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Abstract

ANOVA type models are considered for a regression function or for the logarithm of a prob-
ability function, conditional probability function, density function, conditional density func-
tion, hazard function, conditional hazard function, or spectral density function. Polynomial
splines are used to model the main effects, and their tensor products are used to model any
interaction components that are included. In the special context of survival analysis, the base-
line hazard function is modeled and nonproportionality is allowed. The theory involves the
L2 rate of convergence for the fitted model and its components. The methodology involves
least squares and maximum likelihood estimation, stepwise addition of basis functions using
Rao statistics, stepwise deletion using Wald statistics, and model selection using BIC, cross-
validation or an independent test set. Publically available software, written in C and interfaced
to S/S-PLUS, is used to apply this methodology to real data.
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1 Introduction

2 Introduction

The last two decades have witnessed an incredible change in the focus of statistical theory and
methodology. Fueled in part by the explosion of available computer power, highly adaptive, func-
tional procedures are now essential components of modern data analysis. While freed from the rigid
assumptions implicit in classical parametric models, the statistician is now expected to select not
only the important variables in a model, but also the functional form of the dependence on these
variables. To be practically successful, any new adaptive procedure must inevitably strike a bal-
ance between flexibility and the haunting “curse of dimensionality.” It is in this capacity that sta-
tistical theory is critical to the success of emerging methodologies. Polynomial splines and their
tensor products offer the flexibility required for modern data analysis, and when used in concert
with low-dimensional ANOVA decompositions, effectively tame the curse of dimensionality.

In the pages that follow, we will alternate between a discussion of the practical implementation
of this methodology and a very broad theoretical investigation into the properties of this approach
in the context of extended linear models. We have coined this term because our theoretical results
apply to a group of estimation problems that subsumes the classical exponential family regression
models [see McCullagh and Nelder (1989)]. While our initial motivation for introducing this fam-
ily was to achieve a theoretical synthesis, we found that this framework also allows us to entertain
a fairly general treatment of the associated methodology. Throughout our presentation, however,
we maintain a distinction between the nonadaptive procedures that we can treat theoretically and
the adaptive methodologies that we have implemented for density estimation, hazard regression,
polychotomous regression and spectral density estimation. In this presentation, we concentrate on
theoretical and methodological innovations developed through many collaborations involving var-
ious subsets of the authors of the present paper.

In Section 2, we define the notion of an extended linear model and use this framework simul-
taneously to discuss the L2 rate of convergence for the nonadaptive version of our procedures in a
variety of important statistical settings, while in Section 3, we translate these promising theoretical
results into practically useful, adaptive methodology. Ultimately, however, the true measure of any
statistical procedure is its performance on real data. In Sections 4 through 9 we focus on a number
of specific modeling problems for which our approach has yielded successful data analysis tools.
In each case, an S/S-PLUS implementation is (or will soon be made) publicly available so that the
“true measure” of these procedures can be judged on the wealth of data that exists beyond the (nec-
essarily narrow) confines of our examples. Logspline density estimation was our first attempt at an
adaptive spline-based methodology, and in Section 4 we present the latest version of this procedure,
LOGSPLINE. In Section 5 we describe our own version of MARS [Friedman (1991)] as a routine to
handle regression problems involving many predictors. The motivation for reworking this routine
stems from an application of linear splines to polychotomous regression, known as POLYCLASS,
which is described in Section 6. In order to relax the proportionality and linearity assumptions in
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classical survival analysis, we have developed spline routines for hazard estimation with flexible
tails (HEFT) and hazard regression (HARE). These are the subject of Section 7. Spectral density
estimation is another area in which our adaptive methodology can easily capture all the relevant
features of a given time series, and in Section 8 we discuss LSPEC, an implementation of this ap-
proach. We end the paper with an application to bivariate function estimation through the use of
splines defined over adaptively determined triangulations.

3 Extended linear models: theory

4 Extended linear models: theory

Consider a W-valued random variable W, where W is an arbitrary set. Let U = U1 � � � � � UM
be a Cartesian product of compact intervals, each having positive length. Consider a vector-valued
function h = (h1; : : : ; hK) on U whose constituents h1; : : : ; hK are real-valued functions on U .
Let `(h;W) be a (not necessarily true) log-likelihood and let �(h) = E[ `(h;W) ] be the corre-
sponding expected log-likelihood. There may be some mild restrictions on h for the log-likelihood
to be defined. We assume that, subject to such restrictions, there is an essentially unique function
� = (�1; : : : ; �K) that maximizes the expected log-likelihood. (Here two functions on U are es-
sentially equal if they differ only on a subset of U having Lebesgue measure zero.)

Let H be a linear space of real-valued functions on U , letK be a positive integer, letHK denote
the space of functions of the form h = (h1; : : : ; hK), where the constituents h1; : : : ; hK of h range
over H , and consider the log-likelihood function `(h;W), h 2 HK . We refer to any particular
setup of this form as an extended linear model. The expected log-likelihood function is given by
�(h), h 2 HK . The model is said to be concave if `(h;w) is a concave function of h for each
w 2 W and �(h) is a strictly concave function of h when restricted to those functions h 2 HK

such that�(h) > �1. Typically, when the model is concave, there is an essentially unique function
�� = (��

1
; : : : ; ��K) 2 H

K that maximizes the expected log-likelihood over HK .

In order to define ANOVA decompositions of the constituents of ��, we first need to define
corresponding theoretical inner products and norms. To this end, let  be an absolutely contin-
uous measure on U having a density function that is bounded away from zero and infinity on U .
Given square-integrable, real-valued functions h1 and h2 on U , their theoretical inner product is
defined by hh1; h2i =

R
U h1h2 d . Given such a function h, its theoretical norm is defined by

khk2 = hh; hi =
R
U h

2 d . Conversely, if k � k is defined directly, then  is defined implicitly
by the formula  (A) = kindAk2, where indA is the indicator function of A, which equals 1 on A
and 0 on Ac.

