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Abstract

ANOVA typemodelsare considered for aregression function or for thelogarithm of aprob-
ability function, conditional probability function, density function, conditional density func-
tion, hazard function, conditional hazard function, or spectral density function. Polynomial
splines are used to model the main effects, and their tensor products are used to model any
interaction componentsthat are included. In the special context of survival anaysis, the base-
line hazard function is modeled and nonproportionality is allowed. The theory involves the
L, rate of convergence for the fitted model and its components. The methodology involves
least squares and maximum likelihood estimation, stepwise addition of basis functions using
Rao statistics, stepwise deletion using Wald statistics, and model selection using BIC, cross-
validation or an independent test set. Publically available software, written in C and interfaced
to S'S-PLUS, is used to apply this methodol ogy to real data.
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1 Introduction

2 Introduction

The last two decades have witnessed an incredible change in the focus of statistical theory and
methodology. Fueled in part by the explosion of available computer power, highly adaptive, func-
tional proceduresare now essential componentsof modern dataanalysis. Whilefreedfromtherigid
assumptions implicit in classical parametric models, the statistician is now expected to select not
only the important variables in a model, but also the functional form of the dependence on these
variables. To be practically successful, any new adaptive procedure must inevitably strike a bal-
ance between flexibility and the haunting “curse of dimensionality.” It isin this capacity that sta-
tistical theory is critical to the success of emerging methodologies. Polynomial splines and their
tensor products offer the flexibility required for modern data analysis, and when used in concert
with low-dimensional ANOVA decompositions, effectively tame the curse of dimensionality.

In the pages that follow, we will alternate between a discussion of the practical implementation
of this methodology and avery broad theoretical investigation into the properties of this approach
in the context of extended linear models. We have coined this term because our theoretical results
apply to agroup of estimation problems that subsumes the classical exponential family regression
models [see McCullagh and Nelder (1989)]. While our initial motivation for introducing this fam-
ily wasto achieve atheoretical synthesis, we found that this framework also alows us to entertain
afairly general treatment of the associated methodology. Throughout our presentation, however,
we maintain a distinction between the nonadaptive procedures that we can treat theoretically and
the adaptive methodologies that we have implemented for density estimation, hazard regression,
polychotomous regression and spectral density estimation. In this presentation, we concentrate on
theoretical and methodol ogical innovations devel oped through many collaborationsinvolving var-
ious subsets of the authors of the present paper.

In Section 2, we define the notion of an extended linear model and use this framework simul-
taneoudly to discussthe I, rate of convergence for the nonadaptive version of our proceduresin a
variety of important statistical settings, whilein Section 3, we trand ate these promising theoretical
resultsinto practically useful, adaptive methodology. Ultimately, however, the true measure of any
statistical procedureisits performanceon real data. In Sections 4 through 9 we focus on a number
of specific modeling problems for which our approach has yielded successful data analysis tools.
In each case, an S/S-PLUS implementationis (or will soon be made) publicly available so that the
“truemeasure” of these procedures can be judged on the wealth of datathat exists beyond the (nec-
essarily narrow) confines of our examples. Logspline density estimation was our first attempt at an
adaptive spline-based methodol ogy, and in Section 4 we present the latest version of thisprocedure,
LOGSPLINE. In Section 5wedescribe our own version of MARS[Friedman (1991)] asaroutineto
handle regression problems involving many predictors. The motivation for reworking this routine
stems from an application of linear splines to polychotomous regression, known as POLY CLASS,
which is described in Section 6. In order to relax the proportionality and linearity assumptions in



classical survival analysis, we have developed spline routines for hazard estimation with flexible
tails (HEFT) and hazard regression (HARE). These are the subject of Section 7. Spectral density
estimation is another area in which our adaptive methodology can easily capture al the relevant
features of a given time series, and in Section 8 we discuss L SPEC, an implementation of this ap-
proach. We end the paper with an application to bivariate function estimation through the use of
splines defined over adaptively determined triangul ations.

3 Extended linear models: theory

4 Extended linear models. theory

Consider a W-valued random variable W, where W isan arbitrary set. Let i = Uy x --- X Uy
be a Cartesian product of compact intervals, each having positive length. Consider avector-valued
function & = (hy,..., hx) onU whose constituents A, . .., hx are rea-valued functions on /.
Let /(h, W) be a (not necessarily true) log-likelihood and let A(h) = E[{(h, W )] be the corre-
sponding expected log-likelihood. There may be some mild restrictionson £ for the log-likelihood
to be defined. We assume that, subject to such restrictions, thereis an essentially unique function
¢ = (¢1,...,0x) that maximizes the expected log-likelihood. (Here two functions on ¢/ are es-
sentially equal if they differ only on a subset of 2/ having L ebesgue measure zero.)

Let / bealinear space of real-valued functionson/, let K be apositiveinteger, let H* denote
the space of functionsof theform i = (h4, ..., hx), wherethe congtituents 44, . . ., hx of h range
over I1, and consider the log-likelihood function ((., W), h € HX. We refer to any particular
setup of this form as an extended linear model. The expected log-likelihood function is given by
A(R), h € HY. The model is said to be concave if {(h, w) is a concave function of % for each
w € Wand A(h) isadtrictly concave function of 7 when restricted to those functions » € H”
suchthat A(h) > —oo. Typically, whenthemodel isconcave, thereisan essentially uniquefunction
¢ = (47,...,¢%) € HY that maximizesthe expected log-likelihood over A,

In order to define ANOVA decompositions of the constituents of ¢*, we first need to define
corresponding theoretical inner products and norms. To this end, let > be an absolutely contin-
uous measure on U/ having a density function that is bounded away from zero and infinity on /.
Given square-integrable, real-valued functions %, and %, on ¢/, their theoretical inner product is
defined by (%1, hs) = [, hihs dip. Given such a function h, its theoretical norm is defined by
||| = (h,h) = [, h? dp. Conversely, if || - || is defined directly, then « is defined implicitly
by the formula’(A) = ||ind4]|*, whereind 4 isthe indicator function of A, which equals 1 on A
and 0O on A°.

Let Wq,..., W, bearandom sample of sizen fromthe distribution of W. The log-likelihood
function corresponding to this random sampleisgiven by /(h) = >, ((h, W;). Let G = G, be
afinite-dimensional subspace of /7 and let G¥ = G% denote the corresponding subspace of H* .
(Notethat if K = 1, then H® = H and G* = (i) Under the assumptions of a concave extended

3



linear mode! and reasonable additional conditions, except on an event whose probability tends to
zero asn_— oo, thereis a unique maximum likelihood estimate ¢ in G** of ¢*; that is, aunique
function ¢ = (¢4, .., ¢x) in GE that maximizesthe log-likelihood function over GX.

In order to define ANOVA decompositions of the constituents of ¢, we need to define corre-
sponding empirical inner productsand norms. Forn > 1, let ), beanempirical product measureon
U that is atransform (measurable function) of the random sample W1, ..., W,,. (Roughly speak-
ing, ,, should approach ¢» asn — o~c.) Givenreal-valued functions/; and h, oni{, their empirical
inner product is defined by (A1, hs), = [, h1he dip,. Given such afunction h, its empirical norm
isdefined by ||A]|2 = J;, h* di,,. The space (G issaid to beidentifiableif the only functiong € &
such that ||¢||. = 0 isgiven by ¢ = 0. Under reasonable conditions, (7 isidentifiable except on an
event whose probability tendsto zero asn — oc.

Many statistical problemsof theoretical and practical importance can effectively betreated within
the framework of concave extended linear models. Most of the investigations in this framework
have involved al{-valued random variable U that isatransformof W. Let U4, ..., U, bethecor-
responding transformsof W, ..., W,, respectively. Here, we typically let > be the distribution of
U and ¢, the empirical distribution of Uy, ..., U,.

Regression. Consider arandom pair (X, Y'), where X is X'-valued and " isrea-valued and has
finite second moment. Set ¢(~,X,Y) = —[Y — A(X)]?. Then we get a concave extended linear
model with W = (X,Y), U = X, and K = 1. If H isthe space of al functions 2 on X’ with
E[h*(X)] < oo, then ¢ isthe regression function of ¥ on X. More generally, if H isa Hilbert
space of such functions #, then ¢* isthe best approximationin H to the regression function, where
best means minimizing the mean squared error E{[Y — 1(X)]?} in predicting Y by #(X). Here
maximum likelihood estimation in G coincides with least squares estimation.

Generalized regression. Suppose now that, for each x € X, the conditional distribution of Y

giventhat X = x belongsto afixed exponential family of distributionson IR of theformexp[B(0)y—
C'(9)]p(dy), where the parameter ¢ ranges over IR. Here p is anonzero measure on R that is not

concentrated at asingle point and [ exp[B(0)y — C(0)]p(dy) = 1 for § € R. Thefunction B(-) is
required to be twice continuously differentiableand itsfirst derivative B’(-) isrequired to be strictly

positiveon RR. Itisrequired that there be asubinterval S of IR such that p is concentrated on S and

B"(0)y — C'(#) < 0ford € Randy € S. If S isbounded, it isrequired that it contain at least

one of itsendpoints. Let /4 be a candidate for the dependence of # on x. The corresponding (con-

ditional) log-likelihood is given by (2, X.,Y) = B(h(X))Y — C'(h(X)). This has the form of a
concave extended linear model with' W = (X, V), U = X, and K = 1. As specia cases, we get

logistic regression, probit regression, and Poisson regression models.

Polychotomousregression. LetY beaqualitativerandom variablehaving K +1 possiblevalues.
Without loss of generality, we can think of thisrandom variableasrangingover Y = {1,..., K +



1}. Supposethat P(Y = kX = x) > 0forx € Yandk € Y. Forl < k < K, let hy, bea

candidate for the function
P(Y = kX =x)

o8 Py R+ 1IX =)'
The corresponding log-likelihood is given by
R, XY) = (X)H(Y)+ - 4 hr(x) I (Y) — log(1l + exp hi(X) + - - - + exp hr (X)),

where [,,(Y') equalsone or zero accordingasY = korY # kand h = (hq,...,hg). Thissetup
has the form of a concave extended linear model with W = (X,Y)and U = X.

Density estimation. Let Y have an unknown positive density function on ). We can write its
log-density function in theform ¢ — C'(¢), where C'(h) = log [ exp h(y) dy. The corresponding
log-likelihood functionis givenby ¢(h,Y) = 2(Y) — C(h). This setup has the form of aconcave
extended linear model with W = U =Y and K = 1, provided that we replace H by the space of
functionsh € H suchthat £[2(U) = 0] and we replace (¢ by the space of functions¢ € ' such
that 3=, g(U;) = 0.

Hazard regression. Consider a positive survival time 7', a positive censoring time ', the ob-
served time min(7', C'), and an X'-valued random vector X of covariates. Let 6 = ind(7" < C)
be the indicator random variable that equals one or zero according as7' < €' (1" isuncensored) or
T > C (T iscensored) and writemin(7',C')asT' A C'. Suppose T and C' are conditionally indepen-
dent given X. For theoretical purposes, itissupposed that P(C' < 7) = 1, wherer isaknown posi-
tiveconstant. Set W = (X, T'AC,6)and U = (X, TAC). Let ¢(x,t) = log f(t]|x)/[1 — F(t]|x)],
t > 0, denote the logarithm of the conditional hazard function, where f(¢|x) and F'(¢|x) are the
conditional density and distribution functions, respectively, of 7" giventhat X = x. Sincethelike-
lihood equals f(T' A C'|X) for an uncensored case and | — F'(T' A C'|X) for acensored case, it can
be written as

AT A CIXPL = F(T A CIX)]

f(T'ACIX)
(1 - (T ACIX

§
)) [ — F(T A C|X)]
TAC
= [exp ¢(X, T AC)]° exp (—/ exp ¢(X,1) dt) :
0
Thus the log-likelihood function is given by
TAC
(b, W) = Sh(X, T AC) — / exp h(X, 1) dt.
0

This setup has the form of a concave extended linear model with K = 1. Herethetheoretical inner
product is given by
TAC
(hy, hs) = E/ b (t, X)ha(t, X) dt,
0

which defines > implicitly; the corresponding empirical inner product (-, -),, and empirical measure
v, are defined in the obvious manner.



ANOVA decompositions and conver gencerates

In the theoretical development of extended linear models, ANOVA decompositions of ¢*, (Z and
their constituents play important roles. For asimpleillustration of such decompositions, consider
aregression or generalized regression context with M = 2 and let H be the space of all square-
integrable functionson /(. Then ¢ can be written as

d(xr,x2) = ¢ + ¢1(x1) + da(x2) + d12(21, 22), (4.1)

where each component is theoretically orthogonal to the corresponding lower-order components;
that is, ¢; and ¢, are each theoretically orthogonal to ¢, and ¢, is orthogonal to ¢4, ¢; and ¢,.
Here ¢, isthe constant component, ¢, and ¢, are the main effect, components, and ¢, is the two-
factor interaction component. The maximum number d of factorsin any component of the model
isgivenby d = 2. Sinced = M, the model is saturated.

Given arandom sample, consider an estimate

(Z(l'lv x3) = le(l'l) + ng(l‘z) + 512(51?1, T3), (4.2

where each component is empirically orthogonal to the corresponding lower-order components.
The right sides of (4.1) and (4.2) are referred to as the ANOVA decompositions of ¢ and ¢, re-
spectively.

Removing the interaction component, we get the additive (¢ = 1), unsaturated approximation

¢™(x1,72) = ¢ + ¢1(21) + ¢3(x2)
to ¢ and the corresponding estimate

~

oz, x2) = ng + 51(51?1) + ng(:lfz).

In general, given asubset s of {1,..., M}, let H, denote the space of square-integrable, real-
valued functionsoni/ that depend only onthevariablesu,,,, m € s. (Thespace Hy correspondingto
the empty set () isthe space of constant functions.) Let S denote ahierarchical collection of subsets
of {1,..., M}, wherehierarchical meansthat if s isamember of S and r isasubset of s, thenrisa
member of S. Let H now denote the space of functionson Z/ of theform}_ s hs, Wwhere b, € H,
for s € S. Let d denote the maximum cardinality of thesets s € S. If d = 1, then the functionsin
H are additive functions of theindividual coordinates.

Let » L H, meanthat (h,h,) = 0for h, € H,. Every function 2 € H can then be writtenin
an essentially uniqgue manner as . = 3" ,cs hs, Where, fors € S, hy € Hyand b, L H, for every
proper subset r of s. Werefer to ,, s € S, as the components of the ANOVA decomposition of 4.
In particular, let ¢7,, s € S, denote the components of the ANOVA decomposition of ¢;. Also, set

¢ = (¢1ys- -, Ok,) fors € S.

For1 <m < M, let (z,, denote afinite-dimensional space of functions on Z{,,, containing the
constant functions. Given asubset s of {1,..., M}, let GG, denote the tensor product of the spaces
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G, m € s, that is, the space spanned by functions on ¢/ of the form [1,,c, ¢ () 8S g., ranges
over G, form € s. Observethat G, C G, forr C s. Let G denote the space of functionson ¢/ of
theform>",cs g5, Whereg, € G fors € S.

Letg L, G, meanthat (¢,¢.), = 0forg, € G,. If GGisidentifiable, then every functiong € ¢
can bewrittenuniquely asg = > ,cs g5, Where, for s € S g, € G, and g L,, GG, for every proper
subset r of s. Wereferto g;, s € S, as the components of the ANOVA decomposition of g. In
particular, Iet (/Sks, s € S, denote the components of the ANOVA decomposition of ¢;. Also, set

¢ - (¢157 .- ¢Ix$) fors e S.

We now restrict attention to spaces &,,, of polynomial splines. For theoretical smplicity, for
1 <m < M, let A, beapartition of 4, into digoint intervals having common length «. By a
piecewise polynomial of degree ¢ on 4, we mean afunction ¢ on {,, such that the restriction of
gtoeaché € A, isapolynomial of degreeq. Let (&, be alinear space of splineson{,,; that is,
piecewise polynomialsof degree ¢ oniA,,, subject to specified smoothness constraints, typically that
of being (¢ — 1)-times continuously differentiableon ¢/,,,.

