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Abstract

A novel method for classifying frames of speech wave-
forms to a given set of phoneme classes is proposed. The
method involves combining an approximation to multi-
ple smoothing spline logistic regression (known as the
“Support Vector Machine” in the machine learning litera-
ture) with hidden Markov models (HMMs). The method
is compared with the standard technique in the speech
recognition literature, that of HMMs with Gaussian mix-
ture models. Both models were trained and tested using
data drawn from the publicly available TIMIT database.
Our results show that the two types of models are com-
petitive for this data, but have very different structures.
Such differences can be used to improve recognition rates
by combining the two types of classifiers.

Key Words: Support Vector, hidden Markov models,
phoneme recognition, classification.

1 Introduction

The lowest level of most speech recognition systems in-
volves classifying short (e.g. 10 ms) windows, orframes,
of speech waveforms to a given set of phoneme classes.
The sequence of frames is then segmented and classified
as a sequence of phonemes, which are further segmented
and classified as a sequence of words. In this paper, we
present a novel method for accomplishing the subtask of
classifying a segment of frames, whose boundaries are
specified in advance, to a set of phonemes.

Our method combines Support Vector classifiers
(SVCs) with hidden Markov models (HMMs). SVCs have
recently attracted a great deal of attention in the machine
learning literature due to their strong performance on clas-
sification and regression problems [7, 5]. A characteris-
tic feature of many such problems is that the input data
consist of very high-dimensional vectors. Speech data is
also high-dimensional, especially if context dependence is
taken into account, which appears to make SVCs a natural

choice for speech recognition tasks. However, there are
several problems which arise in applying SVCs to speech
data.

The most glaring difficulty is that SVCs do not explic-
itly take the temporal structure of the data into account.
We resolve this by combining SVCs with hidden Markov
models (HMMs). In this scheme, SVCs replace the Gaus-
sian mixture models traditionally used in speech recogni-
tion.

Unfortunately, this replacement introduces a second
problem. The scores produced by SVCs are distances in a
metric space which has no simple interpretation, whereas
HMMs call for conditional class probabilities. We avoid
this difficulty by interpreting multiple SV classification
as an approximation to multiple logistic smoothing spline
regression. This allows us to obtain approximate condi-
tional class probabilities from the SV results, which natu-
rally fit into the HMM framework.

We present results of experiments that compare our
method with the standard technique in the speech recogni-
tion literature, that of HMMs with Gaussian mixture mod-
els. We train and test both models using data drawn from
the publicly available TIMIT database.

2 Support Vector Polychotomous
Classifiers

In this section we describe the SVCs underlying our
phoneme classification method. SVCs were introduced in
the machine learning literature, where they are viewed as
a generalization of maximum-margin classifiers with their
attendant theoretical justification in terms of VC-bounds
and structural risk minimization [7]. SVCs can also, how-
ever, be viewed as an approximation to smoothing spline
logistic regression [9]. We will take the latter perspective,
because it allows us to interpret the scores from the SVCs
as conditional class probabilities, which is crucial for in-
tegrating them into HMMs. Accordingly, we will derive



the optimization problem by which we train our classifiers
purely in the language of smoothing splines.

We denote our training data set as

f(yi; xi)g
`
i=1 y 2 f1:::Kg x 2 Rn

which we assume is drawn iid from some densityp(x; y).
The Bayes classification rule tells us to classify a new
testing vectorx0 to the class given byarg maxy p(yjx

0).
We must estimate, from the training data, theK functions
p(yjx), which satisfy the constraint

X̀
y=1

p(yjx) = 1: (1)

For each conditional class probabilityp(yjx), we intro-
duce the log-odds ratio

hy(x) = log
p(yjx)

1� p(yjx)
: (2)

The log-likelihood of our training data is then given by

l =
X̀
i=1

log p(yijxi) = �
X̀
i=1

log
�
1 + e�hyi (xi)

�
:

One may obtain a smoothing spline estimate of these den-
sities by adding a penalty term to the likelihood and max-
imizing the result. One way to do this is to write one of
the odds ratios, sayhK , in terms of the others, which we
may do implicitly with

p(Kjx) = 1�

K�1X
y=1

p(yjx): (3)

We then determineh1:::hK�1 by maximizing

l � �

K�1X
y=1

khyk�; (4)

where the� is a free parameter that controls the strength
of the penalties imposed by the normsk�k�. The norms, in
turn, are reproducing kernel Hilbert space (RKHS) norms
defined by

kfk� =

Z
dx dyf(x)��1(x; y)f(y)

where� is a positive definite kernel, and��1 is inter-
preted as an operator inverse. In the smoothing spline lit-
erature, the penalties are often chosen as Sobolev space
norms which penalize derivatives. Below, we will use dif-
ferent kernels drawn from the SVC’s origins in the ma-
chine learning literature.