LetW1; : : : ;Wn be a random sample of size n from the distribution ofW. The log-likelihood
function corresponding to this random sample is given by `(h) =

P
i `(h;Wi). Let G = Gn be

a finite-dimensional subspace of H and let GK = GK
n denote the corresponding subspace of HK .

(Note that if K = 1, then HK = H and GK = G.) Under the assumptions of a concave extended
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linear model and reasonable additional conditions, except on an event whose probability tends to
zero as n ! 1, there is a unique maximum likelihood estimate b� in GK of ��; that is, a unique
function b� = ( b�1; : : : ; b�K) in GK that maximizes the log-likelihood function over GK .

In order to define ANOVA decompositions of the constituents of b�, we need to define corre-
sponding empirical inner products and norms. Forn � 1, let n be an empirical product measure on
U that is a transform (measurable function) of the random sampleW1; : : : ;Wn. (Roughly speak-
ing,  n should approach as n!1.) Given real-valued functionsh1 and h2 on U , their empirical
inner product is defined by hh1; h2in =

R
U h1h2 d n. Given such a function h, its empirical norm

is defined by khk2n =
R
U h

2 d n. The space G is said to be identifiable if the only function g 2 G

such that kgkn = 0 is given by g = 0. Under reasonable conditions, G is identifiable except on an
event whose probability tends to zero as n!1.

Many statistical problems of theoretical and practical importance can effectively be treated within
the framework of concave extended linear models. Most of the investigations in this framework
have involved a U -valued random variableU that is a transform ofW. LetU1; : : : ;Un be the cor-
responding transforms ofW1; : : : ;Wn respectively. Here, we typically let  be the distribution of
U and  n the empirical distribution ofU1; : : : ;Un.

Regression. Consider a random pair (X; Y ), whereX is X -valued and Y is real-valued and has
finite second moment. Set `(h;X; Y ) = �[Y � h(X) ]2. Then we get a concave extended linear
model with W = (X; Y ), U = X, and K = 1. If H is the space of all functions h on X with
E[h2(X) ] < 1, then � is the regression function of Y on X. More generally, if H is a Hilbert
space of such functions h, then �� is the best approximation in H to the regression function, where
best means minimizing the mean squared error Ef[Y � h(X) ]2g in predicting Y by h(X). Here
maximum likelihood estimation in G coincides with least squares estimation.

Generalized regression. Suppose now that, for each x 2 X , the conditional distribution of Y
given thatX = x belongs to a fixed exponential family of distributions on IRof the form exp[B(�)y�
C(�)]�(dy), where the parameter � ranges over IR. Here � is a nonzero measure on IR that is not
concentrated at a single point and

R
IR
exp[B(�)y�C(�)]�(dy) = 1 for � 2 IR. The functionB(�) is

required to be twice continuously differentiable and its first derivativeB 0(�) is required to be strictly
positive on IR. It is required that there be a subinterval S of IR such that � is concentrated on S and
B00(�)y � C 0(�) < 0 for � 2 IR and y 2 S. If S is bounded, it is required that it contain at least
one of its endpoints. Let h be a candidate for the dependence of � on x. The corresponding (con-
ditional) log-likelihood is given by `(h;X; Y ) = B(h(X))Y � C(h(X)). This has the form of a
concave extended linear model with W = (X; Y ), U = X, and K = 1. As special cases, we get
logistic regression, probit regression, and Poisson regression models.

Polychotomous regression. Let Y be a qualitative random variable havingK+1 possible values.
Without loss of generality, we can think of this random variable as ranging over Y = f1; : : : ;K +
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1g. Suppose that P (Y = kjX = x) > 0 for x 2 X and k 2 Y . For 1 � k � K , let hk be a
candidate for the function

log
P (Y = kjX = x)

P (Y = K + 1jX = x)
:

The corresponding log-likelihood is given by

`(h;X; Y ) = h1(X)I1(Y ) + � � � + hK(x)IK(Y )� log(1 + exph1(X) + � � �+ exphK(X));

where Ik(Y ) equals one or zero according as Y = k or Y 6= k and h = (h1; : : : ; hK). This setup
has the form of a concave extended linear model withW = (X; Y ) andU = X.

Density estimation. Let Y have an unknown positive density function on Y . We can write its
log-density function in the form � � C(�), where C(h) = log

R
exph(y) dy. The corresponding

log-likelihood function is given by `(h;Y) = h(Y)�C(h). This setup has the form of a concave
extended linear model withW = U = Y and K = 1, provided that we replace H by the space of
functions h 2 H such that E[h(U) = 0 ] and we replace G by the space of functions g 2 G such
that

P
i g(Ui) = 0.

Hazard regression. Consider a positive survival time T , a positive censoring time C , the ob-
served time min(T;C), and an X -valued random vector X of covariates. Let � = ind(T � C)
be the indicator random variable that equals one or zero according as T � C (T is uncensored) or
T > C (T is censored) and write min(T;C) as T ^C . Suppose T andC are conditionally indepen-
dent givenX. For theoretical purposes, it is supposed thatP (C � � ) = 1, where � is a known posi-
tive constant. SetW = (X; T ^C; �) andU = (X; T ^C). Let �(x; t) = log f(tjx)=[1�F (tjx)],
t > 0, denote the logarithm of the conditional hazard function, where f(tjx) and F (tjx) are the
conditional density and distribution functions, respectively, of T given thatX = x. Since the like-
lihood equals f(T ^CjX) for an uncensored case and 1�F (T ^CjX) for a censored case, it can
be written as

[f(T ^ CjX)]�[1� F (T ^ CjX)]1�� =

 
f(T ^ CjX)