Given areal-valued function ~ on ¢, let ||2||. denote the supremum of |2| on ¢/. Given a
vector-valued function s = (hy, ..., hx) onl, set| il = max(||h|lcos- -, ||k |le) @and||h]|? =
[hall* + - 4 o

Next we consider the rates of convergence that can theoretically be established for the estimate
¢ of ¢* and for the corresponding estimates ¢, of the components ¢t of ¢o*. Let s € S. Under
various conditions on the spaces G, m € s,

1€n£ lg — 15l = O(a?), I<k<KadseS,
g s

with p being a suitably defined measure of smoothness of the constituents of ¢* (see Schumaker,
1981). Under various reasonable additional conditions,

6.~ il = Op(a + ), s€8,
and R |
16— &"II = Op(a® + —3).
Thus, by optimally choosing a ~ n~'/(2**+9) we get the rate of convergence given by
6 = 87 = Op(n~?/D), s e, (4.3)

and

|6 — ¢*|| = Op(n=?/Crd), (4.4)

In particular, by considering additive models(d = 1) or by allowing interactionsinvolving only
two factors (d = 2), we can get faster rates of convergence than by choosing d = M and thereby
ameliorate the “ curse of dimensionality.”



Hansen (1994) introduced the class of extended linear models and obtained the corresponding
L, rates of convergence. The various cases of this theory that had previously been treated are as
follows: regression in Stone (1985, 1994); generalized regression in Stone (1986, 1994), density
estimation in Stone (1990, 1994); conditional density estimation in Stone (1991, 1994) and Hansen
(1994); hazard regression in Kooperberg, Stone and Truong (1995b); and spectral density estima-
tion in Kooperberg, Stone and Truong (1995d).

5 Extended linear models: methodology

6 Extended linear models. adaptive methodology

In practice, it seems best to select ¢ in an adaptive manner. Let J be the dimension of &, let
By, ..., By beabasisof this space, and write acandidate g = (¢4, . . ., gx ) for the maximum like-
lihood estimate ¢ in (¢ of ¢* as g, = ¥, BB, for 1 < k < K. Let 8 be the (suitably) ordered
JK-tuple(f;x)1<;<s1<k<ri - Thenthelog-likelihood function based on the sample data can bewrit-
tenas/((3), 8 € B. Assume that thislog-likelihood function is twice continuoudly differentiable,
and let V{(3) and H(3) denoteits gradient and Hessian matrix, respectively, at 3.

The quadratic approximation () to the log-likelihood function about 3, € B isgiven by

Q(B) = 1(Bo) + [VUB,)I" (B — Bo) + %(ﬂ — Bo) H(Bo)(B — Bo)- (6.1)

Suppose H(3,) is negative definite or, equivalently, that I(3,) = —H(8,) is positive definite.
Then () is uniquely maximized at

B1 = Bo + [L(Bo)]~ VIUBy). (6.2)

Using (6.2) in an iterative manner, we get the Newton—Raphson method for numerically determin-
ing the maximum likelihood estimate from any starting value 3,. If the maximum likelihood esti-
mate exists, the log-likelihood function is strictly concave, and we apply a suitable modification to
the Newton—Raphson method (such as step-halving), then the method is guaranteed to converge to
the maximum likelihood estimate from any starting value [ see Kooperberg, Bose and Stone (1995)
for detailg]. It followsfrom (6.1) and (6.2) that

2[Q(B1) — Q(Bo)] = [VUB,)]"[L(Bo)] ™' V(By). (6.3)

If 3, isthe maximum likelihood estimate in a subspace of 53, then theright side of (6.3) isthe Rao
(score) statistic for testing the hypothesisthat the “true” value of 3 liesin this subspace.

Let @ now be the quadratic approximation to the log-likelihood function about the maximum
likelihood estimate 3 € 5, and let B, be the subspace of B consisting of those 3 € B such that
A3 = 0, where A has full rank. Then the maximum of ¢) over B, occurs uniquely at

Bo=B-T"(BJATIAT(B)AT]'AB. (6.4)
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Moreover, R R R R R

2[Q(B) — Q(Bo)] = (AB) AT (B)AT] ' AB. (6.5
The right side of (6.5) is the Wald statistic for testing the hypothesis that 3 € B, under the as-
sumption that 3 € 5. Moreover, the right side of (6.4) gives a good starting value for using the
Newton—Raphson method to find the maximum likelihood estimatein 5, when the maximum like-
lihood estimate 3 in B has already been determined.

Animportant aspect of the methodol ogy for fitting extended linear model sisthe adaptive choice
of the space (¢ fromafamily G of alowable spacesthat istypically assumed to satisfy thefollowing
properties:

e foreach (¢ € G, themodel hasdimension J > J.in;

e thereisonly one G € G with dimension .J,,;,,, which we refer to as the minimum allowable
Space;

e if Gy € G hasdimension J, thereis at least one space G € G with dimension J + 1 that
contains (G, as a subspace;

e if G € G hasdimension.J > J.;,, thereisat least one subspace GG € G of G withdimension
J—1.

In our univariate methodologies (LOGSPLINE, LSPEC and HEFT) we use families of allow-
able spaces based on cubic splines. For each of these methodol ogies there are some extra restric-
tions on the allowable spaces, which are discussed in the relevant sections. Also, the HEFT and
L SPEC methodologies involve some additional basis functions that are not cubic splines. Details
aregivenin Sections 7 and 8.

For the multivariate methodologies POLY MARS (our version of MARS), POLY CLASS, and
HARE we make use of piecewise linear splines and selected tensor products. These spaces are
discussed in detail in Section 5 about POLY MARS. In all these applications we restrict attention to
d < 2, so that main effects (polynomial splinesin individual variables) and two-factor interactions
(tensor products of polynomial splines in two different variables) may be alowed, but no three-
factor or higher-order interactions are allowed in the model. The allowable spaces for the bivariate
splines considered in Section 9 are discussed in that section.

Initially, we choose G as the minimum allowable space. Then we proceed with stepwise addi-
tion. Herewe successively replacethe (.J — 1)-dimensional allowable space G by a./-dimensional
allowable space G containing Gy as subspace, choosing among the various candidates for a new
basis function by a heuristic search that is designed approximately to maximize the corresponding
Rao statistic. The reason for using Rao statistics here isto avoid the need for computing maximum
likelihood estimates corresponding to the various candidate spaces .

Upon stopping the stepwi se addition process (for example, after we reach adefault or user spec-
ified maximum dimension), we carry out stepwise deletion. Here we successively replace the /-
dimensional allowable space ¢ by a(.J — 1)-dimensional allowable subspace G, until we arrive at
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the minimal allowable space, at each step choosing the candidate space G, so that the Wald statistic
for abasisfunction that isin GG but not in G4 is smallest in magnitude. The reason for using Wald
statistics here isto avoid the need for computing maximum likelihood estimates corresponding to
the various candidate subspaces G.

During the combination of stepwise addition and stepwise deletion, we get asequence of models
indexed by v, with the vth model having .J, K parameters. The (generalized) Akaike information
criterion (AIC) can be used to select one model from this sequence. Let (, denote the fitted log-
likelihood for the »th model, and et

AIC,, = =20, + aJ, K (6.6)

be the Akaike information criterion with penalty parameter « for this model. We select the model
corresponding to thevalue v of v that minimizes AIC, ,. Inlight of practical experience, we gener-

ally recommend choosing ¢ = log n asintheBayesianinformationcriterion (BIC) dueto Schwarz (1978).
(Choosing ¢ = 2 asinclassical AIC tends to yield models that are unnecessarily complex, have
spurious features, and do not predict well on test data.)

Alternatively, we can use an independent test set to obtain a more nearly unbiased estimate of
the expected |og-likelihood and sel ect the model that maximizesthisestimate. Intheregression and
classification contexts we could use the independent test set to obtain a nearly unbiased estimate
of the mean squared error of prediction or the cost of misclassification and select the model that
minimizes this estimate.

Finally, cross-validation can be used to select « so as approximately to maximize the expected
log-likelihood or minimize the expected mean squared error of prediction or cost of misclassifica-
tion. [For detailed discussions of the use of independent test sets or cross-validation in the related
context of selecting classification and regression trees, see Breiman, Friedman, Olshen and Stone
(1984).]

Regardless of the final criteria used to choose between competing estimates, it is likely that
many of the models encountered during the stepwise addition and deletion processes will perform
similarly. By examining which termsare present in these best fitting models, we can gain consider-
ableinsight into the underlying features of thedata. Simulation can also be used to judge whether or
not our procedures can reliably resolve important aspects of agiven dataset. Inaddition, smulation
can be used to calibrate the choice of (the implicit smoothing parameter) « in the AIC criterion of
(6.6). Hlustrations of these procedureswill be given in the context of the various adaptive method-
ologies presented in Sections 4 through 9.

As mentioned in Section 1, various adaptive methodol ogies and corresponding software prod-
ucts have aready been developed. The current situation regarding software availability is as fol-
lows:

e Versions of the HARE, HEFT, LOGSPLINE and L SPEC methodologies are available from
statlib. (The publically available version of the LOGSPLINE program is dightly older than
the one discussed in Section 4; seethat section for morediscussion.) All these methodol ogies
are written as C programs with an interface to the §/S-PLUS environment.
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e Friedman’'s MARS program is available as a collection of Fortran subroutines from statlib.
e A commercia version of HARE is currently being implemented in S-PLUS.

e POLYCLASSand thebivariatesplinesdiscussed in Section 9 arestill in development. Public
codeisnot yet available. Actualy, inthe context of POLY CLASS we are currently working
on amodification to the adaptive methodol ogy to make it computationally much lessintensive
when applied to large data sets with many classes, features and cases. In this modification we
plan to use a linear, MARS-like methodology to choose the sequence of modelsto be fitted
and then to use a quasi-Newton instead of Newton—Raphson method to obtain the maximum
likelihoodfits. The modificationwas suggested in part by an analogoususe of MARSin FDA
(Hastie, Tibshirani and Buja, 1994).

e The POLYMARS program discussed in Section 5 was not written as a stand-al one program.

e Alibrary of §S-PLUSroutinesfor manipulating Triogram modelsiscurrently availablefrom
the second author and will soon be availablein Version 4 of S.

Our eventual goal isto develop a comprehensive set of polynomial spline modeling routines.

7 Univariate density estimation (LOGSPLINE)

8 Univariatedensity estimation (LOGSPLINE)

Inlogsplinedensity estimation a(univariate) log-density ismodel ed by acubic spline. The LOGSPLINE
project was the first methodology project employing model selection and polynomial splines on
which we have worked. In this section we describe the fourth version of LOGSPLINE. Earlier ver-
sions are discussed in Stone and Koo (1986b), Kooperberg and Stone (1991), and Kooperberg and
Stone (1992). The various versions of LOGSPLINE all employ cubic splines and maximum like-
lihood estimation. The way that the program positions knots, how it deals with the tails of the dis-
tribution, and what types of data it can handle are among the things that have evolved over time.
Before we give any details about the LOGSPLINE methodology we give a brief example.

In theleft side of Figure 1 we show adensity estimate for arandom sample of size 7,125 annual
net incomes in the United Kingdom [Family Expenditure Survey (1968-1983)]. [The data have
been rescaled to have mean one as in Wand, Marron, and Ruppert (1991).] The peak near .24 is
caused by the UK nationa old age pension, which caused many people to have nearly identical
incomes. The right side of Figure 1 zooms in on the neighborhood of this peak. In Kooperberg
and Stone (1992) we concluded that the height and location of this peak are accurately estimated
by LOGSPLINE.

The selection of knotsin logspline density estimation is discussed in detail below. Hereit suf-
ficesto note that the procedureinvolves stepwise addition and del etion of knots. The program starts
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Fig. 1. Left: logspline density estimate for the income data; right: enlargement of the area near
x = 0.24. Theletters below the plotsrefer to the knot placement. See the text for details.

with afairly small number of knots. In Figure 1 these knots are indicated by the letter “s’. It then
adds knots in those regions where an added knot would have the most influence, using Rao statis-
tics. The program continues adding until apre-specified maximum number of knotsisreached. The
knotsfor thislargest model areindicated by the letter “m” in Figure 1. After the largest model has
beenfit, knotsare deleted one at atime, using Wald statisticsto decide which oneto delete next. The
smallest model that isfit has three knots. Out of the complete sequence of models, LOGSPLINE
selects the one having the smallest value for the AIC criterion. The knotsfor this*best” model are
indicated by the letter “f” in Figure 1.

Usually, asisthe case here, the final model based on the AIC criterionisfit during the stepwise
deletion stage of the procedure. The new LOGSPLINE procedurethushasthe advantagethat it adds
knots in those parts of the density where they are most needed, for example near the peak, while
it deletes knots where they are not needed, for examplein the tails, thus creating an adaptivity that
other density estimation procedures seem to lack. Thisis one of LOGSPLINE’s main advantages.

LOGSPLINE has additional advantages over other density estimation methods:

e While LOGSPLINE generally gives accurate estimates of the height and location of peaks,
thanks to adaptivity, it avoids spurious bumps and gives smooth estimates in the tail of the
distribution.
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e LOGSPLINE has a natural way to estimate densities with bounded support, which may be
discontinuous at the end of their range.

e LOGSPLINE can estimate the density even when some observations are censored.

e A LOGSPLINE density is represented by a list of numbers of moderate length, making it
convenient to use the density for further analysis.

The LOGSPLINE methodisfairly fast: on our Sparc 10 workstation the estimate shown in Figure 1
was computed in about 9 seconds of cpu time.

In the following section we will discuss the LOGSPLINE methodology in some detail. In Sec-
tion 8.2 we present an exampl e of the application of the various LOGSPLINE algorithmsto amuch
smaller data set.

8.1 TheLOGSPLINE methodology
LOGSPLINE models

Asusual in our polynomial spline methodologies, there are two main issues to LOGSPLINE:

e given alinear space, how the parameters are estimated;

¢ how the linear space is selected.

We now discuss the types of linear spaces that we consider in LOGSPLINE and the corresponding
log-likelihood function. Then we discuss how to select alinear space in an adaptive manner.

Given theinteger A’ > 3, the numbers L. and U with —co < L < U < 0, and the sequence
ti,...,tgwWith L < t; < --- <t < U, let G be the space of twice-continuoudy differentiable
functionss on (L, ), such that therestrictions of s to [t1, t5], . .., [tx—1, k] arecubic polynomials
and the restrictionsof s to (L,¢;] and [tx, U) arelinear. The space (¢ is K-dimensional. Set ./ =
K — 1. Then G hasabasisof theform 1, By, ..., B;. We can choose By, ..., By suchthat B; is
linear with negative Slopeon (L, #1], Bz, ..., By areconstant on (L, ¢1], By islinear with positive
dopeon[tx,U),and By, ..., By_1 areconstant on [tx, U).

A columnvector 8 = (f,...,5;)" € R’ issaid to befeasible if

[ b3 B() 4+ BuBal))dy < oo

or, equivalently, if (i) either L > —oc or §; < 0 and (ii) either U < oo or 3; < 0. Let B denote
the collection of such feasible column vectors. Given 3 € B, set

fy;B) =exp(BiBi(y) +--- 4+ BsBs(y) = C(B)), L<y<U,
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where

C(8) = tog ([ exp(r(n) 4+ 81

Then f(-; 3) isapositivedensity functionon (L, U) for 3 € B. If U = oo, thenthedensity function
isexponential on [, oo); if L = —oo, then the density function is exponential on (—oo, #1].

