
Ω̂- A Component-based Statistical Computing Environment

John Chambers, Duncan Temple Lang
2C-259 Bell Labs, 600 Mountain Ave., Murray Hill, NJ 07980, U.S.A
jmc@research.bell-labs.com , * duncan@research.bell-labs.com

Nous d́ecrivons des aspects importants des systêmesà venir pour la statistique, dont les réalisations
prévu en cadre du projet collaboratifΩ̂.

1 A Component-based Environment

Computing in general is undergoing tremendous change due to, amongst other things, the Internet
and advances in hardware. Statistical computing is subject to these and additional changes - increased
volume of data, use of computationally intensive methods, dynamic reporting, etc. Languages such
asS have made significant strides in modernizing statistical computing. Influenced by developments
from computer science, these environments provided a vehicle tailored for statistical computing into
which new developments could be easily integrated. It is probable that the next generation of concepts
will be more difficult to add to these environments, designed for a different style of computing. As
a result of this and the importance of computing within the statistical community, we feel that it is
prudent to start developing the next-generation environments now. In the remainder of this section, we
look at what features are needed and desirable in a good, modern statistical computing environment
that will help us in the next decade. In the second section, we discuss a project to implement such an
environment. The list of features of a modern/future environment is neither exhaustive, nor arranged
in any particular order.

• The core of the environment should be usable from multiple front-ends, including traditional
text-based command line and graphical user interfaces (GUIs). Also, it and its scripting lan-
guages should provide both interactive access as well as being embedable at different levels
within other applications.

• The environment should supportdevelopmentof GUIs for use by different audience/user types
as well as having its own GUIs.

• Extensibility at both the language/interpreter level as well as at the native core level is vital for
a flexible, adaptable and long-lived system.

• Internet capabilities including the ability to read data to and from network applications is just
one aspect of network awareness. We must also be able to run code easily across the network
in a portable manner.

• Databases access, rather than static snapshots of data provided in ASCII files, are becoming
more important and allow us to move to a dynamic analysis process.

• Of course, we require facilities for describing models and procedures for fitting them. The
environment should support utilizing different implementations of these procedures to handle
different volumes of data, different levels of precision (i.e. sampling), etc.

http://cm.bell-labs.com/stat/jmc
http://cm.bell-labs.com/stat/duncan

• Interactive graphics and connections with other graphical controls should be easily programmed.
Additionally, we would like to be able to embed “live” plots (and computations) within docu-
ments and worksheets along with other computations. In this way, we achieve a general analysis
sheet, an extension of the spreadsheet mechanism.

• The environment should provide facilities for distributing tasks across multiple processors with-
in a process, and across distributed machines within a cluster. It should encourage research on
parallel algorithms.

• Access to existing code written inFortran andC and the current family of statistical languages
is needed to avoid rewriting existing and well tested code. Providing the dynamic CORBA
facilities mentioned below in the interpreted languages will permit the latter. Implementing the
new environment using languages that provide an interface to compiled code will handle access
to Fortran andC.

• The environment should be able to utilize services of other processes (servers) in other lan-
guages, potentially on other machines. One motivation for this is to be able to avail of new
developments in other disciplines, including newly released software. This is the CORBA
model and easy access from within the environment is necessary. Additionally, we want to be
able to integrate new software directly into the environment without tedious wrappers.

• Performance will always be an important aspect of any environment for doing statistical analy-
sis. High-level languages such asS andMatlab have made different trade-offs between ease of
use and efficiency. An ideal environment will support the broad spectrum from ease of use to
efficiency within the same framework rather than forcing the user to change between environ-
ments for prototyping and production code.

Most of these features can be implemented using acomponent-based architecture. This in-
volves coupling data and external access via methods or services into a single unit called a compo-
nent. Rather than building a new monolithic system which statisticians enter, the goal is to provide a
collection of small tools which the statistician easily links together to fit her needs. The result may
appear the same but the foundation is very different and significantly more flexible. This architecture
supports distributed computing and parallel processing by communication between components. It
also allows rapid substitution of components with the same methods to utilize different implementa-
tions. Encapsulating the data from the user interface via methods allows the different interfaces styles
to be overlaid on the environment (dynamically) and for the components to be embedded.

Experience with CORBA and other systems illustrates that components should be described in
terms of their services and not their implementation. This allows them to be easily substituted for
different behavioral characteristics and to be language- and hardware- neutral. The same experience
also shows that there are new issues to be dealt with in this architecture. These include security, repro-
ducibility of computations, component/service discovery, configuration management, performance.

2 Realizing the Component-Based Environment

Given the list features above and related issues, we need to determine how to implement such an
environment. Of course, everyone has their own favorite language. However, a natural candidate is
JavaTM . It provides facilities for almost all of the desired features. It is object-oriented supporting

extensibility of the base implementation of the environment’s components. It also providesreflectance
allowing interpreted access to native objects and their methods. Thread, GUI and network support are
provided in the language and its core libraries. It is portable and also has unparalleled momentum in
the computer world, with new libraries and tools being distributed at a phenomenal rate.

Portability comes at the expense of speed inJavaTM . Recent developments have improved
performance, but there is still a real decision to be made regarding the trade-off between flexibility
and performance. It is likely that one will soon be able to compileJavaTM source directly to machine
code and obtain performance similar toCwhich is encouraging.