A standard argument [8] shows that the solution to the
optimization problem (4) can always be written in the
form

hy(x) =
X̀
i=1

cy;i�(xi; x) (5)

with some constantscy;i. By inserting (5) back into (4),
the minimization over an infinite-dimensional space of
functions is reduced to the finite-dimensional convex op-
timization problem of maximizing

�
X̀
i=1

log
�
1 + e�hyi (xi)

�
�

K�1X
y=1

�(cy ; ~� cy); (6)

where ~�i;j = �(xi; xj) and (�; �) denotes thè 2 inner
product.

The problem (6) is hopelessly large to solve computa-
tionally. Two reasons are that the various odds ratioshy
are coupled to one another through (3), and that each one
depends oǹ free parameters. For speech data,` can eas-
ily be on the order of106. Clearly some simplifications
are required.

We will make two approximations which will render
(4) equivalent toK independent Support Vector classifiers
(SVCs), which are computationally much more tractable
to train. The first is to break the coupling between the var-
ious odds ratios by dropping the constraint (3), and treat-
ing hK on the same footing as the other odds ratios. This
gives usK independent two-class optimization problems:
maximize

�
X

i:yi=Y

log
�
1 + e�hY (xi)

�
� �khY k�:

In order to approximate the effect of the constraint, to each
two-class objective function we add the term

�
X

i:yi 6=Y

log
�
1 + ehY (xi)

�

which has the effect of penalizing misclassifications of
training data points not in the classY .

As above, each solution can be represented as

hY (x) =
X̀
i=1

cY;i�(xi; x)

which yields theK independent optimization problems:
maximize

�
X̀
i=1

log

0
@1 + exp

0
@��Y;iX̀

j=1

cY ~�i;j

1
A
1
A��(cY ; ~� cY )

(7)
where we have defined

�Y;i =

�
+1 if yi = Y
�1 if yi 6= Y:



The problem (7) consists ofK independent convex
programming problems with smooth objective functions.
This is considerably easier than (6) but is still computa-
tionally infeasible for more than a moderate number of
training data points. Therefor, following [9], we make a
further approximation which greatly reduces the size of
each problem and brings us to the definition of SVCs.

The key observation is that

log(1 + e� ) ' (�)+; (8)

where(x)+ = x if x > 0, 0 otherwise. In order to agree
with the original definition of the SV approach [7], we
replace the RHS of (8) with(1 + �)+. Each optimization
problem then becomes

minimize
X̀
i=1

0
@1� �Y;i

X̀
j=1

cY;j ~�i;j

1
A

+

+ �(cY ; ~� cY ):

(9)
We next recast (9) into the SV form [7], which is compu-
tationally very attractive. We introduce slack variables�i
and write the problem as

minimize
X̀
i=1

�i + �(cY ; ~� cY ): (10)

subject to the inequality constraints

1� �Y;i
X̀
j=1

cY;j�(xj ; xi) � �i

�i � 0:

The Lagrangian for (10) is

L =
X̀
i=1

�i + �(cY ; ~� cY ) (11)

+
X̀
i=1

�i

0
@1� �Y;i

X̀
j=1

cY;j ~�i;j � �i

1
A�

X̀
i=1

ri�i;

which must be minimized w.r.t.ci; �i and maximized w.r.t.
�i; ri. Performing the (unconstrained) minimizations, we
find that the optimal solution to (9) is

hY (x) =
X̀
i=1

�i �Y;i �(xi; x) (12)

where the�i are the solutions to

maximize
X̀
i=1

�i �
X̀
i;j=1

�i �Y;i ~�i;j �j �Y;j (13)

subject to
0 � �i � ��1:

The optimization problem is now a quadratic program-
ming problem with simple box constraints.

We gain some insight into the nature of the solutions to
(13) by noting the Kuhn-Tucker conditions

�i > 0 , �Y;ihY (xi) � 1

�i = 0 , �Y;ihY (xi) > 1

We see that those training data points with associated La-
grange multiplier�i = 0 are correctly classified. Con-
versely, those points for which�i > 0 are incorrectly
classified, or close to being incorrectly classified. The so-
lution to the SV optimization problem is based solely on
misclassified points and points close to the classification
boundary. Points that are correctly classified fall in the
insensitive zone in(�)+ in (9), which explains the reason
for the insensitive zone.

The points with nonzero�i are called the support vec-
tors (SVs). The computational advantage in the SV ap-
proximation to smoothing spline logistic regression is
that, for many problems, the SVs may comprise only a
small fraction of the training data points. The expansion
(12) in SVs is thus quite sparse, and consequently easy to
find computationally.