1 � F (T ^ CjX)

!�

[1� F (T ^ CjX)]

= [exp �(X; T ^ C)]� exp

 
�
Z T^C

0

exp �(X; t) dt

!
:

Thus the log-likelihood function is given by

`(h;W) = �h(X; T ^ C)�
Z T^C

0

exp h(X; t) dt:

This setup has the form of a concave extended linear model with K = 1. Here the theoretical inner
product is given by

hh1; h2i = E

Z T^C

0

h1(t;X)h2(t;X) dt;

which defines implicitly; the corresponding empirical inner product h�; �in and empirical measure
 n are defined in the obvious manner.
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ANOVA decompositions and convergence rates

In the theoretical development of extended linear models, ANOVA decompositions of ��, b�, and
their constituents play important roles. For a simple illustration of such decompositions, consider
a regression or generalized regression context with M = 2 and let H be the space of all square-
integrable functions on U . Then � can be written as

�(x1; x2) = �0 + �1(x1) + �2(x2) + �12(x1; x2); (4.1)

where each component is theoretically orthogonal to the corresponding lower-order components;
that is, �1 and �2 are each theoretically orthogonal to �0 and �12 is orthogonal to �0, �1 and �2.
Here �0 is the constant component, �1 and �2 are the main effect, components, and �12 is the two-
factor interaction component. The maximum number d of factors in any component of the model
is given by d = 2. Since d =M , the model is saturated.

Given a random sample, consider an estimate

b�(x1; x2) = b�1(x1) + b�2(x2) + b�12(x1; x2); (4.2)

where each component is empirically orthogonal to the corresponding lower-order components.
The right sides of (4.1) and (4.2) are referred to as the ANOVA decompositions of � and b�, re-
spectively.

Removing the interaction component, we get the additive (d = 1), unsaturated approximation

��(x1; x2) = ��
0
+ ��

1
(x1) + ��

2
(x2)

to � and the corresponding estimate

b�(x1; x2) = b�0 + b�1(x1) + b�2(x2):
In general, given a subset s of f1; : : : ;Mg, let Hs denote the space of square-integrable, real-

valued functions onU that depend only on the variablesum,m 2 s. (The spaceH; corresponding to
the empty set ; is the space of constant functions.) Let S denote a hierarchical collection of subsets
of f1; : : : ;Mg, where hierarchical means that if s is a member of S and r is a subset of s, then r is a
member of S . Let H now denote the space of functions on U of the form

P
s2S hs, where hs 2 Hs

for s 2 S . Let d denote the maximum cardinality of the sets s 2 S . If d = 1, then the functions in
H are additive functions of the individual coordinates.

Let h ? Hr mean that hh; hri = 0 for hr 2 Hr. Every function h 2 H can then be written in
an essentially unique manner as h =

P
s2S hs, where, for s 2 S , hs 2 Hs and hs ? Hr for every

proper subset r of s. We refer to hs, s 2 S , as the components of the ANOVA decomposition of h.
In particular, let ��ks, s 2 S , denote the components of the ANOVA decomposition of ��k . Also, set
��s = (��

1s; : : : ; �
�
Ks) for s 2 S .

For 1 � m � M , let Gm denote a finite-dimensional space of functions on Um containing the
constant functions. Given a subset s of f1; : : : ;Mg, let Gs denote the tensor product of the spaces
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Gm, m 2 s, that is, the space spanned by functions on U of the form
Q
m2s gm(um) as gm ranges

over Gm for m 2 s. Observe thatGr � Gs for r � s. Let G denote the space of functions on U of
the form

P
s2S gs, where gs 2 Gs for s 2 S .

Let g ?n Gr mean that hg; grin = 0 for gr 2 Gr . IfG is identifiable, then every function g 2 G
can be written uniquely as g =

P
s2S gs, where, for s 2 S gs 2 Gs and gs ?n Gr for every proper

subset r of s. We refer to gs, s 2 S , as the components of the ANOVA decomposition of g. In
particular, let b�ks, s 2 S , denote the components of the ANOVA decomposition of b�k. Also, setb�s = ( b�1s; : : : ; b�Ks) for s 2 S .

We now restrict attention to spaces Gm of polynomial splines. For theoretical simplicity, for
1 � m � M , let �m be a partition of Um into disjoint intervals having common length a. By a
piecewise polynomial of degree q on Um, we mean a function g on Um such that the restriction of
g to each � 2 �m is a polynomial of degree q. Let Gm be a linear space of splines on Um; that is,
piecewise polynomials of degree q onUm subject to specified smoothness constraints, typically that
of being (q � 1)-times continuously differentiable on Um:

Given a real-valued function h on U , let khk1 denote the supremum of jhj on U . Given a
vector-valued function h = (h1; : : : ; hK) on U , set khk1 = max(kh1k1; : : : ; khKk1) and khk2 =
kh1k

2 + � � � + khKk
2.

Next we consider the rates of convergence that can theoretically be established for the estimateb� of �� and for the corresponding estimates b�s of the components ��s of ��. Let s 2 S . Under
various conditions on the spaces Gm, m 2 s,

inf
g2Gs

kg � ��ksk1 = O(ap); 1 � k � K and s 2 S;

with p being a suitably defined measure of smoothness of the constituents of �� (see Schumaker,
1981). Under various reasonable additional conditions,

k b�s � ��sk
2 = OP

�
a2p +

1

nad

�
; s 2 S;

and

k b�� ��k2 = OP

�
a2p +

1

nad

�
;

Thus, by optimally choosing a � n�1=(2p+d), we get the rate of convergence given by

k b�s � ��sk = OP (n
�p=(2p+d)); s 2 S; (4.3)

and
k b�� ��k = OP (n

�p=(2p+d)): (4.4)

In particular, by considering additive models (d = 1) or by allowing interactions involving only
two factors (d = 2), we can get faster rates of convergence than by choosing d = M and thereby
ameliorate the “curse of dimensionality.”
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Hansen (1994) introduced the class of extended linear models and obtained the corresponding
L2 rates of convergence. The various cases of this theory that had previously been treated are as
follows: regression in Stone (1985, 1994); generalized regression in Stone (1986, 1994), density
estimation in Stone (1990, 1994); conditional density estimation in Stone (1991, 1994) and Hansen
(1994); hazard regression in Kooperberg, Stone and Truong (1995b); and spectral density estima-
tion in Kooperberg, Stone and Truong (1995d).

