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Abstract choice for speech recognition tasks. However, there are
several problems which arise in applying SVCs to speech
A novel method for classifying frames of speech waveata.
forms to a given set of phoneme classes is proposed. Th&he most glaring difficulty is that SVCs do not explic-
method involves combining an approximation to multitly take the temporal structure of the data into account.
ple smoothing spline logistic regression (known as thge resolve this by combining SVCs with hidden Markov
“Support Vector Machine” in the machine learning litergmodels (HMMs). In this scheme, SVCs replace the Gaus-
ture) with hidden Markov models (HMMs). The methodjan mixture models traditionally used in speech recogni-
is compared with the standard technique in the speqgih.
recognition literature, that of HMMs with Gaussian mix- ynfortunately, this replacement introduces a second
ture mOde|S. BOth mOde|S were trained and teSted Usmtﬂem_ The scores produced by SVCs are distances in a
data drawn from the publicly available TIMIT databasgnetric space which has no simple interpretation, whereas
Our results show that the two types of models are compMs call for conditional class probabilities. We avoid
petitive for this data, but have very different structuregis difficulty by interpreting multiple SV classification
Such differences can be used to improve recognition raf@san approximation to multiple logistic smoothing spline

by combining the two types of classifiers. regression. This allows us to obtain approximate condi-
Key Words: Support Vector, hidden Markov modelgional class probabilities from the SV results, which natu-
phoneme recognition, classification. rally fit into the HMM framework.

We present results of experiments that compare our
method with the standard technique in the speech recogni-
tion literature, that of HMMs with Gaussian mixture mod-

. els. We train and test both models using data drawn from
The lowest level of most speech recognition systems i

volves classifying short (e.g. 10 ms) windows,fames e publicly available TIMIT database.
of speech waveforms to a given set of phoneme classes.
The sequence of frames is then segmented and classified
as a sequence of phonemes, which are further segmefited Support Vector Polychotomous
and classified as a sequence of words. In this paper, we Classifiers
present a novel method for accomplishing the subtask of
classifying a segment of frames, whose boundaries #methis section we describe the SVCs underlying our
specified in advance, to a set of phonemes. phoneme classification method. SVCs were introduced in
Our method combines Support Vector classifiethe machine learning literature, where they are viewed as
(SVCs) with hidden Markov models (HMMs). SVCs hava generalization of maximum-margin classifiers with their
recently attracted a great deal of attention in the machitendant theoretical justification in terms of VC-bounds
learning literature due to their strong performance on clasid structural risk minimization [7]. SVCs can also, how-
sification and regression problems [7, 5]. A characterisver, be viewed as an approximation to smoothing spline
tic feature of many such problems is that the input ddtagistic regression [9]. We will take the latter perspective,
consist of very high-dimensional vectors. Speech dateabiscause it allows us to interpret the scores from the SVCs
also high-dimensional, especially if context dependenceis conditional class probabilities, which is crucial for in-
taken into account, which appears to make SVCs a natuegrating them into HMMs. Accordingly, we will derive

1 Introduction



the optimization problem by which we train our classifiers A standard argument [8] shows that the solution to the

purely in the language of smoothing splines. optimization problem (4) can always be written in the
We denote our training data set as form
{oa)}, ye{l.K} acR” hy(@) =3 eyin(eie) (5)

which we assume is drawn iid from some densgity, y). With some constants, ;. By inserting (5) back into (4),
The Bayes classification rule tells us to classify a ndi¥e minimization over an infinite-dimensional space of
testing vector’ to the class given byrg max, p(y|z'). functions is reduced to the finite-dimensional convex op-
We must estimate, from the training data, figunctions timization problem of maximizing

p(y|z), which satisfy the constraint
; @Zlog(1+e vi )@Z)\cy,ncy (6)
Y plylz) = 1. ) =
y=1

wherek;; = k(z;,x;) and(-,-) denotes the/, inner
product.
The problem (6) is hopelessly large to solve computa-
tionally. Two reasons are that the various odds ratips
) are coupled to one another through (3), and that each one
w. (2) depends orf free parameters. For speech ddtaan eas-
ily be on the order ofl0®. Clearly some simplifications
The log-likelihood of our training data is then given by are required.
We will make two approximations which will render
¢ ¢ (4) equivalent td< independent Support Vector classifiers
I = Z log p(yilz:) = @)Z log (1 + e i (”“’")) - (SVCs), which are computationally much more tractable
i= i=1 to train. The first is to break the coupling between the var-