LetYi,...,Y, bearandom sampleof sizen fromadistribution on (L, U') having density func-
tion f. Let Ay,..., A, besubintervalsof (L, /) such that it isknown only that Y; € A, for 1 <
¢ < n. IfY;isuncensored, then A, = {Y;}. If Y; isright censored at C; < Y;, then A, = (C;,U).
If Y; isleft censored at C; > Y;, then A, = (L, C;). In either case, we refer to C; as the censoring
valueof Y;. If Y; isinterval censored, then its censoring interval A; isasubinterval of (L, U). Un-
der the usual assumption that the random sample is independent of the censoring mechanism, the
log-likelihood function corresponding to the LOGSPLINE model has the form given by

=2 »(458),  BeB;

here

e(y; B) =log f(y: B) = Zﬁj c(B), BeBks,

if Aistheone-pointset {y} and

¢(A; B) = log (/A f(y;ﬁ)dy) = log (/A exw(y;ﬁ)dy) . BEBRB,

if A has positive length. Formulas for the score function and Hessian can be found in Kooper-
berg and Stone (1992, Section 2). These formulas become rather complicated when A has positive
length.

The maximum likelihood estlmateﬁ isgiven by ((3) = maxges ((3), and the log-likelihood
of the fitted model is given by (= E(B) The corresponding maximum likelihood estimate of f is
givenby f(y) = f(y: B8) for L < y < U.

Model selection

The knot selection methodology involvesinitial knot placement, stepwise knot addition, stepwise
knot deletion, and final model selection based on AIC. In thissubsection we assumethat all the data
are uncensored, that is, A; = {Y;} for al ..

Initially we start with A knots, with X' = min(2.5n2?,n/4, N, 25), where N is the number
of distinct Y;’s. These K knots are positioned according to the same rule as in Kooperberg and
Stone (1992). Thisrule placesthe knots at selected order statistics of thedata. (Thisruleissuitably
modified when some data are censored.) If . = —oc and U = oo, the extreme knots are placed
at the extreme observations and interior knots are positioned such that the distances (on an order
statistic scale) between knots near the extremes of the data are fairly small and almost independent
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of the sample size, while the knots in the interior are positioned approximately equidistantly. 1f
L > —oc or U < oo, the procedureis suitably modified.

Theknot-addition/knot-del etionprocedurethat weemploy isessentially the procedure described
in Section 3. In particular, at each addition step of the algorithm we first find a good location for a
new knot in each of theintervals(L, t1), (t1,%2), .., (tx-1,tx), (tx, U) determined by the existing
knotsty, ..., 5. Todothiswemaximizein eachinterval the Rao statistic for potential knotslocated
at the quartiles of the data within each interval. The location is then further optimized, which may
involve computing a few more Rao statistics (see Section 11.3 of Kooperberg, Stone and Truong
(1995a) for our current implementation). The search algorithm then selects among the best candi-
date within each of the intervals. The default value for the maximum number of knotsin a model
iS Kinax = min(4n2 n/4, N, 30).

During knot deletion we successively remove the least significant knot, using Wald statistics
to measure significance. We continue this procedure until only three knots are left. (Rarely, with
extremely heavy tailed densities, there are numerical problems when the number of knots is too
small. In such a situation we terminate the procedure as soon as these problems occur.)

Among all modelsthat are fit during the sequence of knot addition and knot deletion we choose
the model that minimizes AlIC with default penalty parameter « = log n, as described in Section 3.

Innovations

Aswementioned intheintroductionto this section, the present version of LOGPSLINE isthefourth
version. Inthefirst version [Stone and Koo (1986b)], a small fixed number of knots was placed
equidistantly on an order-statistic logit scale. I1n Kooperberg and Stone (1991), stepwise knot dele-
tion was employed, and theinitia knot placement rulewas very similar to the one we now employ.
Both of these earlier papers used apreliminary transformationfor densitieson the positive half-line.
In Kooperberg and Stone (1992) it was decided that such atransformation is not needed when the
knot placement is sufficiently adaptive. In the 1992 paper we extended |ogspline density estimation
to censored data and discussed a user interface based on S. The present version of LOGSPLINE is
the only one that includes stepwise addition of knots. There are al'so several significant computa-
tional improvements, the two most important of which are as follows:

e The use of starting values during stepwise deletion is based on a quadratic approximation to
the log-likelihood function, as described in Section 3. These starting values are significantly
better than those proposed in K ooperberg and Stone (1992). Indeed, the number of Newton—
Raphson iterations may be reduced by as much as 30%.

¢ Inthe absence of censored data the log-likelihood function is strictly concave. Therefore, if
amaximum of the log-likelihood function exists, it is unique. 1f some of the observations
are censored, however, the log-likelihood function need not be concave. 1n Kooperberg and
Stone (1992), this problem was circumvented by alternating between Newton—Raphson and
steepest ascent. We now take the approach of adding a small negative constant times the
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identity matrix to the Hessian if necessary to ensure that this matrix is negative definite [see
Kennedy and Gentle (1980, Section 10.2.2)].

Note that the version of the program described in Kooperberg and Stone (1992) is available from
statlib (statlib@stat.cmu.edu). The version described in this paper is not yet publically available.

8.2 An example

The penalty parameter « inthe Al C criterion (see Section 3) isthemain parameter inthe LOGSPLINE
procedure that governs how complex the estimate of the density is. The default value for this pa-
rameter isa = log n asin BIC. Another commonly used valueis« = 2 asin (traditional) AIC. One
of the goals of this section is to study the influence of this penalty parameter by means of a small
simulation study.

Besidesthe choice of the penalty parameter, it may matter whether we use thenew LOGSPLINE
procedure, asdescribed in this paper, or the previous LOGSPLINE procedure, described in Kooper-
berg and Stone (1992). Since the new procedure positions some of the knots adaptively, so as ap-
proximately to maximize the log-likelihood, conceivably it may lead to a more flexible estimate.

We applied the new and previous LOGSPLINE procedureswithbotha = 2 anda = log n tothe
Buffalo snowfall data. Thisisasmall dataset (n = 63) that has been used extensively in thedensity
estimation literature; see, for example, Parzen (1979) and Silverman (1986). The mainissueishere
the number of nodes: isthere one, or aretherethree (or maybe two)? Ascan be seen from Figure 2,
the different LOGSPLINE procedures provide different answers, as summarized in Table 1. From
this table we see that the model that was selected using the new procedure with penalty parameter
a = 2 would aso have been selected for values of « between 0.45 and 3.01. From (6.6) we note
that if amodel with J basisfunctionsis selected for some value of «, it will be selected for arange
of values of «. Some models may not be optimal for any value of « [see Kooperberg et al. (19953,
Table 6)]. Notethat for n = 63 the starting number of knotsfor the previous procedureisten, while
for the new procedureit is six, with four knots being added by the algorithm.

TABLE 1.
Four LOGSPLINE estimates for the Buffalo snowfall data.

optimal for« number  number

procedure from to  of knots of modes
new procedure, a = 2 045 3.01 7 3
new procedure, a = log n ~ 4.14 301 838 5 2
previous procedure, a = 2 0.03 265 7 3
previous procedure, @ = logn ~ 4.14 2.65 oo 3 1

16



0.025

new:a=2

""""" new: a =log n .
- olda=2 A

F

—— old:a=logn N

0.020

0.015
|

estimated density
0.010
|

0.005
|

0.0
|

snowfall (inches)

Fig. 2. Logspline density estimates for the Buffalo snowfall data (n = 63) for the new and the
previous LOGSPLINE procedure and two different values of the penalty parameter.

To investigate the behavior of the LOGSPLINE estimation procedures in situations similar to
the snowfall data, we generated 100 samples of size 63 from each of the densities shown in Fig-
ure 2, except for the estimate of the previous procedure with « = 2 since it is very similar to the
estimate of the new procedure with « = 2. For each of the 300 samples that we obtained, we ap-
plied the same procedures with the same choices of « as in Figure 2, yielding four estimates for
each sample. In Table 2 we summarize the number of modesin each of these estimates. Not unex-
pectedly, the procedures with « = log n frequently underestimate the number of modes, while the
procedures with ¢ = 2 frequently overestimate it. Although it would be possible to fine tune the
penalty parameter to balance the number of times the procedure underestimates and overestimates
the number of modes, we feel that it may be more useful to look at a few estimates with different
values of the penalty parameter before deciding on the final estimate. From Table 2 we also see
that the newer procedures are indeed a little more flexible than the old procedures, yielding even
more overestimation of the number of nodesfor the« = 2 procedure, whilethe new procedurewith
a = logn fallsin between the two old procedures. From this summary we thus see that with the
present sample size it isvirtually impossible to distinguish accurately between densities with one,
two and three modes. However, when we generated samples from the unimodal density (previous
procedure, ¢ = log n) and estimated the density with one of the procedureswith ¢ = 2, we noticed
that when we got two modes, the second mode was more often on the left side of the main mode
than ontheright side. Thisisnot surprising since the density isdightly flatter on that side. Revers-
ing this reasoning we are lead to believe that the existence of a side mode to the right of the main
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TABLE 2.
Number of modesin the simulation study with n = 63.

data generated from previous. « = logn new: a = logn new: a = 2
correct number of modes 1 2 3
estimated numberofmodes 1 2 3 >4 1 2 3 >4 1 2 3 >4
newa =2 39 41 19 1 7 74 17 2 6 26 64 4
new a = log n 74 23 3 0 34 64 2 0 29 40 31 O
previousa = 2 51 37 11 1 16 68 16 O 12 22 65 1
previousa = log n 84 13 3 0 51 46 3 O 45 26 29 O
TABLE 3.

Number of modes in the simulation study with n = 250.
data generated from previous. a = logn new: a = logn new: a =
correct number of modes 1 2 3
estimated numberofmodes 1 2 3 >4 1 2 3 >4 1 2 3 >4
new a = 2 41 26 25 8 0 56 32 12 0 3 68 29
new « = logn 88 12 0 O 4 90 4 2 0O 9 8 2
previousa = 2 74 19 7 0 2 79 18 4 0 9 9 1
previousa = log n 9 1 00 16 82 2 0 5 17 78 0

mode is more plausi ble than the existence of a side mode to the left of the main mode.

Although all procedures have trouble distinguishing between unimodal and multimodal densi-
tieswhen n = 63, most carry out this task well when the sample size gets larger. In Table 3 we
summarize asimilar ssimulation study as in Table 2, except that we generated samples of size 250
from the densities in Figure 2. For this sample size the starting number of knots for the previous
procedureistwelve, while the new procedure starts with eight knots and adds four more during the
algorithm. Except for the new procedure with ¢ = 2, all methods get the right number of modes at
least 74% of thetime. The new method with ¢ = logn ~ 5.52 getsit right at least 88% of thetime

for each of the three situations.

9 Regresson (MARYS)

10 Regression (MARS)

When viewing regression as afunction estimation problem we recognize that the regression func-
tion may not be a linear additive function of the predictors and instead allow nonlinear and pos-
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sibly aso nonadditive functions. When there is only one predictor, nonparametric regression can
be viewed as smoothing, for which there are numerous methods available. Some of the popular
methods are kernel and local polynomial regression (Wand and Jones 1995; Fan and Gijbels 1996),
smoothing splines (Wahba1990; Green and Silverman 1994), and polynomial splines. Smith (1982)
is probably the first paper to use polynomial splines with adaptively selected knots for regression
problems. In her method, knots for cubic splines are positioned uniformly over the range of the
data, after which a stepwise knot deletion algorithm is employed.

While many of the univariate nonparametric regression methods can be generalized to Situa-
tions where there are a few predictors, the curse of dimensionality applies when there are many
predictors. One attractive approach for ameliorating this curse is to model the regression function
asan additivefunction of the predictors. This approach has been popularized by Hastie and Tibshi-
rani (1990), who treat both linear regression and generalized regression, including logistic regres-
sion and Poisson regression, and emphasi ze the use of backfitting together with a one-dimensional
smoother to fit the additive models to data.

An early paper using polynomial splinesfor additivelinear regression and well asadditivelogis-
ticregressionis Stoneand Koo (1986a), in which knotswere placed at nonadaptive (predetermined)
quantiles. Stepwise knot selection, forward and backward, was used in the additive regression pro-
gram TURBO by Friedman and Silverman (1989). A somewhat different approach to additive re-
gression involving stepwise knot selection was developed by Breiman (1993). In the applications
of cubic splinesin these papers, linear constraints were placed on the tails of the splines mainly to
control the variance of the corresponding estimates.

When nonadditive models are considered, the usual approach to nonparametric regression has
been to restrict the model to additive main effects, and selected low order interactions. Gu and
Wahba (1993) developed a smoothing spline approach to ANOVA modeling in function estima-
tion. Friedman (1991) introduced Multivariate Adaptive Regression Splines (MARS), which isa
polynomial spline methodology for estimating the regression function.

In this section we first give a brief description of Friedman’s MARS program. When we were
working on POLY CLASS (Kooperberg, Bose and Stone, 1995), we found it necessary to develop
our own version of MARS to handle huge data sets with many predictors and basis functions. In
Section 5.2 we describe this version of MARS and list some differences between our version and
Friedman’s. In Section 5.3 we present a small example in which we compare both programs.

From now on, when we mention“MARS” inthis paper, werefer either to Friedman'sversion or
to both versions s multaneously. Werefer to our version of theMARS algorithmas“POLY MARS'.

10.1 MARS

Let (X4,Y7),...,(X,,Y,) denote a random sample from the distribution of (X,Y"), where X €
RM and Y € R. Wewish to estimate f(X) = £(Y|X). The MARS model (Friedman 1991) can
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be written as

1(X) = J(XI8) = Y- 5B,(X) (10.)

For a given set of basis functions, the unknown parameters in MARS are estimated using least
sguares. The selection of the basis functionsin MARS is not easily written in the allowable spaces
framework of Section 3. Here we outline the main features of the MARS algorithm when piece-
wise linear splines are used. A refinement of this algorithm makes use of continuoudly differen-
tiable functions that are similar, but not exactly identical to the cubic splines employed in various
other sections of this paper. (Note that these cubic splines yield twice continuoudly differentiable
functions.)

Inthe MARS program the one-dimensional model f(x) = /3, isinitially fit. Then, successively,
modelswith J basis functions are replaced by modelswith J + 1 or J 4+ 2 basisfunctions. Thisis
done by considering the addition of all possible pairs of new basis functions B, (x)(z; — ¢); and
B, (x)(t — x;)+, where x; isone of the predictors, ¢ isanew knot in that predictor, and B,,(x) is
a basis function currently in the model that does not depend on ;. (Some of these additions may
involve adding only one genuinely new basis function since one new basis function would already
beinthespan of the existing basisfunctionsand the other new basi s function; see Friedman (1991).)
In the MARS algorithm every data coordinate that is sufficiently far from existing knots for the
corresponding variableisa candidate for anew knot for that variable. The best model of dimension
J + 2 orJ + 1 ischosen among such candidates for stepwise addition using a Generalized Cross
Validation (GCV) criterion. The stepwise addition of basis functionscontinuesuntil auser specified
maximum number of basis functionsisreached. During the stepwise deletion stage of MARS, any
of the nonconstant basis functions can be removed at any step. GCV is used to select the overall
best model during the addition or deletion stage.

An option in MARS allows the user to restrict the basis functions to depend on at most d pre-
dictors. The POLY MARS methodology described below correspondsto MARS with d = 2.

10.2 POLYMARS

The set up for POLYMARS isidentical to that for MARS, except that with POLY CLASS (Sec-
tion 6) in mind we allow theresponse Y to bein R™ with K > 1. For simplicity, however, we will
assume herethat A = 1 since all computations generalizetrivially. Asin the other methodologies,
we model f(X) inalinear space, so that (10.1) again holds.

For POLY MARS It isconvenient to define an allowable space by listing its basis functions. For
1 <m < M, let K, bean integer with K,,, > —1; if K,, = —1 there are no basis functions
depending on x,,,; if K, = 0, consider the basisfunction B,o(x,,) = «,,; if K,, > 1, consider the
basis function B,.o(x,) = @m, let x,,, for 1 <k < K, bedistinct real numbers, and consider the
additional basisfunctions B,.x(2m) = (2, — @k )y for 1 <k < K.