5 Extended linear models: methodology

6 Extended linear models: adaptive methodology

In practice, it seems best to select G in an adaptive manner. Let J be the dimension of G, let
B1; : : : ; BJ be a basis of this space, and write a candidate g = (g1; : : : ; gK) for the maximum like-
lihood estimate b� in G of �� as gk =

P
j �jkBj for 1 � k � K . Let � be the (suitably) ordered

JK-tuple (�jk)1�j�J;1�k�K . Then the log-likelihood function based on the sample data can be writ-
ten as `(�), � 2 B. Assume that this log-likelihood function is twice continuously differentiable,
and let r`(�) andH(�) denote its gradient and Hessian matrix, respectively, at �.

The quadratic approximationQ to the log-likelihood function about �
0
2 B is given by

Q(�) = `(�
0
) + [r`(�

0
)]T (� � �

0
) +

1

2
(� � �

0
)TH(�

0
)(� � �

0
): (6.1)

Suppose H(�
0
) is negative definite or, equivalently, that I(�

0
) = �H(�

0
) is positive definite.

Then Q is uniquely maximized at

�
1
= �

0
+ [I(�

0
)]�1r`(�

0
): (6.2)

Using (6.2) in an iterative manner, we get the Newton–Raphson method for numerically determin-
ing the maximum likelihood estimate from any starting value �

0
. If the maximum likelihood esti-

mate exists, the log-likelihood function is strictly concave, and we apply a suitable modification to
the Newton–Raphson method (such as step-halving), then the method is guaranteed to converge to
the maximum likelihood estimate from any starting value [see Kooperberg, Bose and Stone (1995)
for details]. It follows from (6.1) and (6.2) that

2[Q(�
1
)�Q(�

0
)] = [r`(�

0
)]T [I(�

0
)]�1r`(�

0
): (6.3)

If �0 is the maximum likelihood estimate in a subspace of B, then the right side of (6.3) is the Rao
(score) statistic for testing the hypothesis that the “true” value of � lies in this subspace.

Let Q now be the quadratic approximation to the log-likelihood function about the maximum
likelihood estimate b� 2 B, and let B0 be the subspace of B consisting of those � 2 B such that
A� = 0, where A has full rank. Then the maximum of Q over B0 occurs uniquely at

b�0 =
b� � I�1( b�)AT [AI�1( b�)AT ]�1A b�: (6.4)
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Moreover,
2[Q( b�)�Q( b�

0
)] = (A b�)T [AI�1( b�)AT ]�1A b�: (6.5)

The right side of (6.5) is the Wald statistic for testing the hypothesis that � 2 B0 under the as-
sumption that � 2 B. Moreover, the right side of (6.4) gives a good starting value for using the
Newton–Raphson method to find the maximum likelihood estimate inB0 when the maximum like-
lihood estimate b� in B has already been determined.

An important aspect of the methodology for fitting extended linear models is the adaptive choice
of the spaceG from a familyG of allowable spaces that is typically assumed to satisfy the following
properties:

� for each G 2 G, the model has dimension J � Jmin;

� there is only one G 2 G with dimension Jmin, which we refer to as the minimum allowable
space;

� if G0 2 G has dimension J , there is at least one space G 2 G with dimension J + 1 that
contains G0 as a subspace;

� ifG 2 G has dimension J > Jmin, there is at least one subspace G0 2 G ofG with dimension
J � 1.

In our univariate methodologies (LOGSPLINE, LSPEC and HEFT) we use families of allow-
able spaces based on cubic splines. For each of these methodologies there are some extra restric-
tions on the allowable spaces, which are discussed in the relevant sections. Also, the HEFT and
LSPEC methodologies involve some additional basis functions that are not cubic splines. Details
are given in Sections 7 and 8.

For the multivariate methodologies POLYMARS (our version of MARS), POLYCLASS, and
HARE we make use of piecewise linear splines and selected tensor products. These spaces are
discussed in detail in Section 5 about POLYMARS. In all these applications we restrict attention to
d � 2, so that main effects (polynomial splines in individual variables) and two-factor interactions
(tensor products of polynomial splines in two different variables) may be allowed, but no three-
factor or higher-order interactions are allowed in the model. The allowable spaces for the bivariate
splines considered in Section 9 are discussed in that section.

Initially, we choose G as the minimum allowable space. Then we proceed with stepwise addi-
tion. Here we successively replace the (J�1)-dimensional allowable spaceG0 by a J -dimensional
allowable space G containing G0 as subspace, choosing among the various candidates for a new
basis function by a heuristic search that is designed approximately to maximize the corresponding
Rao statistic. The reason for using Rao statistics here is to avoid the need for computing maximum
likelihood estimates corresponding to the various candidate spaces G.

Upon stopping the stepwise addition process (for example, after we reach a default or user spec-
ified maximum dimension), we carry out stepwise deletion. Here we successively replace the J -
dimensional allowable space G by a (J � 1)-dimensional allowable subspace G0 until we arrive at
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the minimal allowable space, at each step choosing the candidate space G0 so that the Wald statistic
for a basis function that is in G but not in G0 is smallest in magnitude. The reason for using Wald
statistics here is to avoid the need for computing maximum likelihood estimates corresponding to
the various candidate subspaces G0.