One may obtain a smoothing spline estimate of these d{é)nu-s odds ratios by dropping the constraint (3), and treat-

sities by adding a penalty term to the likelihood and max“?ehsi'(u g;fgg;aé?]?jé?‘?mg 2|Sa;r;e00ttk|‘r$1:z(§[s)sr1ra:gobsie;zls
imizing the result. One way to do this is to write one o P P P

For each conditional class probabiliyy|x), we intro-
duce the log-odds ratio

hy(z) = log

the odds ratios, salk, in terms of the others, which WemaX|m|ze
may do implicitly with a3 log (1 " e—hY(-Ti)) Sy s
iy; =Y
K-
p(Klz) =1« Z (y|z). (3) Inordertoapproximate the effect of the constraint, to each
y=1 two-class objective function we add the term
We then determing, ...hx—1 by maximizing PN Z log (1 + ehY(Ii))
iy Y
R Z 1Pyl (4) which has the effect of penalizing misclassifications of

training data points not in the clas

_ As above, each solution can be represented as
where thel is a free parameter that controls the strength

of the penalties imposed by the norfng,;. The norms, in

turn, are reproducing kernel Hilbert space (RKHS) norms hy () = Z cy,ik(wi, )
defined by
which yields theK independent optimization problems:
17 = [ dodys @) ) f @) maximize
¢ L
wherer is a positive definite kernel, and=! is inter- <Y _log [ 14exp | &3y Y ey iij | | €X(ey,key)
preted as an operator inverse. In the smoothing spline lit+=! J=1
erature, the penalties are often chosen as Sobolev space ()

norms which penalize derivatives. Below, we will use difvhere we have defined
ferent kernels drawn from the SVC'’s origins in the ma- P +1 ify; =Y
chine learning literature. i el ify AY.



The problem (7) consists oK independent convexThe optimization problem is now a quadratic program-
programming problems with smooth objective functionming problem with simple box constraints.
This is considerably easier than (6) but is still computa- We gain some insight into the nature of the solutions to
tionally infeasible for more than a moderate number ¢£3) by noting the Kuhn-Tucker conditions
training data points. Therefor, following [9], we make a
further approximation which greatly reduces the size of ;>0 & dyhy(z;) <1
each problem and brings us to the definition of SVCs. a; =0 & dyihy(z) >1

The key observation is that o ) ] )
We see that those training data points with associated La-

log(1+e") ~ (1), (8) grange multipliera; = 0 are correctly classified. Con-

h _if herwi q versely, those points for which; > 0 are incorrectly
where(z), =z if « > 0, 0 otherwise. In order to agree,  gified, or close to being incorrectly classified. The so-
with the original definition of the SV approach [7], w

| h ¢ : h optimizat Sution to the SV optimization problem is based solely on
replace the RHS of (8) witfl + 7).... Each optimization misclassified points and points close to the classification
problem then becomes

boundary. Points that are correctly classified fall in the
‘ ‘ insensitive zone inf-) ;- in (9), which explains the reason
minimize 1e6y: S ey ki |+ Mey,key). for the insensitive zone.

Z ' Z s The points with nonzere; are called the support vec-
(9) tors (SVs). The computational advantage in the SV ap-

We next recast (9) into the SV form [7], which is Cornpuproximation to smoothing spline logistic regrgssion is
tationally very attractive. We introduce slack variabfgs that, for many problems, the SVs may comprise only a

i—1 i1
2 Vi +

and write the problem as smaI.I fractiqn of the t_raining data points. The expansion
(12) in SVs is thus quite sparse, and consequently easy to
¢ find computationally.
minimize Y " & + Ay, R ey). (10)  Once we have trained th& odds ratioshy (z), we
i=1 may recover the estimated conditional class probabilities
subject to the inequality constraints from (2). Because we approximated the constraint (1) the

p(Y|z) are not guaranteed to sum to unity, which we may

¢ rectify by renormalizing them.

1 S0y, Z ey k(g ) <& Below we will describe the use of HMMs in phoneme
j=1 recognition. The Viterbi algorithm for finding the optimal
& > 0 state sequence in an HMM calls for estimateg @f|y)
The Lagrangian for (10) is or, equivale_ntlyp(x|y)/p(x). We may recover these from
thep(y|z) via
¢ plrly) _ plyl)
L=> &+ ey, kcy) (11) plz) — py)

i=1

¢ ¢ ‘
+D i [ 166y, Y ovjki; &6 | &> i,
i=1 j=1 i=1

where we may estimate the class probabilitieg) as the
frequencies of the classes in the training data.