Let ¢ be the linear space having basis functions 1, B,,x(z,) for1 < m < M and0 <
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k < K,, and perhaps certain tensor products of two such basis functions. It is required that if
Bij(x) Boi (2., ) beamongthebasisfunctionsfor somej > 1, then Bio(2;) Buk(@m) = 21 Bk (2m)
and hence (if £ > 0) x,2,,, be among the basis functions. One reason for this requirement is that it
leads to modelsthat are smpler and easier to interpret; another isto reduce the variance associated
with the overall modeling procedure.

It iseasy to check that the collection G of such spaces satisfies the propertieslisted in Section 3.
In particular, the minimal alowable space G,,,;, for the POLY MARS model isthe space of constant
functions. Thustheminimal model for (10.1) has.J = 1, B; = 1 and f(X) = /3, sothat f(X) does
not depend on the vector X of predictors. Note that the highest order d of interactionsalowed ina
POLYMARS model istwo.

Given the basis of an allowable space &' as defined above, it is obviouswhether any given basis
function can be deleted in one step.

Example. Let M =4, By = 1, By = 21, Bs = (v1 — 1)1, By = @3, By = 23, and Bs = x123.
Then By, ..., Bs span an alowable space GG. In thisexample, Bs, Bs or Bg could be removed and
the remaining space would till be allowable. 1f one of the basis functions B, or B, were removed,
however, the remaining space would not be allowable since it would still contain Bg = B, B4 (as
well as Bs; in the case of removing B,). The constant basis function B; can never be removed.

Let G, be the allowable space having basis functions 1, B,,x(z,,) for1 < m < M and1 <
k < K,,, and perhaps certain tensor products of two such basis functions. To decide which basis
function to add to this model, we compute the Rao statistic as described in Section 3,

(i) for all spaces that can be obtained from &, by adding a basis function Bjy(x;) = x; to Gl;

(i) for all allowable spaces that can be obtained from ¢, by adding abasisfunctionto G, that is
atensor product of two basis functions B;; (z;) and B,z (), [ # m, that arein Gl;

(iii) for an alowable space that can be obtained from Gy by adding a basis function corresponding
to a potential new knot in predictor m for 1 < m < M. For every predictor we consider
afixed number N, of potential new knots, which typically are preselected order statistics of
the data.

Asthe new space G we choose the one corresponding to the largest absol ute value of the Rao statis-
tic among those candidates listed above that are nonvacuous.

Example (continued). Corresponding to (i), we can add the basis function x4 to the space in the
above example. Corresponding to (ii), wecanadd By Bs = x123, BsBy = (21— 1) a2 Or B4yBs =
xq13 to the space. The basis function Bs B; = (x7 — 1)4x3 cannot be added, since the resulting
gpace would not contain By Bs = x1x5 so it would not be allowable. Corresponding to (iii), abasis
function (z1 — x15)4 With 21y, # 1, (22 — 291)+ OF (23 — x3;)+ could be added. No basis function
of theform (x4 — 241 )+ could be added before x4 is added.

For a given allowable space, the parameters /3, in (10.1) can be estimated using least squares.
The Rao and Wald statisticsthat are used to decide which basisfunction to add or del ete now reduce
to the differencein the residual sum of squares between two nested models. The AIC criterion to
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select the final model is replaced by a penalized residual sum of squares called GCV (Friedman,
1991). In particular, we select the model that minimizes

Rssj/[l_ a(J—l)r’

where RSS; istheresidual sum of squaresfor the model with .J basisfunctionsand « isaparameter
that we typically set equal to 2.5.

Several computational tricks make it possible for the POLY MARS algorithm to be extremely
fast, even for huge data sets and many basis functions. (See Kooperberg, Bose and Stone (1995)
for more details.) In particular, since we limit the number of potential locations for new knots, in-
ner products need to be computed at most once. We show that if the maximum number of basis
functions considered is P,,.x, the complete POLY MARS program requires O( Non P2, ) floating
point operations (flops), while MARS (which has to recompute inner products since there are too
many candidate basis functionsto store them al) requires O(Mn P2, ) flops. In particular, on an

example withn = 10000, M = 63, Ny = 20, and P,,., = 80, the POLY MARS program required
474 seconds of cpu time, while MARS required 12,636 seconds on the same machine.

Besidesthese computational issues, thereare other differencesbetween MARS and POLY MARS:

e The allowable spaces are different. Thisis most evident in the addition stage, during which
we add first alinear term and perhaps later a knot, while in Friedman’s program two basis
functions, essentially corresponding to a linear function and a knot, are added at the same
time.

e During the deletion stage POLY MARS requires interaction basis functions to be removed
before the corresponding main effects can be removed. Knots have to be removed before
linear terms are removed. MARS has no such restrictions.

¢ InMARS, but not in POLY MARS, a piecewise cubic approximation to the piecewise linear
function is applied after abasis function is added.

10.3 An example

For acomparison of thetwo MARS programson a small data set, we applied them to thewell stud-
ied Boston housing data [ see, for exampl e, Beld ey, Kuh and Wel sch (1980) and Breiman, Friedman,
Olshen and Stone (1984)]. The response is the median value of homes in thousands of dollars, and
there are 13 predictors, many of which are highly collinear.

In our experiment we randomly divided the datainto atraining set of 304 cases and atest set of
202 cases. Both MARS programswere applied to thetraining set, using 30 as the maximum number
of basisfunctions, GCV to select thefinal model, and otherwisethe default optionsin both program.
(In MARS we set the maximum number of termsin each basis function equal to two, to make the
program comparable to POLY MARS.) We then computed the mean sguared error on the test set.
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TABLE 4.
MARS fits for the Boston housing data.

Method MSE CPU
MARS - linear fit 14.37 5.07
MARS - cubic approximation 1591 5.07
POLYMARS 14.07 341

We repeated this experiment ten times. The results are summarized in Table 4, together with the
average cpu time on our SGI workstation. Since MARS supplies both a piecewise linear fit and a
piecewi se cubic approximation to thisfit, therearetwo MSE’sfor thisprogram. The standard errors
in the estimates of the mean squared error are all approximately 1.5, while the variation in the cpu
timesisnegligible. Over these ten repetitions, the correl ation between the M SE of the POLY MARS
fit and the piecewise linear MARS fit is 0.94, while the two other correlations are between 0.4 and
0.6. From this table we see that the difference between the two piecewise linear fitsis negligible,
while both are a little better than the piecewise cubic approximation.

We then applied both MARS proceduresto the compl ete data, with 80 as the maximum number
of basis functions. MARS used 78.6 seconds cpu time to select 53 basis functions, while POLY-
MARS used 33.7 seconds to select 41 basis functions. Both models were very complicated: for
example, POLY MARS used 10 of the 13 covariates, and 12 pairs of covariates had at least one
tensor-product basis function involving both covariatesin the pair. MARS program used 11 of the
13 covariates, and 22 pairs of covariates had at least one tensor-product basis function involving
both covariatesin the pair.

11 Polychotomousregression and multipleclassification (POLY-
CLASS)

12 Polychotomousregression and multipleclassification (POLY-
CLASS)

121 The POLYCLASS model

The multipleclassification problemiswell studied in statistics. Typically, thereisaqualitative ran-
dom variable Y that takes on afinite number K + 1 of values, which we refer to as classes. Based
on avector of predictors X € IR, we want to predict Y.

In POLY CLASS we use piecewise linear splines and selected tensor products (d < 2) to model
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the conditional class probabilities. Specifically, suppose P(Y = kX = x) > 0fork € K =
{1,...,K + 1} andx € X, where X isasubset of R* over which X ranges. Set

P(Y = kX =x)
Y =K+1X=x)

(9(k|x):10gp xeXandk e K.

Then (K + 1]x) = 0 forx € X and

exp 0(k|x)

PlY = kX = =
( | x) expf(1|x)+ - +exp (K + 1|x)’

xeXandk e K. (12.1)

We refer to (12.1) as the polychotomous regression model; when K = 1 it isreferred to as the
logistic regression model.

Let J be apositive integer and let G be a .J-dimensional linear space of functions on X’ with
basis By, ..., B;. Consider the model

J
0(k|x) = 0(k|x; B,) = ZﬂjkB x € Xandk € K; (12.2)
here 3, = (Br1,...,0ks)" forl < k < K, By, = 0, and 8 isthe JK-dimensional column
vector consisting of the entriesof 3,, . . ., B, which ranges over B = R’". Correspondingly, set

exp 0(k|x; B)
expO(1]x; B) + - +expO(K + 1[x; 3)

PV = kX = x: 8) =

forgeB, xeXandkeK.

In POLY CLASS the basis functions B;(x) that are used in (12.2) are piecewise linear splines
and their selected tensor products. Based on sample data, the coefficients /3,5, can be estimated by
maximum likelihood, yielding a concave optimization problem; see Kooperberg, Bose and Stone
(1995) for more details.

Asin most of the procedures that we describe in this paper, we use stepwise addition based on
Rao statistics and stepwise del etion based on Wald statistics to select the basis functions. Some de-
tails specific to POLY CLASS are discussed in Section 12.3. The model selection in POLY CLASS
can be carried out using AIC, an independent test set, or cross-validation [see Kooperberg, Bose
and Stone (1995)].

12.2 A phoneme recognition example

In Kooperberg, Bose and Stone (1995), POLY CLASS is applied to a huge data set from the area
of speech recognition. Here we present an abbreviated version of this analysis. The source of this
data set is the Center for Spoken Language Understanding in Portland, Oregon [Cole et a. (1992,
1994)]. It consists of 2165 utterances from telephone calls, which are numbers that typically are
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parts of addresses, zip-codes and street numbers. Each utterance was processed by one or more
listeners, who produced atime-aligned phonetic description of the utterance. For example, for one
particular utterance, “303” (three-oh-three), it was determined that from 1 millisecond (ms) to 167
ms, the speaker produced phoneme T, followed by phonemer from 167 msto 193 ms, and so on. It
should be noted that the person who decided which phoneme was spoken was not aware of the text
of the utterance. The phoneme transcription, which we obtained from the International Computer
Science Ingtitute (ICSl) in Berkeley, California, is based on the LIMSI phonetic al phabet (Gauvain
et al. 1994).

The utterances were also processed to produce perceptual linear predictive (PLP) features. Ev-
ery 12.5 msthe audible spectrum, based on a concentric 25 ms piece of sound, isdetermined. Since
we consider telephone data, which is sampled at the frequency of 8 kHz, there are 200 observations
of the sound wave in such a25 msinterval. A Hamming window is applied to these 200 observa-
tionsbeforethe spectrum is estimated using the discrete Fourier transform. The estimated spectrum
isnext transformed to yield a critical-band integrated power spectrum with an equal-loudness pre-
emphasis and a cube root nonlinearity to simulate the auditory intensity-loudness relation. Then
the eighth-order autoregressive all-pole model of the transformed spectrum is obtained. The coef-
ficients of the Fourier transform representation of the |og-magnitude of thismodel are known asits
cepstral coefficients. The PLP features (Bourlard and Morgan, 1994; Hermansky, 1990; Rabiner
and Juang, 1993) that we used are the log-gain of the model (similar to the variance) and the next
eight cepstral coefficients (smilar to the autoregressive coefficients).

The goal in our analysisisto estimate the probability distribution over all phonemesat intervals
of 12.5 ms based on the (nine) features available at that time point as well asthe features available
at the ¢ time points, each 12.5 ms apart, before and after the point at which we want to estimate the
phoneme distribution.

Such aprobability distribution (or, moreprecisely, alikelihood that is obtained by weighting the
estimated probabilities by the empirically determined frequencies of the phonemes) can be used as
input to train (estimate) a hidden Markov model, which in turn can be used for automatic speech
recognition (Bourlard and Morgan, 1994). In the hybrid approach described by Bourlard and Mor-
gan, a multilayer perceptron network (atype of artificial neural network) is used to estimate these
probabilities.

There were 45 different phonemes, yielding 247,039 cases (12.5 ms intervals). We randomly
divided the datainto atraining set of approximately 112,000 cases and atest set of about 135,000
cases. We used the vector of features at seven different time points, so that ¢ = 3 above. The eight
cepstral coefficients were used exactly as we received them from I CSI. Since some speakers speak
moreloudly than others, thelog-gain by itself isnot an informative predictor of the phonemethat is
being spoken. Differencesin the log-gain may be moreinformative. If e(:) isthe log-gain at time

instance ¢, we used
3

A0y = eli) — = 3 eli+])

i=—3

instead of e(z).
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TABLE 5.
The features in the POLYCLASS model.

time

N
w

cepstral coefficient —3 —2
log-gain 4
lag one
lag two
lag three
lag four
lag five
lag six
lag seven
lag eight

W~

—1
3
4
5

W o~ b oo
A bhhOoOBADNOIONO
=

N
A WWpHAOTLOoTO D

w w
w

The standard POLY CLA SS methodol ogy would be practically impossible to apply to the phoneme
recognition data, for which K = 44, M = 9-7 = 63 and thesamplesizeisgivenby n = 112, 115.
In Kooperberg, Bose and Stone (1995) anumber of modifications, which makeit possiblefor POLY-
CLASS to deal with this data set, are discussed. The most important such modification is that
instead of computing the regular Rao statistics during the stepwise addition stage a related least
sguares problemis solved.

We fitted a POLY CLASS model with 350 basis functions to the data. This maximum number
was constrained by the computing resources that were available to us on a network of workstations
at the Maui High Performance Computing Center. We believe that alarger number of basis func-
tionswould give better results. Exhaustion of our computing resources also prevented us from ap-
plying the stepwise deletion algorithm to the largest model. However, intermediate results suggest
that the deletion of some basis functions would not significantly improve our results.

Of the 350 basis functionsthat were selected by the POLY MARS agorithm, oneisthe constant
function, 31 are of the form «;, 45 are of the form (z; — x;1)+, 134 are of theform «,z;, 87 are of
theform (x; — x;;)+x;, and eleven are of theform (x; — a1 )4 (x; — ;1) +. Thus, of the 63 features,
32 are not used. Of the remaining 31, ten are involved in al types of basis functions, ten more are
involved in all types of basis functions except for (x; — )+ (2; — x;1)+, and eight are involved
in basis functions of thetypes:z;z, (l‘z — J}ik)_|_, Tix; and l’i(l']‘ — J}]‘k)_|_. Flnally, two features have
basis functionsof thetypes x;, (x; — x;x)+ and x;z; only, and one feature appears only linear in the
model.

The 63 features can be organized in a 9 (cepstral coefficients) x 7 (time points) table. If we
label the features from “1”, for the feature that occurs only linearly, to “5”, for the features that
are involved in al types of basis functions, and we ignore the entries for the 32 features that are
unused, we obtain Table 5. From this table we clearly see that the most important information is
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obtained from time points —3 (37.5 ms before the phoneme was spoken), 0 (when the phonemeis
spoken) and 3 (37.5 ms after the phoneme was spoken). This table suggests that, in retrospect, it
would have been better to use the cepstral coefficients at more than seven time points. (Wealso see
that the log-gain and the shorter lags are more important than the longer lags.)

In Figure 3 we report the misclassification rate and the fitted log-likelihood
Yilog P(Y =YX =X,)

n

for thetraining set and thetest set combined. Fromthese graphsit appearsthat thefit would continue
to improve if we were to increase the number of basis functions.

Asmentioned earlier, in this particular application the estimation of conditional class probabil-
itiesis more important than classification, since these probabilities can be used as the inputsto the
hidden Markov model for the approach to speech recognition described in Bourlard and Morgan
(1994). POLY CLASS is particularly useful in this situation, since, unlike most other classification
methods, it provides viable estimates of the conditional class probabilities. In Figure 4 we plot the
estimated probability that a case is a particular phoneme grouped in bins of size 0.01 on the hori-
zontal axisand the fraction of cases with that probability that corresponded to the correct phoneme
on the vertical axis. Note that every case contributes 45 observations to this graph: one observa-
tion per candidate phoneme. These graphs are extremely close to the ideal straight line (fraction
true class) = (estimated probability) for the test set (left side) and the training set (right side).