During the combination of stepwise addition and stepwise deletion, we get a sequence of models
indexed by �, with the �th model having J�K parameters. The (generalized) Akaike information
criterion (AIC) can be used to select one model from this sequence. Let b̀� denote the fitted log-
likelihood for the �th model, and let

AICa;� = �2 b̀� + aJ�K (6.6)

be the Akaike information criterion with penalty parameter a for this model. We select the model
corresponding to the value b� of � that minimizesAICa;� . In light of practical experience, we gener-
ally recommend choosing a = log n as in the Bayesian informationcriterion (BIC) due to Schwarz (1978).
(Choosing a = 2 as in classical AIC tends to yield models that are unnecessarily complex, have
spurious features, and do not predict well on test data.)

Alternatively, we can use an independent test set to obtain a more nearly unbiased estimate of
the expected log-likelihood and select the model that maximizes this estimate. In the regression and
classification contexts we could use the independent test set to obtain a nearly unbiased estimate
of the mean squared error of prediction or the cost of misclassification and select the model that
minimizes this estimate.

Finally, cross-validation can be used to select a so as approximately to maximize the expected
log-likelihood or minimize the expected mean squared error of prediction or cost of misclassifica-
tion. [For detailed discussions of the use of independent test sets or cross-validation in the related
context of selecting classification and regression trees, see Breiman, Friedman, Olshen and Stone
(1984).]

Regardless of the final criteria used to choose between competing estimates, it is likely that
many of the models encountered during the stepwise addition and deletion processes will perform
similarly. By examining which terms are present in these best fitting models, we can gain consider-
able insight into the underlying features of the data. Simulation can also be used to judge whether or
not our procedures can reliably resolve important aspects of a given dataset. In addition, simulation
can be used to calibrate the choice of (the implicit smoothing parameter) a in the AIC criterion of
(6.6). Illustrations of these procedures will be given in the context of the various adaptive method-
ologies presented in Sections 4 through 9.

As mentioned in Section 1, various adaptive methodologies and corresponding software prod-
ucts have already been developed. The current situation regarding software availability is as fol-
lows:

� Versions of the HARE, HEFT, LOGSPLINE and LSPEC methodologies are available from
statlib. (The publically available version of the LOGSPLINE program is slightly older than
the one discussed in Section 4; see that section for more discussion.) All these methodologies
are written as C programs with an interface to the S/S-PLUS environment.
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� Friedman’s MARS program is available as a collection of Fortran subroutines from statlib.

� A commercial version of HARE is currently being implemented in S-PLUS.

� POLYCLASS and the bivariate splines discussed in Section 9 are still in development. Public
code is not yet available. Actually, in the context of POLYCLASS we are currently working
on a modification to the adaptive methodology to make it computationally much less intensive
when applied to large data sets with many classes, features and cases. In this modification we
plan to use a linear, MARS-like methodology to choose the sequence of models to be fitted
and then to use a quasi-Newton instead of Newton–Raphson method to obtain the maximum
likelihood fits. The modification was suggested in part by an analogous use of MARS in FDA
(Hastie, Tibshirani and Buja, 1994).

� The POLYMARS program discussed in Section 5 was not written as a stand-alone program.

� A library of S/S-PLUS routines for manipulating Triogram models is currently available from
the second author and will soon be available in Version 4 of S.

Our eventual goal is to develop a comprehensive set of polynomial spline modeling routines.

7 Univariate density estimation (LOGSPLINE)

8 Univariate density estimation (LOGSPLINE)

In logspline density estimation a (univariate) log-density is modeled by a cubic spline. The LOGSPLINE
project was the first methodology project employing model selection and polynomial splines on
which we have worked. In this section we describe the fourth version of LOGSPLINE. Earlier ver-
sions are discussed in Stone and Koo (1986b), Kooperberg and Stone (1991), and Kooperberg and
Stone (1992). The various versions of LOGSPLINE all employ cubic splines and maximum like-
lihood estimation. The way that the program positions knots, how it deals with the tails of the dis-
tribution, and what types of data it can handle are among the things that have evolved over time.
Before we give any details about the LOGSPLINE methodology we give a brief example.

In the left side of Figure 1 we show a density estimate for a random sample of size 7,125 annual
net incomes in the United Kingdom [Family Expenditure Survey (1968–1983)]. [The data have
been rescaled to have mean one as in Wand, Marron, and Ruppert (1991).] The peak near :24 is
caused by the UK national old age pension, which caused many people to have nearly identical
incomes. The right side of Figure 1 zooms in on the neighborhood of this peak. In Kooperberg
and Stone (1992) we concluded that the height and location of this peak are accurately estimated
by LOGSPLINE.

The selection of knots in logspline density estimation is discussed in detail below. Here it suf-
fices to note that the procedure involves stepwise addition and deletion of knots. The program starts
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Fig. 1. Left: logspline density estimate for the income data; right: enlargement of the area near
x = 0:24. The letters below the plots refer to the knot placement. See the text for details.

with a fairly small number of knots. In Figure 1 these knots are indicated by the letter “s”. It then
adds knots in those regions where an added knot would have the most influence, using Rao statis-
tics. The program continues adding until a pre-specified maximum number of knots is reached. The
knots for this largest model are indicated by the letter “m” in Figure 1. After the largest model has
been fit, knots are deleted one at a time, using Wald statistics to decide which one to delete next. The
smallest model that is fit has three knots. Out of the complete sequence of models, LOGSPLINE
selects the one having the smallest value for the AIC criterion. The knots for this “best” model are
indicated by the letter “f” in Figure 1.