2.1 Enhancing Existing Systems

Before we start building a new system, we must allow the extensive functionality in the existing sys-
tems to be accessed as components. One of the projects we recently undertook in Bell Labs was to
develop a framework for dynamically embedding CORBA facilities within an interpreted language
such aŝΩ, S /RandXlisp-Stat. This allows methods to invoked in CORBA objects from within these
languages with almost no additional work from the caller. Similarly, local objects within these lan-
guages can be used as inputs to these calls and as regular CORBA server objects. The implementation
of their operations involves functions in these languages themselves, presumably already developed
for local use. This is described in more detail atwww.omegahat.org/CORBA/

2.2 TheΩ̂ Environment

TheΩ̂ project is an effort to create the environment described in the first section of this paper. It cur-
rently includes15 people involved in developing the primitive components for the language, graphics
and modeling. These include the owners of3 statistical systems -S, RandXlisp-Stat. Most of the
others are all actively involved in the development ofR. Other individuals are contributing to the de-
velopment of specific modules rather than the overall environment. It is an open source project in an
effort to collect the small statistical computing community in a united effort.

Now that we have discussed the philosophy of the environment and its design, we will briefly
mention some of the specific features it offers and describe the current status. More comprehen-
sive and up-to-date information is available atwww.omegahat.organd at the presentation at the ISI
meeting (and Joint Statistical Meetings in Baltimore).

2.3 The Interpreter and Language

There is currently one interactive interpreted language for theΩ̂ system. The user typically invokes
commands from either a text-oriented command line or a integrated GUI which provides an com-
mand field, output displayed in HTML, system information (search path, available classes, debugger,
etc.) viewer. The basic interpreter(s) that evaluates these commands can also be embedded in other
JavaTM applications. There can be multiple evaluators in existence at any time, potentially running
concurrently in differentJavaTM threads.

The language is a hybrid of theJavaTM andS /R languages. It is object-based in that every vari-
able is aJavaTM object and methods are invoked on that object. It supports functions and extensible
operator overloading (i.e. the subscripting operators[& [[, and theget withinoperator,.). Generic
(overloaded) functions are allowed and interpreted classes provide an alternative to compilingJavaTM

source. One of the most important distinctions fromS /R is thatΩ̂ uses references to objects in the

http://www.omegahat.org/CORBA/CORBA.html
http://www.omegahat.org

JavaTM-style. Thus, when one passes an object to a function which changes its contents, the changes
are reflected in the original object.

One of the more remarkable features of theΩ̂ language is thatall JavaTM classes and objects
are available to the interactive user. No wrapper functions need to be created to provide an interface
between the native language in which the interpreter is written and the interpreted language (compare
with the .C() in S). Specifically, one can create an instance of aJavaTM class and bind it to an
Ω̂ variable and manipulate it directly. The methods of an object can be invoked interactively with
appropriate arguments. This mechanism supports adding classes to theJavaTM classpath dynamically,
be they located in directories, jar/zip files or even on remote machines accessible via the Internet. New
classes can be dynamically generated and loaded within a runningΩ̂ session. This allows functions
to be used to implementJavaTM interfaces.

The evaluation model is very similar toR, using lexical scoping. A top-level expression is
evaluated by resolving the methods and variables from the databases in the search path attached to
the interpreter. Sub-expressions are evaluated in their own frames and free variables are located by
searching in the parent frame, and so on. Used in this way, the language appears more friendly than
JavaTM as variables do not have to be declared and can be used to store values with very different
types.

Optional type declarations are supported. The user can choose to provide a class name for
a variable, function parameter or return value, and have the system detect violations of this type,
aiding in debugging. This helps programming large collections of functions and packages. Also, this
information can be used by the system to compile interpreted expressions and functions intoJavaTM

byte code. This allows the user to prototype in a dynamic interpreted language, but later benefit from
the speed of compiled code without recoding in a different language. The optional type-checking
supports different levels of users and different programming tasks.

The ability to access allJavaTM classes means users can chose their own primitives which
may support vector operations, etc. Similarly, all theJavaTM utilities such as JDBC and XML are
immediately available.

The dynamic CORBA facilities are fully integrated, allowing remote calls and variables to ap-
pear local. A task management facility is currently being developed that exploits native threads and
clustered machines.

2.4 Graphics & Modeling

Work has just started on both the graphics and modeling capabilities. In the former, we are construct-
ing primitive elements from which a multitude of different plot types can be constructed. One focus
is on separating the layout of multiple plots from their content. We are investigating ways of doing
this viaJavaTM layout managers and constraint systems. This allows arbitrary plots to be grouped in
interesting ways, of which trellis is just one example.

In addition to static plots, the graphics elements support different interactive properties. Simi-
larly, they can be embedded in GUIs (even used as dynamic icons in buttons and HTML documents).
As with all of Ω̂, the goal is to produce a flexible set of components on which others can be easily
built and modified to explore novel approaches to visualizing data.

On the statistical modeling front, we are starting to extend the Wilkinson & Roger’s formula
language used inS. The aim is to incorporate more of the modern model specifications including
(Bayesian) hierarchical models, graph models, mixed effects model, neural networks. In other words,
we want to include multi-level specifications rather than simple structural components of a model.

	A Component-based Environment
	Realizing the Component-Based Environment
	Enhancing Existing Systems
	The mathaccent "0362
elax Omega Environment
	The Interpreter and Language
	Graphics & Modeling