3 Hidden Markov Models for

which must be minimized w.r.t;, &; and maximized w.r.t. .
a;, ;. Performing the (unconstrained) minimizations, we Phoneme Recognltlon
find that the optimal solution to (9) is
A complete speech recognition system produces a se-

: guence of transcribed words given a raw speech wave-
hy (z) = Z ;i Oy, (23, 7) (12) form. In this paper, we will concentrate on the particu-
=t lar sub-task of phoneme recognition, namely classifying

where then; are the solutions to segments of speech feature vectors into a set of phoneme
. , labels. . .
maximizeZai o Z i Oy R Oy (13) A standard method for solving the segment recogni-

tion task in the speech recognition literature is the use

of hidden Markov models (HMMs). HMMs have been

subject to widely used in automatic speech recognition systems for
0<a; <AL modeling non-stationary time-varying signals [3, 4, 6]. In

i=1 i,j=1



this context, HMMs are used as probability models faepstral coefficients (MFCC). More details on computing
phonemes. MFCC can be found in [1, 6].

To describe the standard HMM, let denote the state  Two important questions that must be answered before
of the system at time¢. The Markov chain structure isusing SVCs are how to choose the kernel and the regu-
specified by a state transition probability matédx = larization parameter (box constraint). Also, we may vary
[ai;], wherea;; = P(s; = jlsi—1 =14), 1<4i,j7 < N. thewindow around atime step when building feature vec-
The probability of the observation vect@r; in a given tors. In figure 1 we present results of binary SVCs sep-
statei is denoted byb;(0;,0;). Assuming that all the
observation vectors are independent, for a given state se-
quenceS = (si,---,sr), the probability of the entire
observation sequen€® = (Oy,---,07) is

1 frame
---------------- 3 frames
—————— 5 frames

P(0IS;9) Hbst 0,). —

1.00
|

When the state sequence is unknown, the likelihood func-
tion of the observation sequen@ecan be expressed as

T
P(016) = 3~ P(0,8(8) = 3 Jlas.-r.0: b5 (00)] 1
all's allst=1 &

where the summation is over all possible state sequences.
Therefore, an HMM can be specified by the number of
statesNV and the parameter vectlr= (0,,---,0x; A).
During speech recognition, the probability of an incoming
utteranceOnew (i.e., the new observation sequence) is
evaluated using all the HMMs in the inventory, and the
one with the largest likelihood is recognized as the speech .
sound or the sequence of sounds that gene€trsy.

In principle, all aspects of an HMM (the number of
stateslV, the transition matrix:;;, and the output densi-
tiesb;) may be estimated from training data. The novelty -
of our method is in the use of a SVCs for modeling the
densitiesh;, as opposed to the standard Gaussian mixture
models. Therefore, we will fix the other parameters of the
HMMs to be those estimated by the standard method.
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4 Experiments

We choose the standard acoustic-phonetic TIMIT
database for the evaluation experiments in this paper. Figure 1: Comparison of binary SV classifiers on five sets
A speech signal is originally recorded as a sequenceddipairs of phonemes, at varying values of the regulariza-
acoustic waveform. It is usually sampled at rate 8-20 kHign parametea.
(1 kHz = 1000 times/second) with 16-bit amplitude quan-
tization (i.e., each waveform sample is represented by @rating pairs of phonemes. We have selected five sets of
of 216=65,536 values). Since most of the phonetic feahonemes that range from easily distinguished to easily
tures of speech signal are based on the spectral propertesfused. For each pair, we trained SVCs at five different
we convert the time domain signal into frequency domaiagularizations and with three different window widths.
for speech signal modeling. Since the data obtained fréxih of these SVCs were trained using a polynomial ker-
discrete Fourier transformation has very high dimensiamel of degree 2. Though there are exceptions, the results
ality (typically 256-dimension), it is not directly suitablandicate that a high degree of regularization (correspond-
to speech modeling. The common approach is to trairsg to a small box constraint) is generally beneficial, and
form the high dimensional FFT spectrum to a low dthat window widths of 3 and 5 frames perform similarly,
mensional feature space using the so called mel-frequewith both substantially outperforming 1 frame. The fact