Usually, as is the case here, the final model based on the AIC criterion is fit during the stepwise
deletion stage of the procedure. The new LOGSPLINE procedure thus has the advantage that it adds
knots in those parts of the density where they are most needed, for example near the peak, while
it deletes knots where they are not needed, for example in the tails, thus creating an adaptivity that
other density estimation procedures seem to lack. This is one of LOGSPLINE’s main advantages.

LOGSPLINE has additional advantages over other density estimation methods:

� While LOGSPLINE generally gives accurate estimates of the height and location of peaks,
thanks to adaptivity, it avoids spurious bumps and gives smooth estimates in the tail of the
distribution.
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� LOGSPLINE has a natural way to estimate densities with bounded support, which may be
discontinuous at the end of their range.

� LOGSPLINE can estimate the density even when some observations are censored.

� A LOGSPLINE density is represented by a list of numbers of moderate length, making it
convenient to use the density for further analysis.

The LOGSPLINE method is fairly fast: on our Sparc 10 workstation the estimate shown in Figure 1
was computed in about 9 seconds of cpu time.

In the following section we will discuss the LOGSPLINE methodology in some detail. In Sec-
tion 8.2 we present an example of the application of the various LOGSPLINE algorithms to a much
smaller data set.

8.1 The LOGSPLINE methodology

LOGSPLINE models

As usual in our polynomial spline methodologies, there are two main issues to LOGSPLINE:

� given a linear space, how the parameters are estimated;

� how the linear space is selected.

We now discuss the types of linear spaces that we consider in LOGSPLINE and the corresponding
log-likelihood function. Then we discuss how to select a linear space in an adaptive manner.

Given the integer K � 3, the numbers L and U with �1 � L < U � 1, and the sequence
t1; : : : ; tK with L < t1 < � � � < tK < U , let G be the space of twice-continuously differentiable
functions s on (L;U ), such that the restrictions of s to [t1; t2]; : : : ; [tK�1; tK] are cubic polynomials
and the restrictions of s to (L; t1] and [tK; U) are linear. The space G is K-dimensional. Set J =
K � 1. Then G has a basis of the form 1; B1; : : : ; BJ . We can choose B1; : : : ; BJ such that B1 is
linear with negative slope on (L; t1], B2; : : : ; BJ are constant on (L; t1], BJ is linear with positive
slope on [tK; U), and B1; : : : ; BJ�1 are constant on [tK; U):

A column vector � = (�1; : : : ; �J)T 2 IRJ is said to be feasible if

Z U

L
exp(�1B1(y) + � � �+ �JBJ (y))dy <1

or, equivalently, if (i) either L > �1 or �1 < 0 and (ii) either U < 1 or �J < 0. Let B denote
the collection of such feasible column vectors. Given � 2 B, set

f(y;�) = exp(�1B1(y) + � � �+ �JBJ (y)� C(�)); L < y < U;
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where

C(�) = log

 Z U

L
exp(�1B1(y) + � � �+ �JBJ(y))dy

!
:

Then f(�;�) is a positive density function on (L;U) for� 2 B. IfU =1, then the density function
is exponential on [tK;1); if L = �1, then the density function is exponential on (�1; t1]:

Let Y1; : : : ; Yn be a random sample of size n from a distribution on (L;U) having density func-
tion f . Let A1; : : : ; An be subintervals of (L;U) such that it is known only that Yi 2 Ai for 1 �
i � n. If Yi is uncensored, then Ai = fYig. If Yi is right censored at Ci < Yi, then Ai = (Ci; U).
If Yi is left censored at Ci > Yi, then Ai = (L;Ci). In either case, we refer to Ci as the censoring
value of Yi. If Yi is interval censored, then its censoring intervalAi is a subinterval of (L;U). Un-
der the usual assumption that the random sample is independent of the censoring mechanism, the
log-likelihood function corresponding to the LOGSPLINE model has the form given by

`(�) =
X
i

'(Ai;�); � 2 B;

here
'(y;�) = log f(y;�) =

X
j

�jBj(y)� C(�); � 2 B;

if A is the one-point set fyg and

'(A;�) = log
�Z

A
f(y;�)dy

�
= log

�Z
A
exp'(y;�)dy

�
; � 2 B;

if A has positive length. Formulas for the score function and Hessian can be found in Kooper-
berg and Stone (1992, Section 2). These formulas become rather complicated when A has positive
length.

The maximum likelihood estimate b� is given by `( b�) = max�2B `(�), and the log-likelihood
of the fitted model is given by b̀= `( b�). The corresponding maximum likelihood estimate of f is
given by bf (y) = f(y; b�) for L < y < U .

Model selection

The knot selection methodology involves initial knot placement, stepwise knot addition, stepwise
knot deletion, and final model selection based on AIC. In this subsection we assume that all the data
are uncensored, that is, Ai = fYig for all i.

Initially we start with K knots, with K = min(2:5n:2; n=4; N; 25), where N is the number
of distinct Yi’s. These K knots are positioned according to the same rule as in Kooperberg and
Stone (1992). This rule places the knots at selected order statistics of the data. (This rule is suitably
modified when some data are censored.) If L = �1 and U = 1, the extreme knots are placed
at the extreme observations and interior knots are positioned such that the distances (on an order
statistic scale) between knots near the extremes of the data are fairly small and almost independent
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of the sample size, while the knots in the interior are positioned approximately equidistantly. If
L > �1 or U <1, the procedure is suitably modified.

The knot-addition/knot-deletionprocedure that we employ is essentially the procedure described
in Section 3. In particular, at each addition step of the algorithm we first find a good location for a
new knot in each of the intervals (L; t1), (t1; t2), : : :, (tK�1; tK), (tK; U) determined by the existing
knots t1; : : : ; tK . To do this we maximize in each interval the Rao statistic for potential knots located
at the quartiles of the data within each interval. The location is then further optimized, which may
involve computing a few more Rao statistics (see Section 11.3 of Kooperberg, Stone and Truong
(1995a) for our current implementation). The search algorithm then selects among the best candi-
date within each of the intervals. The default value for the maximum number of knots in a model
is Kmax = min(4n:2; n=4; N; 30).