Clearly, not al phonemesare correctly estimated with the same probability. In Figure5 we plot
the average probability, over the test set, assigned to each phoneme. We see from Figure 5 that,
not surprisingly, this probability is much larger for the frequently occurring phonemes than for the
infrequently occurring ones.

Other aspects of theanalysisthat are discussed in Kooperberg, Bose and Stone (1995) are acom-
parison of POLY CLASS with other classification methods and an analysis of the patterns of mis-
classification by POLY CLASS. In particular, it was found that most of the traditional classification
methods either are not able to deal with such ahuge data set or are outperformed by POLY CLASS.
Neural networks, however, do give better results on related, but not identical, data. It was hypoth-
esized that for POLY CLASS to be competitive with neural networks it should be able to fit larger
models faster, so that, for example, one could experiment with different sets of features. It may be
that other optimization methods, for example the one-case-at-a-time gradient based methods used
in neural networks, can give POLY CLASS the required computing power.

12.3 Some moredetailsof POLYCLASS

The basisfunctionsthat areused in POLY CLASS are piecewise linear splinesand their tensor prod-
ucts. We impose similar restrictions as in POLY MARS on which basis functions are allowed; that
is, linear functions in one of the predictors are always allowed, while basis functions of the form
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Fig. 3. Misclassification rate (left) and fitted |og-likelihood (right) versus the number of basis func-
tions. Solid = training set, dashed = test set.
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28



o 2 © |

o o
@ a
© <
U o
5} ©
5 < | 2 o |
o o (o] o
) o
E (]
- =
el e
2 % 5%
=3 o = o
g 2

2]
o
=1 . <
S o S o -
S o & 5 o
o L]
g o
=

©

S |2 A

o o

T T T T T T T T
0 5000 10000 15000 0 5000 10000 15000
number of occurrences number of occurrences

Fig. 5. Average probability assigned to the correct class and fraction correctly classified versusthe
class frequency for the test set.

(x; — x;)4+ are dlowed in the model only when the corresponding linear function is already in-
cluded in the model. Tensor products of basis functionsinvolving two different predictors aready
inthemodel are allowed, except that if such atensor product involvesaknot in either or both of the
predictors, the corresponding basis functionswith linear terms must aready be inthe model. Thus,
for (l‘z — wik)-l—(l'j — l’ﬂ)_|_ to be allowed in the model l’i(l']‘ — J?]‘[)_|_, (l‘z — J}ik)_|_$]‘, and T;T; need
already be in the model.

The main difference between POLY CLASS and the other methodol ogies discussed in this pa-
per is that in POLY CLASS there are K parameters for each basis function, while for the other
methodologies there is only one parameter. This seriously increases the amount of computation
needed for large data sets. For example, for the phoneme recognition problem discussed in the pre-
vious section the number of parametersfor the largest model equals 15,400. Thus even storage of
a (pseudo-)Hessian becomes prohibitively expensive, while the computation of one score function
takes O(.J K'n) floating point operations (flops) for a model with .J basis functions and the compu-
tation of a Hessian takes O(.J? K?n) flops. The following modifications of the POLY CLASS algo-
rithm, to make it feasible to deal with very large data sets, are discussed in Kooperberg, Bose and
Stone (1995):

¢ During the stepwise addition stage of the program we use a multiresponse least squares ap-
proximation to the POLY CLASS problem. That is, weregress K" + 1 response vectors 7,
on the basis functions, where 7;; = ind(Y; = k), =1,...,nand k = 1,..., K + 1, with
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ind(-) being the usual indicator function.

This least squares approximation can conveniently be carried out using a multiresponse ver-
sion of the MARS algorithm described in Section 5. Selecting ./ basis functionsnow requires
O(50nJ(J + K)) flops.

e After the J basis functions have been selected using this least squares approximation, we
immediately fit the largest model using maximum likelihood. To obtain good starting values
we successively add basis functionsto the model, using only afraction of the cases, until all
basis functions are in the model.

e The maximum likelihood fitting was carried out on a network of 64 workstations at the Maui
High Performance Computing Center.

With these modifications, the time needed to fit the largest POLY CLASS model was reduced from
an estimated several years to one day on the network of workstations.

13 Hazard regression (HARE)

14 Hazard regression

Recall the discussion of hazard regression in Section 2. Let F'(1 | X) = P(T < t|X) denote the
conditional distribution function of thesurvival timeT" given the random vector X of covariatesand
let f(¢|X) denote the corresponding conditional density function. Define the conditional hazard
functionby A(? | X) = f(¢t|X)/[l — F(t|X)] and set ¢(t| X) = log A(t|X). A proportional
hazard model is specified by setting ¢(¢ | X) = ¢o(t) + X3; here ¢(-) is the baseline |og-hazard
functionand 3 € RM isavector of parameters. Cox (1972) suggested apartial likelihood principle
for estimating 3. Since then, analyses of censored outcome data have largely been confined to the
estimation of linear covariate effects. See, for example, Andersen et al. (1993), Cox and Oakes
(1984), Fleming and Harrington (1991), Kalbfleisch and Prentice (1980), and Miller (1981).

The desire to relax the proportionality and linearity assumptions has led to many further devel-
opmentsin survival analysis. For example, Hastie and Tibshirani (1990), Sleeper and Harrington
(1990), and Gray (1992) considered using splinesto model nonlinear covariate effectsin largeclini-
cal studies. Inpractice, itiseven more desirableto estimate the conditional hazard, distribution and
density functions. Based on proportional hazards models, Breslow (1972, 1974) suggested estimat-
ing the conditional distribution by combining Cox’s partial likelihood principle for the covariate
effects and the Kaplan—Meier (1958) method for estimating the baseline survival function. Fol-
lowing the extended linear modeling framework described in Sections 2 and 3, Kooperberg, Stone
and Truong (1995a, 1995b) developed a more genera approach, which, without requiring the pro-
portionality and linearity assumptions, yields estimates of the conditional hazard, density, survival
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and quantile functionsin a unified manner using the relationships

F(t|x)zl—exp(—/ot)\(u|x)du) and f(t]x)=[1 — F(t[x)] \t]x), >0

In the remainder of this section, we describe the methodol ogiesfor hazard estimation with flexi-
bletails(HEFT) and hazard regression (HARE), and we give an exampletoillustratetheir practical
application.

14.1 TheHEFT and HARE methodologies
HEFT

The HEFT methodology is designed to estimate the unconditional (or baseline) log-hazard func-
tion. Let f denote a positive density function on (0, c0), and let F', A and ¢ be its distribution,
hazard and log-hazard functions, respectively. Giventheinteger ./ > 3 and the sequencet, ..., 1,
with0 < t; < --- <ty < oo, let GGy bethe (J — 2)-dimensional space of twice continuously dif-
ferentiable, cubic spline functions s on [0, o) with knotst,,¢s, ..., -1, 1, such that s is constant
on[0,¢;] andon [ty, o). Let By,..., Bj_, beabass of thisspace such that B;_, = 1 on [0, o)
and By, ..., By_sequal zeroon [t;, ).

To enhanceits flexibility in estimating the hazard function, the space G, can be augmented by
adding the basis functions

B_1 (t) = log

Bo(t) =1 t t
o and o() og (t + ¢), > 0,

with ¢ > 0 being a parameter. In fact, the linear space G spanned by G, U {B_1, By} includes
Weibull and Pareto distributions as special cases [see Kooperberg et al. (1995a)]. The collection G
of such ./-dimensional spaces (¢ form afamily of allowable spaces.

Setﬁ = (ﬂ—lvﬂovﬂlv s 76J—2) S ]RJa
&5 8) = BaB_1(:) + BoBo(:) + B1Bi(-) + -+ + Bi—2By—2(-),

and
B = {(5—17507517- <. 76J—2) € ]RJ : 6—1 > —1 and 60 Z _1} .
The above constraints ensure that

t 00
/ exp ¢(u; B)du < 00, 0 <t < o0, and / exp ¢(t; 8) dt = oc.
0 0

We use ¢(+; 3), B € BB, to model the log-hazard function.

Given a random sample, the maximum likelihood estimate 3 of 3 is obtained by using the
Newton—Raphson method. (Notethat the log-likelihood function here can be easily obtained from
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that for hazard regression discussed in Section 2 by ignoring the covariates.) Estimates of the log-
hazard, hazard, survival, distribution, and density functions are given by (/S( ) = &(8), A(t) =
exp o(t), (1) = exp (= fg Mu)du), F(t) = 1= 8(1), andf() S(t)A(1), ¢ > 0. The corre-
sponding estimate of the pth quantileis given by Qp = F- L(p).

Observe that the above log-hazard estimate depends on the choice of G. HEFT selects such a
G adaptively from G by following the methodol ogy for model selection described in Section 3. (In
the current implementation of HEFT, the choice of which logarithmic termsto includein the model
ismadeinitially by theuser and is not modified during the process of stepwise addition and deletion
of knots.)

HARE

HARE isaroutine for estimating covariate effects on a possibly censored response variable. Here
the allowable spaces are similar to those used in POLY MARS, except that the conditional log-
hazard function also depends on time. To this extent we also allow piecewise linear basis functions
depending on time and tensor products of these with (piecewise linear) basis functions depending
on acovariate. Aswith POLY MARS and POLY CLASS, the highest order of interactions allowed
istwo. Let G denote the collection of such allowable spaces.

For an alowable spacein G, we get estimates of the coefficients of basis functions by maximiz-
ing the log-likelihood function given in the discussion of hazard regression in Section 2. This pro-
cedureis carried out using the Newton—Raphson method. Estimates of the conditional 1og-hazard,
conditional hazard, conditional survival, conditional distribution, and conditional density functions
are obtained in a manner similar to HEFT.

For model selection, the adaptive methodology is essentially the same as described in Section 3
with d < 2. Inthe current implementation of HARE, the fitted conditional |og-hazard function has
aconstant tail. For details, see Kooperberg et a. (1995a).

Besides providing a unified framework for estimating the conditional hazard, survival, density
and quantile functions, HEFT and HARE a so allow considerableflexibility in fitting survival data.
If the fitted model contains an interaction involving time and a covariate, then the assumption of
proportionality isquestionable. Onthe other hand, HARE can beforced tofit aproportional hazards
model or even an additive model (d = 1).

HEFT as preprocessor to HARE

Before applying HARE, it is useful to transform the time variable using HEFT. There are two ad-
vantages in doing this. First, because of the piecewise linear nature of HARE, the first derivative
of the baseline hazard function can have big jumps at various knots in time. The HARE model for
the transformed data, on the other hand, typically hasfewer knots, and thejumpsin thefirst deriva-
tive of the hazard function at these knotstend to be smaller. Secondly, thefitted conditional hazard
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function beyond the last knot is necessarily constant when HARE is applied to the original data, but
thisis not the case when HARE is applied to the transformed values of time.

Let \, denotethe unconditional (baseline) hazard function of 7" and set ¢ = — log(1— F{) with
F, being the distribution function corresponding to Ay, so that ¢, isthe baseline cumulative hazard
function. Then ¢o(7") has constant hazard function [see Kooperberg et al. (1995a)]. This motivates
the use of HARE on the transformed responses.

We next describe relationships between the transformed and untransformed data. Let f;, F}
and )\, denote the conditional density, distribution and hazard functions of ¢,(7") given X. Then
the corresponding functionsfor 7" given X are given respectively by

f(ﬂX) = )‘O(t)fl(qo(t)|X)7 F(t|X) = Fl(qo(t)lX), and )‘(ﬂX) = )‘O(t))‘l(QO(t)|X)'
Moreover, the pth conditional quantile function is given by

Qp(x) = F7(plx) = ¢ ' (17" (p|x)).-

Given arandom sample, our methodology starts by applying HEFT to the response variables
(no covariates), yielding an estimate A\, of A,. Then ¢, is constructed based on the formula of the
cumulative hazard function. Next the HARE methodology is applied to the transformed responses
do(T), yielding an estimate \; of the conditional hazard function for the transformed data. Finally,
we obtain estimates of the original conditional density, distribution, hazard and quantile functions
using the relationships given above.

14.2 An example

In this section we use HEFT and HARE to analyze data from aclinical trial. The Studies of Left
Ventricular Dysfunction [SOLVD (1990)] involves two double-blind, randomized clinical trialsto
test improved survival by treatment with enalapril, an inhibitor of angiotensin-converting enzyme,
in patients with left ventricular dysfunction with or without congestive heart failure (CHF). The
study started with a registry of 6,273 patients involving 23 centers located in the United States,
Canada, and Belgium. Men and women aged 21 to 80 years with an gjection fraction (defined be-
low) of at most 35% wereéligiblefor thetrials. In particular, patients with overt CHF were eligible
for the treatment trial, whereas those with left ventricular dysfunction but no history of overt CHF
wereeligiblefor the preventiontrail. Recruitment began in 1986, and the study terminated in 1991.

We will illustrate the use of HEFT and HARE on the treatment arm consisting of 2569 patients.
Here the event is defined as death or hospitalization due to CHF. The response is time (in days).
Among the 2569 observations, 1219 were censored. The censoring occurred when the patient was
lost to follow-up or was still alive and never hospitalized due to CHF by the end of the study. We
begin our analyses by applying HEFT to the possibly censored responses, yielding amodel for the
unconditional log-hazard function consisting of three knots and alog term (5_1). Figure 6 shows
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Fig. 6. Estimated unconditional hazard and distribution functionsusing HEFT for the SOLVD data.

estimates of the unconditional hazard and survival functions. Asthe right side of Figure 6 shows,
our survival function estimate is remarkably close to the Kaplan—-Meier estimate.

Next, HARE was applied to examine covariate effects on CHF. We used a set of ten covariates:
treatment (1=enalapril, O=placebo); serum sodium level (serum); systolic blood pressure (SBP);
dystolic blood pressure (DBP); smoking (1=currently smoking, O=not currently smoking); sex (1=fe-
male, 0=male); age; adherence (a measure of treatment or placebo use in terms of numbers of pills
taken and dispensed); New York Heart Association (NYHA) functional class|1-1V (with | indicating
the least severity of illness and IV indicating the greatest severity); and gjection fraction (EF).

The gjection fraction (EF) isthe fraction (measured as a percentage) of the blood that is pumped
from the left ventricle into the body’s vascular system. After oxygenation in the lung, blood flows
back to the left atrium of the heart and continues to the left ventricle. This is the chamber that
“gects’ the blood from the heart into the body. Clearly, 100% of the blood cannot be gjected, but in
normal heartsthisfractionisat least 60%. In damaged hearts, where the muscle of the left ventricle
is not working well (maybe from the effects of a previous heart attack), the fraction can be much
lower, say 25-40%. Clinically, an EF of less than 35% is reason for concern. Below 15-20% the
blood backs up into the atrium and lung, causing congestion and malfunctioning of the lung (CHF)
and possibly death!

After removing the 69 cases involving missing values on one or more covariates, we obtained
adata set with 2500 observationsand 1308 events. In our analyses we treated the covariate NY HA
as an unordered categorical variable. Alternatively, we could havetreated it asan ordinary variable
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TABLE 5
HARE analyses of the SOLVD data
(Seetext for the model descriptions.)

Basis function Model 1 Model 2 Modd 3 Mode 4
1 7.550 34.900 32.016 32.706
Age 0.013 0.010 0.009 0.011
Smoking 0.400 0.184
DBP —0.424 —0.388 —0.400
EF —0.567 —0.026 —0.026 —0.026
NYHA | —0.294 —0.291
NYHA I —0.462
NYHA 11 0.757 0.527 0.485 0.479
NYHA IV 1.210 0.980 18.577 19.004
Serum —0.114 —0.248 —0.227 —0.233
Treatment —0.124 —0.312 —0.302 —0.303
(111 — )4 0.006
(562 — 1)+ 0.002
DBP x Serum 0.003 0.003 0.003
EF x Serum 0.004
NYHA IV x Serum —0.127 —0.130
(562 —t)4+ x Smoking —0.001
(562 — 1)+ x NYHAII 0.001
(562 — 1)+ x Treatment  —0.001
BIC 21620.17 21562.30 21561.83 21562.32

having the four possible values 1, 2, 3 and 4.

