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Where and When?
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Bell Labs — 1986

• Mid 1985, John gets a phone call
from a pushy South African, say-
ing he would rather work at Bell
Labs than UBC.

• Eager beaver Hastie joins dept in
1986 - within two weeks visited
by Yehuda and Vijay, and told to
slow down.

• Very exciting times for a young
researcher, with JMC an ideal
mentor and role model.
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The White Book

• Just finished the GAM book — ex-
hausted — but could not resist be-
ing a co-editor of this exciting project
with JMC.

• That was before I’d heard of “code
review”!

• Just when Daryl and I thought we’d
nailed the formula parser, JMC pro-
duced his “theorem” (Sec 2.4.1) and
cleaned up.

• I am very proud of this collaboration
and project.
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Rest of the Talk: Regularization Paths

Some of the things I have been doing since leaving the fold.

• Least Angle Regression and the Lasso (with Brad Efron, Iain
Johnstone and Rob Tibshirani).

• The SVM path (with Saharon Rosset, Ji Zhu and Rob
Tibshirani).
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Lasso and Boosting
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Boosting Linear Regression

Here is a version of least squares boosting for multiple linear
regression: (assume predictors are standardized)

(Incremental) Forward Stagewise

1. Start with r = y, β1, β2, . . . βp = 0.

2. Find the predictor xj most correlated with r

3. Update βj ← βj + δj , where δj = ε · sign〈r, xj〉
4. Set r ← r − δj · xj and repeat steps 2 and 3 many times

δj = 〈r, xj〉 gives usual forward stagewise; different from forward
stepwise

Analogous to regression boosting, with trees=predictors
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Lasso (Tibshirani, 1995)

• Assume ȳ = 0, x̄j = 0, Var(xj) = 1 for all j.

• Minimize
∑

i(yi −
∑

j xijβj)2 subject to
∑

j |βj | ≤ s

• With orthogonal predictors, solutions are soft thresholded
version of least squares coefficients:

sign(β̂j)(|β̂j | − γ)+

(γ is a function of s)

• For small values of the bound s, Lasso does variable selection.
See pictures
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Least Angle Regression — LAR

Like a “more democratic” version of forward stepwise regression.

1. Start with r = y, β̂1, β̂2, . . . β̂p = 0. Assume xj standardized.

2. Find predictor xj most correlated with r.

3. Increase βj in the direction of sign(corr(r, xj)) until some
other competitor xk has as much correlation with current
residual as does xj .

4. Move (β̂j , β̂k) in the joint least squares direction for (xj , xk)
until some other competitor x� has as much correlation with
the current residual

5. Continue in this way until all predictors have been entered.
Stop when corr(r, xj) = 0 ∀ j, i.e. OLS solution.



April 2005 Trevor Hastie, Stanford Statistics 10

µ̂0 µ̂1

x2 x2

x1

u2

ȳ1
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The LAR direction u2 at step 2 makes an equal angle with x1 and
x2.



April 2005 Trevor Hastie, Stanford Statistics 11

*

*

*

**
* *

*
*

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

|beta|/max|beta|

S
ta

nd
ar

di
ze

d 
C

oe
ffi

ci
en

ts

* *

*

**

* *

* *

* * * ** *
*

* *

* * * **

*
*

* *

* * *

**

* *

* *

* * * ** * *

*
*

* * * ** * * *
*

* * * **

*
*

*
*

LAR

6
3

7
4

8
5

1

0 1 2 3 5 6 7 8



April 2005 Trevor Hastie, Stanford Statistics 12

LAR vs Lasso

• A modification of LAR fits the entire Lasso path.

• Start with LAR. If a coefficient crosses zero, stop. Drop that
predictor, recompute the best direction and continue. This
gives the Lasso path

• Proof (lengthy): use Karush-Kuhn-Tucker theory of convex
optimization. Informally:

∂

∂βj

{
||y − Xβ||2 + λ

∑

j

|βj | } = 0

⇔

〈xj , r〉 =
λ

2
sign(β̂j) if β̂j �= 0 (active)
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Benefits

• Possible explanation of the benefit of “slow learning” in
boosting: it is approximately fitting via an L1 (lasso) penalty

• new algorithm computes entire Lasso path in same order of
computation as one full least squares fit. Splus/R Software on
my website or CRAN.

• Degrees of freedom formula for LAR:

After k steps, degrees of freedom of fit = k (with some
regularity conditions)

• For Lasso, the procedure often takes > p steps, since predictors
can drop out. Corresponding formula (conjecture):

Degrees of freedom for last model in sequence with k predictors
is equal to k.
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Maximal (Soft) Margin Classifier
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||β||
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||β||

xT β + β0 = 0

ξ∗i = ξi/||β||

min
β,β0

||β||2

subject to yi(xT
i β + β0) ≥ 1 − ξi, ξi ≥ 0,

∑
i ξi ≤ B (Budget)
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SVM via Loss + Penalty
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With f(x) = xT β + β0 and
yi ∈ {−1, 1}, consider

min
β0, β

N∑

i=1

[1−yif(xi)]++
λ

2
‖β‖2

This hinge loss criterion
is equivalent to the SVM,
with λ ∼ B.
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Quadratic Programming

LP :
N∑

i=1

ξi +
λ

2
βT β +

N∑

i=1

αi(1 − yif(xi) − ξi) −
N∑

i=1

γiξi

∂

∂β
: β =

1
λ

N∑

i=1

αiyixi

∂

∂β0
:

N∑

i=1

yiαi = 0,

along with the KKT conditions

αi(1 − yif(xi) − ξi) = 0

γiξi = 0

1 − αi − γi = 0
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Implications of the KKT conditions

Observations are in one of three states:

L = {i : yif(xi) < 1, αi = 1}, L for Left of the elbow

E = {i : yif(xi) = 1, 0 ≤ αi ≤ 1}, E for Elbow

R = {i : yif(xi) > 1, αi = 0}, R for Right of the elbow

- Start with λ large, and the margin very wide. All αi = 1. As
λ ↓ 0, the margin gets narrower.

- For the narrowing margin to pass through a point, it’s α has to
change from 1 to 0 (or from 0 to 1). While this is happening,
the point has to linger on the margin. Hence the point moves
from L via E to R.
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The Path

• The αi are piecewise-linear in λ (or 1/C) [MOVIES].

• The points in E characterize these paths, since points must stay
on the margin (yif(xi) = 1) while their αi lie in (0, 1).

• Points can revisit the margin more than once.

• The coefficients β0 and β are piecewise-linear in C = 1/λ.

• The margins can stay wedged while their αi change, if they are
“loaded to capacity”.

• For non-separable data, the loss
∑

i ξi achieves a minimum
value, with a positive margin.