During knot deletion we successively remove the least significant knot, using Wald statistics
to measure significance. We continue this procedure until only three knots are left. (Rarely, with
extremely heavy tailed densities, there are numerical problems when the number of knots is too
small. In such a situation we terminate the procedure as soon as these problems occur.)

Among all models that are fit during the sequence of knot addition and knot deletion we choose
the model that minimizes AIC with default penalty parameter a = log n, as described in Section 3.

Innovations

As we mentioned in the introduction to this section, the present version of LOGPSLINE is the fourth
version. In the first version [Stone and Koo (1986b)], a small fixed number of knots was placed
equidistantly on an order-statistic logit scale. In Kooperberg and Stone (1991), stepwise knot dele-
tion was employed, and the initial knot placement rule was very similar to the one we now employ.
Both of these earlier papers used a preliminary transformation for densities on the positive half-line.
In Kooperberg and Stone (1992) it was decided that such a transformation is not needed when the
knot placement is sufficiently adaptive. In the 1992 paper we extended logspline density estimation
to censored data and discussed a user interface based on S. The present version of LOGSPLINE is
the only one that includes stepwise addition of knots. There are also several significant computa-
tional improvements, the two most important of which are as follows:

� The use of starting values during stepwise deletion is based on a quadratic approximation to
the log-likelihood function, as described in Section 3. These starting values are significantly
better than those proposed in Kooperberg and Stone (1992). Indeed, the number of Newton–
Raphson iterations may be reduced by as much as 30%.

� In the absence of censored data the log-likelihood function is strictly concave. Therefore, if
a maximum of the log-likelihood function exists, it is unique. If some of the observations
are censored, however, the log-likelihood function need not be concave. In Kooperberg and
Stone (1992), this problem was circumvented by alternating between Newton–Raphson and
steepest ascent. We now take the approach of adding a small negative constant times the
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identity matrix to the Hessian if necessary to ensure that this matrix is negative definite [see
Kennedy and Gentle (1980, Section 10.2.2)].

Note that the version of the program described in Kooperberg and Stone (1992) is available from
statlib (statlib@stat.cmu.edu). The version described in this paper is not yet publically available.

8.2 An example

The penalty parametera in the AIC criterion (see Section 3) is the main parameter in the LOGSPLINE
procedure that governs how complex the estimate of the density is. The default value for this pa-
rameter is a = log n as in BIC. Another commonly used value is a = 2 as in (traditional) AIC. One
of the goals of this section is to study the influence of this penalty parameter by means of a small
simulation study.

Besides the choice of the penalty parameter, it may matter whether we use the new LOGSPLINE
procedure, as described in this paper, or the previous LOGSPLINE procedure, described in Kooper-
berg and Stone (1992). Since the new procedure positions some of the knots adaptively, so as ap-
proximately to maximize the log-likelihood, conceivably it may lead to a more flexible estimate.

We applied the new and previous LOGSPLINE procedures with both a = 2 and a = log n to the
Buffalo snowfall data. This is a small data set (n = 63) that has been used extensively in the density
estimation literature; see, for example, Parzen (1979) and Silverman (1986). The main issue is here
the number of nodes: is there one, or are there three (or maybe two)? As can be seen from Figure 2,
the different LOGSPLINE procedures provide different answers, as summarized in Table 1. From
this table we see that the model that was selected using the new procedure with penalty parameter
a = 2 would also have been selected for values of a between 0.45 and 3.01. From (6.6) we note
that if a model with J basis functions is selected for some value of a, it will be selected for a range
of values of a. Some models may not be optimal for any value of a [see Kooperberg et al. (1995a,
Table 6)]. Note that for n = 63 the starting number of knots for the previous procedure is ten, while
for the new procedure it is six, with four knots being added by the algorithm.

TABLE 1.
Four LOGSPLINE estimates for the Buffalo snowfall data.

optimal for a number number
procedure from to of knots of modes

new procedure, a = 2 0.45 3.01 7 3
new procedure, a = log n � 4:14 3.01 8.38 5 2
previous procedure, a = 2 0.03 2.65 7 3
previous procedure, a = log n � 4:14 2.65 1 3 1
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Fig. 2. Logspline density estimates for the Buffalo snowfall data (n = 63) for the new and the
previous LOGSPLINE procedure and two different values of the penalty parameter.

To investigate the behavior of the LOGSPLINE estimation procedures in situations similar to
the snowfall data, we generated 100 samples of size 63 from each of the densities shown in Fig-
ure 2, except for the estimate of the previous procedure with a = 2 since it is very similar to the
estimate of the new procedure with a = 2. For each of the 300 samples that we obtained, we ap-
plied the same procedures with the same choices of a as in Figure 2, yielding four estimates for
each sample. In Table 2 we summarize the number of modes in each of these estimates. Not unex-
pectedly, the procedures with a = log n frequently underestimate the number of modes, while the
procedures with a = 2 frequently overestimate it. Although it would be possible to fine tune the
penalty parameter to balance the number of times the procedure underestimates and overestimates
the number of modes, we feel that it may be more useful to look at a few estimates with different
values of the penalty parameter before deciding on the final estimate. From Table 2 we also see
that the newer procedures are indeed a little more flexible than the old procedures, yielding even
more overestimation of the number of nodes for the a = 2 procedure, while the new procedure with
a = log n falls in between the two old procedures. From this summary we thus see that with the
present sample size it is virtually impossible to distinguish accurately between densities with one,
two and three modes. However, when we generated samples from the unimodal density (previous
procedure, a = log n) and estimated the density with one of the procedures with a = 2, we noticed
that when we got two modes, the second mode was more often on the left side of the main mode
than on the right side. This is not surprising since the density is slightly flatter on that side. Revers-
ing this reasoning we are lead to believe that the existence of a side mode to the right of the main
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TABLE 2.
Number of modes in the simulation study with n = 63.