Table 5 shows the results of applying HARE in various ways. Specifically, Model 1 summa-
rizes the fit to the untransformed responses, which has 15 basis functions and BIC = 21620.17.
As discussed in Section 7.1, the above analysis can further be refined by applying HARE to the
transformed responses using Go(1) = —log (1 — Fy(1)), where Fy(1) is shown on the right side
of Figure 6. This yields a proportional hazards model having 9 basis functions with no knots and
BIC = 21562.30. (Actualy, BIC for the transformed data is 2480.49. We used the relationships
described in Section 7.1 to retrieve BIC for the untransformed data.) The resulting fit isreferred to
asModel 2in Table 5. Note that al of the interactions and the two nonlinear termsinvolving time
have disappeared; this may be explained by the nature of the transformation ¢,(7"). While HARE
models allow for non-linearity, this smaller model is linear and easier to interpret. In general, one
of the strengths of HARE is that it chooses more complicated models only when smpler ones do
not fit nearly as well [see the examplesin KST (19953)].

HARE facilitates the visual examination of covariate effects. For example, Figure 7 shows es-

35



[Te)
s e
g —
< —— Transformed l":‘. —— Transformed
S 4 | e Untransformed > g R\ s Untransformed
g © =
© 8
o
T g =
N o = o
Je 2
E =
c o n
RS Q] = S
= g S
S 3=
3 5
— <
g S o |
g o
e e
o o
T T T T T T T T
0 500 1000 1500 0 500 1000 1500
Time (in days) Time (in days)

Fig. 7. Estimated conditional hazard and survival functions for an average smoking, NYHA class
IV, treated patient using HARE for the SOLVD data.

timates of the conditional hazard and survival functions for a patient having the covariate values
given by

treatment=1, serum sodium=138.95, EF=24.85,
DBP=76.81, NYHA=IV, smoking=1, age=60.88.

These values were chosen to represent an average smoking, NYHA class 1V, treated patient. Fig-
ure 7 also compares results from untransformed data (Model 1) and transformed data (Model 2).
We remark that the estimated hazard function for the untransformed data exhibits a constant tail, as
was discussed in Section 7.1. Estimates of the conditional density and quantile functions are also
easily obtained using HARE.

We continue our analysis by using other optionsin HARE. Since Model 2 isa proportional haz-
ards model, we decided to reapply HARE forcing it to fit such amodel. Model 3 of Table 5 sum-
marizes the resulting fit, indicating a sightly different proportional hazards model with 11 basis
functions and BIC = 21561.83. (BIC for the transformed datais 2480.01.) Comparing this model
with the Model 2, we notethat HARE has reduced BIC dightly by including two more basis func-
tions, NYHA | and NYHA IV x Serum.

For afurther comparison, wefit the transformed values of time and the same covariatesas above
using coxr eg from S-PLUS. Inthelight of theanalysisusing HARE, weforced thetwo interaction
terms of Model 3 into the Cox model (the default form of coxr eg estimates main effects only).
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TABLE 6
Analyses of the SOLVD data using coxr eg from SPLUS.

Variable Coefficient SE P-value
Age 0.011 0.003 0.000
Smoking 0.185 0.067 0.006
DBP —0.401 0.106 0.000
EF —0.027 0.004 0.000
NYHA | —0.293 0.106 0.005
NYHA 111 0.479 0.059 0.000
NYHA IV 19.480 6.040 0.001
Serum —0.234 0.061 0.000
Treatment —0.304 0.056 0.000
DBP x Serum 0.003 0.001 0.000
NYHA IV x Serum —0.134 0.044 0.002

Table 6 provides a summary of thefit.

Observe that the interaction terms are highly significant and that the fit is similar to Model 3,
except that the covariate smoking is significant and the constant term is not allowed in coxr eg.
Since thereis no knot in Model 3, we felt that the default penalty value of log(2500) = 7.82 of
HARE might have been too high. (Thisis equivalent to using the chi-square test with one degree
of freedom and the significancelevel of o = 0.005 to test themodel with 12 basisfunctionsvsasub-
model with 11 basis functions.) By using a smaller penalty value of 7.1 (« = 0.007) and refitting
the datausing HARE, we obtained Model 4 in Table 5, which has 12 basisfunctions. Thismodel is
in close agreement with the one obtained by using coxr eg and shown in Table 6. Moreover, the
standard errorsof the coefficientsin Model 4 (not shown) areremarkably close to the corresponding
onesin Table 6. We conclude that Model 4 is our most reasonable HARE model for the data.

Note that the treatment effect isincluded in all five models discussed above. In fact, the treat-
ment was so effective that, for ethical reasons, the trial was terminated early. Other important co-
variates arethe gjection fraction (EF), age, and the NYHA functional class. To demonstrate another
strength of HARE, we use Model 4 to examine graphically some of the above covariate effects. Fig-
ure 8 illustrates estimates of the conditional hazard rate and survival probability after 3 yearsas a
function of EF. We see that the hazard rate decreases and the survival probability increases with
EF. Figure 9 shows estimates of the hazard rate and survival probability after 3 years as functions
of age. It is observed that older participants have a higher risk than the younger ones.

Asafinal illustration of HARE, Figure 10 shows estimates of the 20th, 50th and 80th percentiles
asfunctionsof age and EF based on Model 4. Observe that the median survival time decreaseswith
age, whileit increases with EF.

In summary, in the above analyses the HEFT and HARE methodologies yielded estimates of
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Fig. 8. Left side: estimated conditional hazard rate after 3 years as a function of EF. Right side:
estimated conditional survival probability after 3 years as a function of EF. Same covariatesasin
Fig. 7.

the (conditional) hazard, survival, density and quantile functions in a consistent manner without
requiring the proportionality assumption. Moreover, our highly adaptive methodology performs
well in comparison with the traditional approach even when that approach is applicable. In light
of this example and those given in Kooperberg et al. (1995a), we find that HEFT and HARE are
useful toolsfor survival analysis.

15 Spectral estimation (L SPEC)

16 Spectral analysis

For stationary times series, it is known that the periodogram ordinates at the Fourier frequencies
are approximately independent and have an exponential distribution with mean equal to the spec-
tral density function. Thisimpliesthat the periodogramisnot aconsistent estimate, but consistency
can be achieved by smoothing the periodogram ordinates [see Brillinger (1981)]. In this section we
present our version of the spectrum estimate by treating it asaspecial case of thegeneralized regres-
sion problem discussed in Section 2. Specifically, we use the theory and methodology of extended
linear models to estimate the logarithm of the mean of the exponential distribution function. Here
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the mean isthe spectral density function.

To describe the possibly mixed spectral distribution, consider a real-valued, second-order sta-
tionary time series X, withmean E(X,) = £(X,) and covariancefunctiony(u) = cov(X;, Xiyy).
Assume that the time series has the form

p
X, = Z Rjcos(th; + ¢;) + Y.

i=1

Here0 < A; < «; ¢, areindependent and uniformly distributed on [—=, 7]; R; are independent,
nonnegative random variables such that /% has positive mean 4p;; and Y; isasecond-order station-
ary timeserieswith £(Y;) = F(X,) and autocovariancefunction~.(u) = cov(Y;, Yi4,,) satisfying
2w [ve(u)] < oo

The spectral distribution function of X, isgiven by

FO) = [ oot X fuw). N <7

- w<A

where e
feN) == > ve(u)expliur), | <,

_ Pj if A = i)‘jv
Ja(d) = { 0 otherwise.

Thefunctions f. and f; arereferred to asthe spectral density function and line spectrum of thetime
series X;.

Notethat f. and f,; are nonnegative and symmetric about zero and that they can be extended to
periodic functions on (—oo, oo ) with period 27. From now on we limit our attention to theinterval
[0, 7]. Observe that if the indicated derivativesof f. exist, then f/(0), f7(0), f!(x) and f(r) ll
equal zero.

16.1 The L SPEC methodology

Let 6,(A) equal oneor zero according as A = a or A # a. Given atimeseries X, Xs, ..., Xr_1,
set f = fo+ L fu, ¢ =log fand ¢. = log f.. Then ¢ = ¢. + ¢q, Where ¢y = 516y, + -+ + 5,63,
with gy,..., 3, > 0. Moreover, f; = (2x /T )(exp ¢4 — 1) f.. Inthefollowing discussion, we will
use cubic splines to obtain a finite-dimensional approximation to ¢. and hence to ¢.

First, we describe the space of splines that will be used to model the logarithm of the spectral
density function. Given the positiveinteger .J., let G. be the J.-dimensional space of twice contin-
uoudy differentiable, cubic spline functions s with the knot sequence 0 < ¢; < --- < t; < 7. We
requirethat s’(0) = s'(x) = 0. Also, s”(0) = 0 unlesst; = 0, and s”(x) = 0 unlesst;, = x. Let
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By, ..., B; beabasisof (i.. Thenfunctionsin ;. can be extended to splineson (—oo, oo) that are
symmetric about zero, periodic with period 27, have aknot at zero if and only if ¢; = 0, and have
aknotat » ifandonly if t;, = .

Next, we describe the space that will be used indirectly to model the line spectrum. Given the
nonnegative integer ./; and the increasing sequence a, . . ., a;, of membersof {27;/T: 1 <j <
T/2},let G, bethe J;-dimensional space of nonnegatlvefunctlonSS on [0, 7] suchthat s = 0 except
atay,...,az,. S&t Bjyj (N) = 6,,(N)forl < j < Jg. Then Bj y4,..., By formabasis of Gy,
where J = J. + J,.

Let (¢ be the space spanned by By, ..., B;y. The collection G of such J-dimensiona spaces ¢
form afamily of allowable spaces. Set

¢c(8.) = BBi() + -+ B8.Bs(),  B.=(Bi,....B81) € R,
¢d(76d> = ﬂjc‘l‘lBJc‘l‘l(‘) +- 6JBJ(')7 ﬁd = (6Jc+17 .- '76J> with 6Jc+17 cee 7ﬂJ > 07

and

¢(58) = ¢o(::8.) + ¢al:84),  B=(P,...,B1)
Weuse ¢.(-; 3..) to model the logarithm of the spectral density function and ¢(-; 3) to model log f.
Thus, f.(-; B.) = exp ¢c(; B.), f(:; B) = exp ¢(+; B), and

27

Ja(:B.) = T[GXP ¢a(5 Bq) — 1 fe(+: 8.

Denote the Fourier frequenciesby A\, = 2xk/T for k = 0,1,...[T/2]. Let I; denote the k-th
ordinate of the periodogram, which is given by

2
I, = ](T)()\k (27T~ Z exp(—iA,t) X;

For Gaussiantimeseries, 15, 1 < k < [T'/2], areindependent and have the exponential distribution
with mean equal to f(\;) = exp ¢(A;). Hence, the log-likelihood function is given by

(T/2]
[Tl/z] 2 (M;k) - 1) [6(M: B) + Texp(—6(M: B))],  BER’

k=1

UB) =

Observe that the log-likelihood is a concave function of 3.

Let 3 denote the maximum likelihood estimate of 3, whichis obtained asusua by the Newton—
Raphson method. The corresponding estimate of the function f isgivenby f()) = f(; [3) Simi-
|larly, estimates of the spectral density function and line spectrum are given by 1. (1) = f.( BC) and

fa-) = fa(-,Ba), where 8. = (B1,..., Bs.) and Ba = (Br41,- -, 1)

As in other cases discussed in this paper, our spectral estimate depends on G. We follow the
procedure described in Section 3 (with d = 1) to select & adaptively from G. This methodology

41



100

-100

0 200 400 600 800 1000

20

-20

0 200 400 600 800 1000

Fig. 11. Averages of 30 series of electrical potential (EP) measurements from the scalp (top) and
wrist (bottom).

isreferred to as LSPEC in Kooperberg, Stone and Truong (1995c¢). (In the current implementation
of LSPEC, if an atom has a frequency that is not of the form 2= & /7', then it is typically replaced
by the two closest adjacent atomswith frequencies of thisform. Also, LSPEC preventsatomswith
small mass from entering the model.)

In the absence of atoms, the rate of convergence of the maximum likelihood estimate b isgiven
in Kooperberg, Stone and Truong (1995d). This result lends theoretical support to L SPEC.

In the next subsection, we use L SPEC to analyze time series arising from a neurophysiol ogical
study.

16.2 An example

We will analyze the result of a neurophysiological experiment consisting of 30 trials of electrical
potential (EP) measurements[see Durka, Kelly and Blinowska (1995)]. It started with a24 Hz (cy-
cles/sec), H00um peak to peak sinusoidal stimulus applied to the right fingertip. The responses are
the EP measurements at the scalp and wrist. Each EP measurement lasted for 6 seconds, with the
stimulus coming on at 2 seconds and staying on for the remainder of the trial. The channels were
sampled at 256 times/sec, giving atotal of 1536 sampling points per channel.

Since the stimulus was not active for the first 2 seconds, our analyses were based on the last 4
seconds of recordings, so that 7" = 1024. Figure 11 shows the averages of 30 EP responses from
the scalp and wrist, which appear to be stationary. The left side of Figure 12 shows the LSPEC
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Fig. 12. The scalp EP spectrum (left side) has line frequencies = 9.25 Hz and 9.75 Hz, the peak
has a frequency = 48 Hz. The line frequencies of the wrist EP spectrum (right side) are 24 Hz and
60 Hz.

estimate of the scalp EP spectrum. We observe two lines with frequencies of 9.25Hz and 9.75Hz
[the former frequency correspondsto & = 4(9.25) = 37 and A = 27(37)/1024 = 0.227, and the
latter frequency correspondsto & = 39 and A = 0.239]. These are approximately the a pha-rhythm
frequencies. Thereis also a peak with a frequency of 48Hz (A = 1.178), corresponding to the
second harmonic of the stimulus frequency 24 Hz. In the right side of Figure 12, we observe that
thewrist EP responded with afrequency (thefirstline) at 24 Hz, whileit a so picked up theel ectrical
power line frequency at 60 Hz. Note that the background noise level (the continuous spectrum) is
much higher in the scalp EP than in the wrist EP.

The responses were then filtered to remove the unwanted (al pha-rhythm, electrical power line)
signals and low frequency components of background noise and sampled at 128 times/sec, yielding
atotal of 512 sampling points. Applications of LSPEC to the filtered observations are illustrated
in Figure 13. For the scalp EP data, the resulting fit is a spline with seven knots and three linesin
the model. The first line has a frequency of 24Hz (A = 1.178), showing that LSPEC has |ocated
the desired signal. The other two lines correspond to the second harmonic. The fit for thewrist EP
data shows a spline with eight knots and one line (at 24 Hz) in the mode!.

In summary, in thisexamplethe L SPEC methodol ogy yiel ded a precise estimate of the stimulus
frequency (24 Hz) and provided an informative description of the neurophysiological data. More
generaly, in the light of the present example and those given in Kooperberg et al. (1995c¢), we find
the LSPEC methodology to be both effective and of considerable practical value.
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Fig. 13. Spectra of the filtered EP data. The scalp (left side) has line frequencies equal to 24 Hz
and 48 Hz. Thewrist (right side) has a line frequency equal to 24 Hz

17 Bivariate splines

18 Modelsbased on multivariate splines

In the last two decades, a considerable body of literature on multivariate spline spaces has been
amassed by approximation theorists, numerical analysts, and computer scientists. In this section,
we demonstrate the practicality of these tools for statistical applications. We begin our survey on
atheoretical note, developing rates of convergence for ANOVA decompositions based on multi-
variate splines and their tensor products. Then we shift our emphasis somewhat and consider tech-
niques for adaptively constructing multivariate spline spaces, borrowing heavily from the ideas of
knot addition and deletion presented in previous sections. Finally, we present asimpleillustrative
application of these ideasto bivariate logspline density estimation.