Once we have trained theK odds ratioshY (x), we
may recover the estimated conditional class probabilities
from (2). Because we approximated the constraint (1) the
p(Y jx) are not guaranteed to sum to unity, which we may
rectify by renormalizing them.

Below we will describe the use of HMMs in phoneme
recognition. The Viterbi algorithm for finding the optimal
state sequence in an HMM calls for estimates ofp(xjy)
or, equivalently,p(xjy)=p(x). We may recover these from
thep(yjx) via

p(xjy)

p(x)
=

p(yjx)

p(y)

where we may estimate the class probabilitiesp(y) as the
frequencies of the classes in the training data.

3 Hidden Markov Models for
Phoneme Recognition

A complete speech recognition system produces a se-
quence of transcribed words given a raw speech wave-
form. In this paper, we will concentrate on the particu-
lar sub-task of phoneme recognition, namely classifying
segments of speech feature vectors into a set of phoneme
labels.

A standard method for solving the segment recogni-
tion task in the speech recognition literature is the use
of hidden Markov models (HMMs). HMMs have been
widely used in automatic speech recognition systems for
modeling non-stationary time-varying signals [3, 4, 6]. In



this context, HMMs are used as probability models for
phonemes.

To describe the standard HMM, letst denote the state
of the system at timet. The Markov chain structure is
specified by a state transition probability matrixA =
[aij ], whereaij = P (st = jjst�1 = i); 1 � i; j � N:
The probability of the observation vectorOt in a given
statei is denoted bybi(Ot;�i). Assuming that all the
observation vectors are independent, for a given state se-
quenceS = (s1; � � � ; sT ), the probability of the entire
observation sequenceO = (O1; � � � ;OT ) is

P (OjS;�) =

TY
t=1

bst(Ot):

When the state sequence is unknown, the likelihood func-
tion of the observation sequenceO can be expressed as

P (Oj�) =
X
all S

P (O;Sj�) =
X
all S

TY
t=1

[ast�1;st � bst(Ot)]

where the summation is over all possible state sequences.
Therefore, an HMM can be specified by the number of
statesN and the parameter vector� = (�1; � � � ;�N ;A).
During speech recognition, the probability of an incoming
utteranceOnew (i.e., the new observation sequence) is
evaluated using all the HMMs in the inventory, and the
one with the largest likelihood is recognized as the speech
sound or the sequence of sounds that generatesOnew.

In principle, all aspects of an HMM (the number of
statesN , the transition matrixaij , and the output densi-
tiesbi) may be estimated from training data. The novelty
of our method is in the use of a SVCs for modeling the
densitiesbi, as opposed to the standard Gaussian mixture
models. Therefore, we will fix the other parameters of the
HMMs to be those estimated by the standard method.

4 Experiments

We choose the standard acoustic-phonetic TIMIT
database for the evaluation experiments in this paper.

A speech signal is originally recorded as a sequence of
acoustic waveform. It is usually sampled at rate 8-20 kHz
(1 kHz = 1000 times/second) with 16-bit amplitude quan-
tization (i.e., each waveform sample is represented by one
of 216=65,536 values). Since most of the phonetic fea-
tures of speech signal are based on the spectral properties,
we convert the time domain signal into frequency domain
for speech signal modeling. Since the data obtained from
discrete Fourier transformation has very high dimension-
ality (typically 256-dimension), it is not directly suitable
to speech modeling. The common approach is to trans-
form the high dimensional FFT spectrum to a low di-
mensional feature space using the so called mel-frequency

cepstral coefficients (MFCC). More details on computing
MFCC can be found in [1, 6].

Two important questions that must be answered before
using SVCs are how to choose the kernel and the regu-
larization parameter (box constraint). Also, we may vary
the window around a time step when building feature vec-
tors. In figure 1 we present results of binary SVCs sep-
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Figure 1: Comparison of binary SV classifiers on five sets
of pairs of phonemes, at varying values of the regulariza-
tion parameter�.

arating pairs of phonemes. We have selected five sets of
phonemes that range from easily distinguished to easily
confused. For each pair, we trained SVCs at five different
regularizations and with three different window widths.
All of these SVCs were trained using a polynomial ker-
nel of degree 2. Though there are exceptions, the results
indicate that a high degree of regularization (correspond-
ing to a small box constraint) is generally beneficial, and
that window widths of 3 and 5 frames perform similarly,
with both substantially outperforming 1 frame. The fact



that high regularization is necessary indicates that using
higher order polynomial kernels would not be helpful. We
ran some additional tests that corroborated this.