that high regularization is necessary indicates that usiegent ways. We observe large differences from phoneme
higher order polynomial kernels would not be helpful. We phoneme in figure 2. To take advantage of the differ-
ran some additional tests that corroborated this. ent characteristics of these two classifiers, we develop a
We next trained three full sets of phoneme classifiers,magasure of prediction confidence based on likelihood ra-
three different regularizations, on the 16 speaker TIMIIos between the three best predictions. We first perform
training data set, with a window width of three frameglassification based on the SV/HMM model, and compute
and a degree two polynomial kernel. We incorporatéde confidence measure for each sample. Once the con-
these classifiers into an HMM and tested on the 24 speafi@ence measure drops below a predefined threshold, we
TIMIT test set. The best overall score of 54.9% coswitch to the prediction given by the GMM/HMM model.
rect was obtained with the strongest regularization, whigfgure 3 gives the results on combining SV/HMM with
compares with the best score from the GMM/HMM o6EMM/HMM using different thresholds. With a properly
53.8%. In figure 2 we compare the results of the begdtosen threshold, the recognition rate can be improved
from around 54% to around 59%, which is about 10% re-
duction in error rate.
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Figure 3: Combining SV/HMM with GMM/HMM using
likelihood ratio based confidence measure
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5 Discussion
Recognition Rate Support Vector classifiers were introduced as binary clas-
sifiers in the statistical learning literature. Their original
interpretation is theoretically attractive in certain ways,
but presents problems in combining the results of sev-
Figure 2: Fraction of phonemes in the testing data th&tl SVCs to solve polychotomous classification prob-
were correctly identified by the two models lems. The root of the problem is that the scores returned
by binary SVCs are distances in a metric space which has
SV/HMM model with those of the GMM/HMM at the no obvious interpretation. The most common way of do-
phoneme level. Each row of the plot displays the fractiang K-fold multiple classification via SVCs has been by
of a particular phoneme in the test set that were correatlymparing scores ok’ SVCs, each trained to separate
identified by each of the two models. The overall scoresafe class from the others. Though this method has been
the two models are very similar. Of note, however, is thampirically the most successful, it it not obvious how to
the models achieve the common overall score in very dificorporate SVCs as components in higher level models



such as HMMs due to the lack of interpretation of thaata, though experiments will be necessary to assess the
scores. resulting loss in accuracy.

By using the relationship between SVCs and smoothingA potential advantage of SVCs over Gaussian mix-
splines, we have shown how to recover approximate céures is the former’s seeming ability to cure the “curse
ditional class probabilities from the scores of K-fold mulef dimensionality” which arises in classifying high-
tiple SV classifiers. There are several advantages to igiensional feature vectors. For example, in our two-
interpretation of SV scores. For our purposes, the mofass experiments, we observed that adding additional
important is that it allows us to recover approximate coframes to the feature vectors generally lowered the mis-
ditional class probabilities which are required as inputéassification rates. This ability makes SVCs an attractive
to an HMM. The ability to combine SVCs with HMMschoice for combining new types of features with the stan-
opens up new areas of application to this attractive neél@rd cepstral coefficients.
classification method. Many types of data which vary dy-
namically with time are suitable for using HMMs.

We applied the combined SV/HMM classifier to th(l.ReferenceS
problem of phoneme recogmypn,whlch |sacomponentﬁl S. B. Davis and P. Mermelstein. Comparison of
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In certain types of problems, especially when the opti- B. Scholkopf, C. Burges, and A. Smola, editoisg-
mal decision boundaries are complicated, we believe that vances in Kernel Methods — Support Vector Learning

SVCs will have an advantage over Gaussian mixture mod- MIT Press, Cambridge, USA, 1998.
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centrate computational effort near the decision boundary, of the IEEE 77:257-285, 1989.
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We end with some comments on promising directions ]
for future work. An important issue is to assess the quép] D- X. Sun, L. Deng, and C. F. J. Wu.  Topics
ity of the approximations in section 2. At low levels of ~©n hidden markov models and their applications in
regularization the approximation (8) can not be expected SP€ech recognitionAmerican Statistical Association
to hold. Also, dropping the constraint (1) may pose prob- 1_994 Proceedings of the Statistical Computing Sec-
lems when one allows the regularization constants tion, pages 90-99, 1994.
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