18.1 Theextended linear model revisited

In Section 2, we introduced the notion of a concave extended linear model and discussed a variety
of statistical problemsthat can be treated effectively within thisframework. In each of these cases,
our data consists of a sample from the distribution of arandom vector W. In this section, we focus
our attention on the derived variable U, which is typically a subvector of W. Broadly speaking,
we are interested in estimating a (possibly) vector-valued function ¢* = (¢7, ..., ¢} ), Wherethe
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constituents ¢, 1 < k < K, arerea-valued functionsonaset i/ = U, x --- x Uy, the range of
U. So far, we have considered only the case in which each of the setsif;, . .., Uy, is(in theory) a
compact interval with positive length. Under this restriction, we are naturally led to estimators of
¢ that are built up from univariate spline spaces defined on these intervals. From amethodological
perspective, however, tensor products of univariate splines may not be flexible enough to capture
al of the features exhibited by a particular data set. In addition, known structural relationships
between the variablesthat constitute U might suggest that the domain of ¢* issomething other than
a hyperrectangle.

In the rest of our discussion, we alow U/, . .. ,Uy to be compact subsets of R™, ... R™,
respectively. In this case, the unknown function ¢* = ¢*(uq,...,up) is still defined on U =
Uy x -+ x Uy, with the distinction that now the individual variables «,,, may be vectors. Recall
that our approach to estimating ¢* € H”™ begins with an ANOVA decomposition ¢* = 3, . &7
that divides ¢~ into its components ¢3,s € S. A paralel construction is then used to define an
ANOVA decomposition of the maximum likelihood estimate ¢ = 3", ¢, in aspace G consist-
ing of smooth, piecewise polynomials. Not surprisingly, this approach can successfully be applied
to derivethe convergence propertiesof ¢ even when weallow the setsif;, . . ., Uy, to be more com-
plicated than compact intervals of thereal line. Once we remove these restri ctl ons, the components
¢,,5 € S, of the ANOVA decomposition of ¢ become multivariate splines and their tensor prod-
ucts.

To be more specific, for 1 < m < M, let A\, beapartition of 24,,  R*™ into disoint (mea-
surable) sets and for smplicity assume that each set has a common diameter «. By a piecewise
polynomial of degreeq over A,,,, we now mean afunction ¢ on {,, such that the restriction of ¢ to
eachset 6 € A, isapolynomial of degree ¢ inthed,, variablesthat constitute «,,,. Let GG, bea
linear space of multivariate splines; that is, piecewise polynomials of degree ¢ on 2/, that satisfy
certain smoothness constraints. Following the development in Section 2, for each s € S, welet G,
denote the tensor product of the spaces .., m € s.

Therate at which ¢ and its components approach ¢* and its components was derived in Hansen
(1994). In the smple case described so far, if we assume that the spaces &'; are flexible enough to
ensure that

inf flg = 0l = O(a),  1<k<Kandses,

where p isameasure of smoothness of the constituents of ¢*, we find that

~ 1
*|[2 2
H¢5_¢5H —OP(ap‘l‘nad), 5687
and |
” *|[2 2
16 = ¢"|* = Op(a™ + —),

whered = max;es Y_,,e, dm- ASWe collect more and more data, if the setsin our partition shrink
sothat a ~ n~'/7+9) then we obtain the rates in (4.3) and (4.4) with the indicated definition of
d. Hansen (1994) extends these results, and in particular, derives L, rates of convergence for the
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case when the various constituents ¢* satisfy different smoothness conditions and the sets in the
triangulations A,,, do not share a common diameter.

18.2 Bivariate splinesand the extended linear model

For smplicity, we now focus our discussion on saturated, bivariate models. Assume thati{ isa
compact region in the plane so that ¢* is a function of u € IR?. In the context of our previous
discussion, we now view U as a single variable and hence will not attempt to decompose ¢* into
components based on individual spatial coordinates. In the remaining pages, we will discuss the
use of bivariate splinesto construct estimates of ¢*.

Triangulationsand piecewise linear basisfunctions

Let A be acollection of closed subsets of ¢/ having digoint interiors and satisfying i = Ugead.
In genera, the set A isatessellation of /. If each element 6 € A isatriangle, A issaid toforma
triangulation of Z/. Furthermore, atriangulation A is said to be conforming if the nonempty inter-
section between pairsof trianglesin /A consists of either asingle shared vertex or an entire common
edge (see Figure 14). Throughout this section, we reserve the symbol A for this special type of tes-
sellation.

Given such a conforming triangulation /A, we let G denote the space of continuous, piecewise
linear functionsover /A\. Thereisanatural association between the vertices vy, ..., v; of thetrian-
glesin A and the basis functions B, (u), ..., B;(u) of (G. To be more precise, we define B;(u) to
be the unique function that is linear on each of thetrianglesin A and takeson thevalue 1 a v; and
0 at the remaining vertices in the partition. This collection of tent functionsis frequently used in
the finite element method and is often the starting point for defining multivariate splines of higher
degrees [see Chui (1988), de Boor (1987), Farin (1986)].

Many of the important properties of this basis can be obtained from a local representation of
the tent functions. For the moment, consider asingletriangleé € A having verticesvy, v, and vs.
Relative to §, the barycentric coordinates of any point u = (u;,u,) € IR* are defined as atriple

@(u) = (¢1(u), p2(u), p3(u)) such that
u=(u)vy + p2(u)vy + ps(u)vs  and  ¢1(u) + pa(u) + @3(u) = 1.

Casting these conditions into a smple set of linear equations we find that

V11 V21 V31 991(11) Uq
U1g Uz Us2 wo(u) | =1 u2 |. (9.1)
11 1 p3(u) 1

Provided that 6 hasanonempty interior, this system can be solved explicitly, and the solution is best
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Non-Conforming Partition Conforming Partition

Fig. 14. In a nonconforming partition, at least one vertex of atrianglein A fallsalong the interior
of an edge of another triangle in the partition.

written in terms of the function SignedArea(v+, vz, v3), which we define by

1 V11 V21 V31
SignedArea(vy, vy, vs) = g | viz U2 Vs
1 1 1

As its name suggests, the absolute value of SignedArea(v, vy, vs) isjust the area of the triangle
with verticesv,, v, and vs. By applying Cramer’s method to the set of equations (9.1) we find that
©1(u) isgiven by theratio

B _ SignedArea(u, v2, v3)
901(11) = 801(u17u2) - s'gnedArea(V17V27V3) ‘

(9.2)

From thislast expression, we see that the barycentric coordinates are linear functions of «; and u.,
whereu = (uq, u2), and satisfy the interpolation conditions

o0 iy, o ‘
wi(v;) = { | iz i, =1,2,3; (9.3)
hence the vertices v,, v, and v have barycentric coordinates (1,0,0), (0,1,0) and (0,0,1), re-
spectively. Furthermore, from (9.2) we see that the points on the edge connecting v, and v; have
barycentric coordinates of theform (0, o, 1 — ), a € [0, 1].

Given the interpolation conditions (9.3) and the consequence of (9.2) that the barycentric co-
ordinate functions are linear functions of u, we now have an explicit representation of the basis
functionsof (& that correspond to the verticesof ¢; that is, forall u € 6, B;(u) = ¢i(u),7 = 1,2, 3.
As an immediate consequence of thislocal (triangle by triangle) representation, we find that the
basis functions By, . . . , B; associated with the triangulation A are bounded between zero and one
and satisfy

Bi(u)+---+ By(u) =1, ucli.
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From (9.2) it is also possible to demonstrate that, for any nonsingular, 2-by-2 matrix A and any
vector b € R?,

Bj(u) = Bi(Au+b), u € R?,
where B}, ..., B} isthe basis associated with vertices Av, + b, ..., Av; + b of the transformed
set U* = {Au + b,u € U}. This means that models built from functionsin G have a natural
invariance under affine transformations. Using the barycentric coordinate functions, we will seein
the next subsection that this invariance carries over to our adaptive methodology as well.

To summarize, we have derived some of the essential propertiesof abasisfor the space of con-
tinuous, piecewise linear functions associated with atriangulation A of Z/. An important observa-
tion hereis that there is a smple correspondence between the structure of the partition A and the
basisfunctionsof GG. Asintheprevioussections, thisrelationship will allow usto use ssimple model
selection criteriato construct afunctional form of our estimate ¢ of the unknown function ¢*. The
only issue | eft to resolveis how we generalize the notion of stepwise addition and deletion of knots
in this context.

Stepwise addition

The most natural way to proceed from one step to the next in the stepwise addition procedureisto
introduce a new vertex into the existing triangul ation, thereby adding one new basis functionto the
existing spline space. Thisoperation requiresarulefor connecting thispoint to theverticesin A so
that the new mesh is also a conforming triangulation. In Figure 15, we illustrate three options for
vertex addition: we can place a new vertex on either a boundary or an interior edge, splitting the
edge, or we an add a point to the interior of one of thetrianglesin AA. Note that the space obtained
by adding avertex v to aninterior edgeof atriangleé € A cannot be achieved asthelimit of spaces
constructed by adding v to the interior of 6. Inthiscase, if v isvery close to an edge of ¢ the new
triangulation is essentially nonconforming and the associated space of linear functions (¢ contains
elements that are discontinuous along that edge. Similar discontinuities arise when the new point
v is positioned extremely close to an existing vertex. Degeneracies such as these are encountered
in the context of univariate spline spaces when knots are allowed to coalesce (de Boor 1978).

Given atriangulation 2\, we construct a set of candidate vertices by considering the pointswith
barycentric coordinates

ky ks K+1—Fk —k
K+1"K+1’ K+1

)5’ §e A, (9.4)

where k1, k; and K are nonnegative integers satisfying 4, + £, < K + 1 and no coordinate equals
one. We have introduced a subscript “6” to make it clear that these points are calculated for each
trianglein A. At each step in the addition process, we select from this set of candidate verticesthe
point that maximizes the Rao statistic described in Section 3. Stability considerations may dictate
that we do not consider for addition vertices in areas where there islittle data. Moreover, we have
found it useful to avoid creating triangles having one or two very small angles. Restrictions such
asthese are easily incorporated into the stepwise addition procedure.
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paly. 4

Original Triangulation Splitting Boundary Edge
Splitting an Interior Edge Subdividing a Triangle

Fig. 15. Three ways to add a new vertex to an existing triangulation. Each addition represents the
introduction of a single basis function, the support of which is colored gray.

Stepwise deletion

There are two possible strategies for reducing the dimension of an existing piecewise linear spline
space. In each case, we enforce the condition that afunction in the space be continuoudly differen-
tiable across agiven edge in the existing triangulation. Observe that a continuous, piecewise linear
function has continuous partial derivatives across an edge if and only if the function is linear on
the union of the two trianglesthat share the edge. Using the correspondence between vertices and
basi s functions described above, we can show that the subspace of spline functions satisfying this
condition is characterized by a simple linear constraint of the type discussed in Section 3. In each
of the examplesin Figure 15, enforcing continuity of the first partial derivatives across any of the
gray edgesis equivalent to removing the added vertex, returning usto the original partition in the
upper left hand corner of the figure. Thus, in light of the stepwise knot deletion strategy discussed
in the previous sections, one procedure for stepwise deletion in the bivariate context involves us-
ing the Wald statistic to choose between continuity constraints across edges that fall into one of the
three categories listed in Figure 15. An aternative deletion procedure is somewhat more aggres-
sive and involves choosing from among all the continuity constraints, regardless of how the edge
is positioned relative to the other edges in the partition. The important distinction between these
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two procedures is that only in the first case are we actually guaranteed that the structure of A is
smplified at each step.

18.3 Bivariatelogspline density estimation
Maximum likelihood estimation

While the bivariate methodol ogy introduced in the previous paragraphs has been implemented for
avariety of extended linear models, we will focus mainly on logspline density estimation. In this
context, we choose to model the logarithm of an unknown density ¢* of arandom vector U as a
bivariate spline. For ease of presentation, we restrict our attention to densities that are supported
on asimply connected region/ € IR* having a polygonal boundary. Asusual, let A denote a con-
forming partition of ¢/, and let B;(u), ..., B;(u) denote the basis functions of the corresponding
space (& of continuous, piecewise linear functions over A.

Given avector 3 = (f4,...,3;) € R’, we can define adensity f(u;3) over ¢ having the
form

F(wsB) = exp (BiBi(u) + - + BsBs(u) — C(B) ),
where

C(8) :/Mexp(ﬂlBl(u)—l—---—l—ﬂJBJ(u))du

is the normalizing constant. Based on arandom sample Uy, ..., U,, from the distribution of U,
we estimate ¢* by the function ¢ = f(u;3), where 3 maximizes the “log-likelihood” ((3) =
log f(Uy;8) + --- + log f(U,; 3). While we do not believe that ¢(-) is the true log-likelihood
function corresponding to our sample, we know from the discussion at the beginning of thissection
that asn — oo, ¢ tendsto ¢*.

Asin univariate logspline density estimation (see Section 4), the likelihood eguations take on
the very simple form
EpB;(U) = E,B;(U), 1<j<J, (9.5)

where n
EgB;(U) = /L{Bj(u)f(u;ﬁ)du and [, B;(U) = %ZBJ(UJ-

Since the functions B; are piecewise linear over ¢/, it is possible to evaluate the required integrals
exactly. Asin previoussections, theequationsin (9.5) are solved using Newton—Raphson iterations.
To obtain the Hessian matrix required for this procedure, we must also calculate expressions of
the form Eg[B;,(U)B;,(U)] for 1 < j;,5, < J. Sincethe basis functions are piecewise linear,
however, we again do not require numerical quadratureto carry out these computations.
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Original Triangulation Updated Triangulation

Fig. 16. Adding a new vertex at the point v = o1 (v)vy + ¢2(v)ve + ¢3(v)vs. Inthiscase, we
are adding to ' the continuous, piecewise linear function that takes on the value one at the point
v and zero at each of vq, vy, and vs.

Implementing stepwise addition and deletion

Recall that we add basis functionsto (¢ by adding verticesto A and that our strategy for choosing
between the competing basisfunctionsis based on the heuristic maximization of Rao statistics. This
process can be ssimplified considerably by making explicit use of the barycentric coordinate func-
tions discussed above. For example, suppose that we want to add anode v inside 6, the right hand
triangle in Figure 16. Once again, suppose that 6 has vertices vy, v, and v; and let ¢ (u), 2 (u),
and p5(u) denotethe barycentric coordinatesof apoint u € IR? relativeto §. Now, if welet B;(u),
By(u), and B(u) represent the piecewise linear basis functions associated with the points vy, v,
and v in the updated triangulation, then it is straightforward to demonstrate that, for all pointsu in
the shaded triangle on theright in Figure 16,

pi1(u) = Bi(u) + p1(v)Bs(u), wa(u) = Bo(u) + @2(v)Bs(u), and gs(u) = p3(v)Bs(u).

Combining these relationshipswith the fact that within 6, the piecewise linear basis functions asso-
ciated with v, v, and v3 are exactly the barycentric coordinate functions relative to 6, we arrive
at simpleformulaefor calculating the necessary inner products and empirical momentsthat go into
forming the Rao statistic for adding v to the partition A. Similar expressions can be derived for
evaluating the candidate function over the remaining two triangles in the right hand plot of Fig-
ure 16. In the numerical example discussed below, we introduce vertices at the points correspond-
ingto K = 5 inexpression (9.4).