We next trained three full sets of phoneme classifiers, at
three different regularizations, on the 16 speaker TIMIT
training data set, with a window width of three frames
and a degree two polynomial kernel. We incorporated
these classifiers into an HMM and tested on the 24 speaker
TIMIT test set. The best overall score of 54.9% cor-
rect was obtained with the strongest regularization, which
compares with the best score from the GMM/HMM of
53.8%. In figure 2 we compare the results of the best
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Figure 2: Fraction of phonemes in the testing data that
were correctly identified by the two models

SV/HMM model with those of the GMM/HMM at the
phoneme level. Each row of the plot displays the fraction
of a particular phoneme in the test set that were correctly
identified by each of the two models. The overall scores of
the two models are very similar. Of note, however, is that
the models achieve the common overall score in very dif-

ferent ways. We observe large differences from phoneme
to phoneme in figure 2. To take advantage of the differ-
ent characteristics of these two classifiers, we develop a
measure of prediction confidence based on likelihood ra-
tios between the three best predictions. We first perform
classification based on the SV/HMM model, and compute
the confidence measure for each sample. Once the con-
fidence measure drops below a predefined threshold, we
switch to the prediction given by the GMM/HMM model.
Figure 3 gives the results on combining SV/HMM with
GMM/HMM using different thresholds. With a properly
chosen threshold, the recognition rate can be improved
from around 54% to around 59%, which is about 10% re-
duction in error rate.
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5 Discussion

Support Vector classifiers were introduced as binary clas-
sifiers in the statistical learning literature. Their original
interpretation is theoretically attractive in certain ways,
but presents problems in combining the results of sev-
eral SVCs to solve polychotomous classification prob-
lems. The root of the problem is that the scores returned
by binary SVCs are distances in a metric space which has
no obvious interpretation. The most common way of do-
ing K-fold multiple classification via SVCs has been by
comparing scores ofK SVCs, each trained to separate
one class from the others. Though this method has been
empirically the most successful, it it not obvious how to
incorporate SVCs as components in higher level models



such as HMMs due to the lack of interpretation of the
scores.

By using the relationship between SVCs and smoothing
splines, we have shown how to recover approximate con-
ditional class probabilities from the scores of K-fold mul-
tiple SV classifiers. There are several advantages to this
interpretation of SV scores. For our purposes, the most
important is that it allows us to recover approximate con-
ditional class probabilities which are required as inputs
to an HMM. The ability to combine SVCs with HMMs
opens up new areas of application to this attractive new
classification method. Many types of data which vary dy-
namically with time are suitable for using HMMs.

We applied the combined SV/HMM classifier to the
problem of phoneme recognition, which is a component in
most current speech recognition systems. We found that
SVCs are competitive with the Gaussian mixture mod-
els which are the standard in the field. In addition, we
observed that the error structure of the SVC predictions
is substantially different than that of Gaussian mixtures,
which leads to significant gains in recognition rates by
combining the two types of classifiers.

In certain types of problems, especially when the opti-
mal decision boundaries are complicated, we believe that
SVCs will have an advantage over Gaussian mixture mod-
els. In such cases, a large number of Gaussian mixture
components will be required, which would make training
impractical. SVCs, on the other hand, are designed to con-
centrate computational effort near the decision boundary,
which enables them to train more complicated boundaries
than Gaussian mixture models. We have observed that
SVCs generally require significant regularization for the
speech data we studied, meaning that the resulting deci-
sion boundaries are quite smooth. We expect that this is
the reason for the competitive performance of Gaussian
mixtures to SVCs in our experiments.

We end with some comments on promising directions
for future work. An important issue is to assess the qual-
ity of the approximations in section 2. At low levels of
regularization the approximation (8) can not be expected
to hold. Also, dropping the constraint (1) may pose prob-
lems when one allows the regularization constants� to
vary across classifiers. An attractive alternative is to retain
the constraints, at least partially. How much of a compu-
tational burden this would impose is an open question.

Our present results are based on a training data set that
is much smaller than those found in the speech recogni-
tion literature. We believe a large amount of the differ-
ence can be made up by improvements in the quadratic
optimization algorithm. Such algorithms can potentially
converge very quickly when the solution contains many
variables pinned at the boundaries [2], a fact our code does
not fully exploit. Further improvements in training speed
can be obtained by a preliminary clustering of the training

data, though experiments will be necessary to assess the
resulting loss in accuracy.

A potential advantage of SVCs over Gaussian mix-
tures is the former’s seeming ability to cure the “curse
of dimensionality” which arises in classifying high-
dimensional feature vectors. For example, in our two-
class experiments, we observed that adding additional
frames to the feature vectors generally lowered the mis-
classification rates. This ability makes SVCs an attractive
choice for combining new types of features with the stan-
dard cepstral coefficients.
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