via £ to R.

17
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The Path '

The «; are piecewise-linear in A (or 1/C) [MOVIES).

The points in £ characterize these paths, since points must stay
on the margin (y; f(xz;) = 1) while their a; lie in (0, 1).

Points can revisit the margin more than once.
The coefficients By and (§ are piecewise-linear in C' = 1/\.

The margins can stay wedged while their a; change, if they are
“loaded to capacity”.

For non-separable data, the loss ) . &; achieves a minimum

value, with a positive margin.
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