Using these ideas, we can also derive a simple procedure for determining the constraint that
afunction in G be continuoudly differentiable across a given edge in /A. To make this more pre-
cise, consider the triangulation on the left in Figure 17 and let 4 (u), ¢2(u), and ¢;(u) denote the
barycentric coordinates of a point u € IR* relative to the triangle with vertices vy, v,, and vs.
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Given afunction g € G, let 3, 32, and 33 denote the coefficients of the basis functions associ-
ated with these vertices. Then for al pointsu in thistriangle, ¢(u) isthe linear function given by
Brei(u) + Bapz(u) + Fsps(u). Now, if we let 3, denote the coefficient of the basis function of
associated with the vertex vy, then ¢(v4) = 3;. Therefore, the function ¢ islinear on the union of
the two trianglesin left hand portion of Figure 17 provided that

Ba = g(va) = Brp1(Va) + Bapa(Va) + Bapa(va) .

By swapping the roles of v; and v, in this argument, we find that that C'! continuity of afunction
¢ € (G can aso be assured by the constraint

Br = g(vi) = Bapa(v1) + Bapa(vi) + Bapa(vi),

where > (u), p3(u), and p4(u) denotethe barycentric coordinates of apoint u relative to thetrian-
gle with vertices v,, vs, and v4. Itisnot hard to demonstrate that these two constraints are equiv-
alent up to a multiplicative constant. Observe, however, that when this condition is enforced, we
are left with a single linear function over the pair of triangles that constitute A\, but we have not
produced a simpler triangulation in the process.

Suppose instead that we want to remove the vertex v, in the middle of the trianglein the right
hand portion of Figure17. Giveng € Gand1 < ¢ < 4, weagain let 3; correspond to the coefficient
of the basis function associated with the vertex v;. It can be shown that each of the C'! continuity
constraints across the shaded interior edges shown in the figure is of the form

Ba = @1(va)B1 + a(Va) B2 + p3(va) B3, (9.6)

where ¢1(u), ¢2(u) and ¢3(u) are the barycentric coordinates of a point u relative to the outer
trianglein Figure 17. Observe that the expression on the left isthe value at v, of the unique linear
functioninterpolating 3;, - and 35 at thepointsvy, v, and vs, respectively. Recalling that ¢(v,) =
(4, we see that the constraint in (9.6) has considerable intuitive appeal.

18.4 An example

We end our discussion of bivariate logspline density estimation with an example suggested to us by
Karl Broman. The pointsin the left hand panel of Figure 18 represent a collection of amino acids
obtained from 100 protein structures taken from the Brookhaven Protein Data Bank [see Hobohm
et a. (1992)]. In order to characterize the local environment of each amino acid within a given
protein structure, three pieces of informationwere recorded: thelocal structure of the protein at the
given amino acid (whether the protein is twisting around a helix, for example), the fraction of the
amino acid side-chain area that is buried in the protein structure, and the fraction of the side-chain
areathat is covered by polar atoms. Because the unburied portion of the amino acid is exposed to
a polar solvent, the final two quantities are restricted to the upper triangle of the unit square. In
Figure 18, for example, we plot these two measurements for al of the occurrences of the amino
acid Lysine for which the local protein structureis a helix.
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Deleting an Edge 3 4 Deleting a Vertex 3

Fig. 17. The effect of enforcing the constraint that functionsin &' be continuoudly differentiable
across edges in two triangulations.

Bivariate density estimates computed for each amino acid and each local protein structure are
the basis for an approach to solving the so-called inverse folding problem [see Bowie, Luthy and
Eisenberg (1991) and Zhang and Eisenberg (1994)]. Evaluating the structure of agiven proteinis
extremely difficult. Determining the sequence of amino acids that comprise the protein, however,
isrelatively ssimple. It would seem reasonable, therefore, to attempt to infer the protein’s structure
from its amino acid sequence. Unfortunately, many rather different sequences produce very simi-
lar structures, so the objective of the inversefolding problem isto determine which amino acid se-
guences might result in agiven known structure. Thiscan be accomplished by studying the propen-
sty for certain amino acids to occur in certain local environmentsin a large collection of known
protein structures. The procedure described by Zhang and Eisenberg involves a log-odds calcula-
tions, the main ingredient of which is aset of bivariate density estimates for the type of datagiven
in Figure 18.

In the bottom panel of Figure 18, we present a contour plot of the density estimate obtained by
stepwise addition followed by stepwise deletion. The model shown was encountered during step-
wise deletion and attains the minimum BIC value among all the models obtained during both the
stepwise addition and deletion processes. During this process, we selected candidate knots corre-
sponding to X' = 5 in (9.4), and did not consider any new vertices that would result in atriangle
containing fewer than 25 points. In the panel on the upper right in the same figure, we present the
final triangulation along with dashed edges to indicate the additional structure present when the
stepwise deletion process began. The fits as well as the various plots in Figure 18 were produced
using alibrary of S/S-PLUS routinesthat are available from the second author.

In this section we have introduced amethod for bivariate density estimation using piecewiselin-
ear, bivariate splines based on an adaptively constructed triangulation. We have also implemented
this procedure for both regression and generalized regression. The resulting estimates, which we
have named Triograms, have performed well on a variety of of bivariate data sets taken from a
number of different estimation contexts. The interested reader is referred to Hansen, Kooperberg
and Sardy (1996) where Triograms are compared to several existing function estimation routines.
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rejod

Fig. 18. Applying the density estimation routine. In the top row we present the data and both the
triangulation obtained form stepwise addition (thin, dashed line) and that obtained from stepwise

deletion (thick, solid line). In the bottom row we present the data along with a contour plot of the
final fit from the deletion process.



One advantage that Triograms have over these other methods is that the entire estimation proce-
dure isinvariant under affine transformations and is the most natural approach for modeling data
when the domain of the predictor variablesis a polygonal regionin the plane. Asanticipated by the
convergence rate derived at the beginning of this section, if our underlying function ¢* is smooth,
piecewise linear estimates are suboptimal. This problem can be corrected by using higher-order
splines, and we are currently investigating how to extend the Triogram procedure to make use of
the generalized vertex splines of Chui and He (1990).

55



19 References

References
ANDERSEN, P. K., BORGAN, @., GiLL, R. D. and KEIDING, N. (1993). Satistical Models
Based on Counting Processes. Springer, New York.

BELSEY, D. A., CHAMBERS, J. M. and WILKS, A. R. (1980). Regression Diagnostics. Wiley,
New York.

BOURLARD, H. A. and MORGAN, N. (1994). Connectionist Speech Recognition. Kluwer, Boston.

BowilE, J. U., LUTHY, R. and EISENBERG, D. (1991). A method to identify protein sequences
that fold into a known 3-dimensional structure Science 253 164-170.

BRESLOW, N. E. (1972). Contribution to the discussion on the paper by D. R. Cox, Regression
and lifetables. J. R. Satist. Soc., Ser. B 34 216-217.

BREsSLOw, N. E. (1974). Covariance analysis of censored survival data. Biometrics 30 89-99.
BREIMAN, L. (1993). Fitting additive modelsto data. Comput. Statist. Data Anal. 15 13-46.

BREIMAN, L., FRIEDMAN, J. H., OLSHEN R. A. and STONE, C. J. (1984). Classification and
Regression Trees. Wadsworth, Belmont, California.

BRILLINGER, D. R. (1981). Time Series. Data Analysisand Theory. Holden Day, San Francisco.
CHul, C. K. (1988). Multivariate Splines. SIAM, Philadelphia PA.

CHul, C. K. and He, T. (1990). Bivariate C'! quadratic finite elements and vertex splines. Math.
Comp. 54 169-187.

Cox, D. R. (1972). Regression modelsand lifetables (with discussion). J. Roy. Satist. Soc. Ser.
B 34 187-220.

Cox, D. R. and OAKES, D. (1984). Analysis of Survival Data. Chapman and Hall, London.

CoLE, R., NOEL, M., BURNETT, D. C., FANTY, M., LANDER, T, OSHIKA, B., and SUTTON,
S. (1994). Corpus Development Activities at the Center for Spoken Language Understand-
ing. Technical Report, CSLU, Portland, Oregon.

CoLE, R. A., ROGINSKI, K. and FANTY, M. (1992). A Telephone Speech Database of Spelled
and Spoken Names. Proc. of the International Conference on Spoken Language Processing,
Banff, Alberta, Canada, 891-893.

DE BOOR, C. (1987). B-form basics. In Geometric Modeling. (G. Farin, ed.) 131-148. SIAM,
Philadelphia PA.

56



DURKA, P. J., KELLY, E. F. AND BLINOWSKA, K. J. (1995). Time-frequency analysisof stimulus-
driven EEG activity by matching pursuit. Abstract.

FAMILY EXPENDITURE SURVEY (1968-1983). Annual base tapes and reports (1968-1983). De-
partment of Employment, Statistics Division - Her Mgjesty’s Stationary Office, London.

FAN, J. AND GIJBELS, |. (1996). Local Polynomial Modeling and its Applications. Chapman
and Hall, London.

FARIN, G. (1986). Triangular Bernstein-Bézier patches. CAGD 3 83-127.

FLEMING, T. R. and HARRINGTON, D. P. (1991). Counting Processes and Survival Analysis.
Wiley, New York.

FRIEDMAN, J. H. (1991). Multivariate adaptiveregression splines (withdiscussion). Ann. Satist.
191-141.

FRIEDMAN, J. H. and SILVERMAN, B. W. (1989). Flexible parsimonious smoothing and addi-
tive modeling (with discussion). Technometrics 31 3-39.

GAUVAIN, J.L., LAMEL, L., ADDA, G. and ADDA-DECKER, M. (1994). Speaker-1ndependent
Continuous Speech Dictation. Speech Communication 15 21-37.

GRAY, R. J. (1992). Flexible methodsfor analyzing survival datausing splines, with applications
to breast cancer prognosis. J. Amer. Statist. Assoc. 87 942-951.

GREEN, P. J. and SILVERMAN, B. W. (1994). Nonparametric Regression and Generalized Lin-
ear Models: a Roughness Penalty Approach. Chapman and Hall, London.

Gu, G. andWAHBA, G. (1993). Smoothing spline ANOVA with component-wise Bayesian “ con-
fidenceintervals’. J. Comput. Graphical Statist. 2 97-117.

HANSEN, M. (1994). Extended Linear Models, Multivariate Splinesand ANOVA. Ph. D. Disser-
tation, Dept. Statistics, Univ. California, Berkeley.

HANSEN, M., KOOPERBERG, C. and SARDY, S. (1995). Triograms models. Technical Report
304, Dept. Statistics, Univ. Washington.

HASTIE, T. and TIBSHIRANI, R. (1990). Generalized Additive Models. Chapman and Hall, Lon-
don. J. Roy. Statist. Soc. Ser. B 55 757—796.

HASTIE, T., TIBSHIRANI, R. and BUJA, A. (1994). Flexible discriminant analysis by optimal
scoring. J. Amer. Statist. Assoc. 89 1255-1270.

HERMANSKY, H. (1990). Perceptua Linear Predictive (PLP) Analysis of Speech. J. Acoustical
Soc. Amer. 87 1738-1752.

HOBOHM, U., SCHARF, M., SCHNEIDER, R. and SANDER, C. (1992). Selection of representa-
tive protein data sets. Protein Science 1 409-417.

57



KALBFLEISCH, J. D. and PRENTICE, R. L. (1980). The Satistical Analysis of Failure Time
Data. Wiley, New York.

KAPLAN, E. L. and MEIER, P. (1958). Nonparametric estimation fromincompl ete observations.
J. Amer. Statist. Assoc. 53 457-481.

KENNEDY, W. J. and GENTLE, J. E. (1980). Satistical Computing. Marcel Dekker, New York.

KOOPERBERG, C. (1991). Smoothingimages, splines and densities. Ph. D. Dissertation. Depart-
ment of Statistics, Univ. of Californiaat Berkeley.

KOOPERBERG, C., BOSE, S. and STONE, C. J. (1995). Polychotomous regression, Technical
Report 288, Dept. Statistics, Univ. Washington, Seattle.

KOOPERBERG, C. and STONE, C. J. (1991). A study of logspline density estimation. Comput.
Satist. Data Anal. 12 327-347

KOOPERBERG, C. and STONE, C. J. (1992). Logspline density estimation for censored data. J.
Comput. Graphical Satist. 1 301-328.

KOOPERBERG, C., STONE, C. J., and TRUONG, Y. K. (1995a). Hazard regression. J. Amer.
Satist. Assoc. 90 78-94.

KOOPERBERG, C., STONE, C. J. and TRUONG, Y. K. (1995b). The L, rate of convergence for
hazard regression. Scand. J. Satist. 22 143-157.

KOOPERBERG, C., STONE, C. J. and TRUONG, Y. K. (1995c) Logspline estimation of apossibly
mixed spectral distribution. J. Time Ser. Anal. 16 359-388.

KOOPERBERG, C., STONE, C. J. and TRUONG, Y. K. (1995d) Rate of convergencefor logspline
spectral density estimation. J. Time Ser. Anal. 16 389-401.

MCCULLAGH, P. and NELDER, J. A. (1989). Generalized Linear Models, 2nd ed. Chapman
and Hall, London.

MILLER, R. G. (1981). Survival Analysis. Wiley, New York.

PARZEN, E. (1962). Nonparametric statistical data modeling. J. Amer. Statist. Assoc. 74 105—
131

RABINER, L. and JUANG, B.-H. (1993). Fundamentals of Speech Recognition. Prentice Hall,
Englewood Cliffs, NJ.

SCHUMAKER, L. L. (1981). Spline Functions. Basic Theory. Wiley, New York.
SCHWARZ, G. (1978). Estimating the dimension of amodel. Ann. Statist. 6 461-464.

SILVERMAN, B.W. (1986). Density estimation for statistics and data analysis. Chapman and
Hall, London.

58



SLEEPER, L. A. and HARRINGTON, D. P. (1990). Regression splinesin the Cox model with
application to covariate effectsin liver disease. J. Amer. Satist. Assoc. 85 941-949.

SMITH, P. L. (1982). Curve fitting and modeling with splines using statistical variable selection
techniques. Report NASA 166034, NASA, Langley Research Center, Hampton, VA.

SOLVD INVESTIGATORS. (1990). Studies of Left Ventricular Dysfunction (SOLVD) — ratio-
nale, design, and methods: two trialsthat evaluate the effect of enalapril in patients with re-
duced gection fraction. Am. J. Cardiol. 6 315-322.

STONE, C. J. (1985). Additiveregression and other nonparametric models. Ann. Statist. 13 689—
705.

STONE, C. J. (1986). The dimensionality reduction principle for generalized additive models.
Ann. Satist. 14 590-606.

STONE, C. J. (1990). Large-sampleinference for log-spline models. Ann. Statist. 18 717—741.

STONE, C. J. (1991). Asymptotics for doubly flexible logspline response models. Ann. Satist.
19 1832-1854.

STONE, C. J. (1994). The use of polynomial splines and their tensor products in multivariate
function estimation (with discussion). Ann. Satist. 22 118-184.

STONE, C. J. and Koo, C.-Y. (1986a). Additive splinesin statistics. In Proceedings of the Sa-
tistical Computing Section 45-48. Amer. Statist. Assoc., Washington, DC.

STONE, C. J. and Koo, C.-Y. (1986b). Logspline density estimation. In AMS Contemporary
Mathematics Series 59 1-15. American Mathematical Society, Providence.

TRUONG, Y. and STONE, C. J. (1994). Semiparametrictime seriesregression. J. Time Ser. Anal.
15 405-428.

WAHBA, G. 1990. Spline Models for Observational Data. Society for Industrial and Applied
Mathematics, Philadelphia.

WAND, M. P. and JONES, M. C. (1995). Kernel Smoothing. Chapman and Hall, London.

WAND, M. P, MARRON, S. J. and RUPPERT D. (1991). Transformationsin density estimation
(with discussion). J. Amer. Statist. Assoc. 86 343-361.

ZHANG, K. and EISENBERG, D. (1994). The three-dimensional profile method using residue
preference as a continuous function of residue environment Protein Science 3 687-695.

59