data generated from previous: a = log n new: a = log n new: a = 2
correct number of modes 1 2 3
estimated number of modes 1 2 3 � 4 1 2 3 � 4 1 2 3 � 4

new a = 2 39 41 19 1 7 74 17 2 6 26 64 4
new a = log n 74 23 3 0 34 64 2 0 29 40 31 0
previous a = 2 51 37 11 1 16 68 16 0 12 22 65 1
previous a = log n 84 13 3 0 51 46 3 0 45 26 29 0

TABLE 3.
Number of modes in the simulation study with n = 250.

data generated from previous: a = log n new: a = log n new: a = 2
correct number of modes 1 2 3
estimated number of modes 1 2 3 � 4 1 2 3 � 4 1 2 3 � 4

new a = 2 41 26 25 8 0 56 32 12 0 3 68 29
new a = log n 88 12 0 0 4 90 4 2 0 9 89 2
previous a = 2 74 19 7 0 2 79 18 4 0 9 90 1
previous a = log n 99 1 0 0 16 82 2 0 5 17 78 0

mode is more plausible than the existence of a side mode to the left of the main mode.

Although all procedures have trouble distinguishing between unimodal and multimodal densi-
ties when n = 63, most carry out this task well when the sample size gets larger. In Table 3 we
summarize a similar simulation study as in Table 2, except that we generated samples of size 250
from the densities in Figure 2. For this sample size the starting number of knots for the previous
procedure is twelve, while the new procedure starts with eight knots and adds four more during the
algorithm. Except for the new procedure with a = 2, all methods get the right number of modes at
least 74% of the time. The new method with a = log n � 5:52 gets it right at least 88% of the time
for each of the three situations.

9 Regression (MARS)

10 Regression (MARS)

When viewing regression as a function estimation problem we recognize that the regression func-
tion may not be a linear additive function of the predictors and instead allow nonlinear and pos-
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sibly also nonadditive functions. When there is only one predictor, nonparametric regression can
be viewed as smoothing, for which there are numerous methods available. Some of the popular
methods are kernel and local polynomial regression (Wand and Jones 1995; Fan and Gijbels 1996),
smoothing splines (Wahba 1990; Green and Silverman 1994), and polynomial splines. Smith (1982)
is probably the first paper to use polynomial splines with adaptively selected knots for regression
problems. In her method, knots for cubic splines are positioned uniformly over the range of the
data, after which a stepwise knot deletion algorithm is employed.

While many of the univariate nonparametric regression methods can be generalized to situa-
tions where there are a few predictors, the curse of dimensionality applies when there are many
predictors. One attractive approach for ameliorating this curse is to model the regression function
as an additive function of the predictors. This approach has been popularized by Hastie and Tibshi-
rani (1990), who treat both linear regression and generalized regression, including logistic regres-
sion and Poisson regression, and emphasize the use of backfitting together with a one-dimensional
smoother to fit the additive models to data.

An early paper using polynomial splines for additive linear regression and well as additive logis-
tic regression is Stone and Koo (1986a), in which knots were placed at nonadaptive (predetermined)
quantiles. Stepwise knot selection, forward and backward, was used in the additive regression pro-
gram TURBO by Friedman and Silverman (1989). A somewhat different approach to additive re-
gression involving stepwise knot selection was developed by Breiman (1993). In the applications
of cubic splines in these papers, linear constraints were placed on the tails of the splines mainly to
control the variance of the corresponding estimates.

When nonadditive models are considered, the usual approach to nonparametric regression has
been to restrict the model to additive main effects, and selected low order interactions. Gu and
Wahba (1993) developed a smoothing spline approach to ANOVA modeling in function estima-
tion. Friedman (1991) introduced Multivariate Adaptive Regression Splines (MARS), which is a
polynomial spline methodology for estimating the regression function.

In this section we first give a brief description of Friedman’s MARS program. When we were
working on POLYCLASS (Kooperberg, Bose and Stone, 1995), we found it necessary to develop
our own version of MARS to handle huge data sets with many predictors and basis functions. In
Section 5.2 we describe this version of MARS and list some differences between our version and
Friedman’s. In Section 5.3 we present a small example in which we compare both programs.

From now on, when we mention “MARS” in this paper, we refer either to Friedman’s version or
to both versions simultaneously. We refer to our version of the MARS algorithm as “POLYMARS”.

10.1 MARS

Let (X1; Y1); : : : ; (Xn; Yn) denote a random sample from the distribution of (X; Y ), where X 2
IRM and Y 2 IR. We wish to estimate f(X) = E(Y jX). The MARS model (Friedman 1991) can
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be written as

f(X) = f(Xj�) =
JX

j=1

�jBj(X): (10.1)

For a given set of basis functions, the unknown parameters in MARS are estimated using least
squares. The selection of the basis functions in MARS is not easily written in the allowable spaces
framework of Section 3. Here we outline the main features of the MARS algorithm when piece-
wise linear splines are used. A refinement of this algorithm makes use of continuously differen-
tiable functions that are similar, but not exactly identical to the cubic splines employed in various
other sections of this paper. (Note that these cubic splines yield twice continuously differentiable
functions.)

In the MARS program the one-dimensional model f(x) = �1 is initially fit. Then, successively,
models with J basis functions are replaced by models with J + 1 or J + 2 basis functions. This is
done by considering the addition of all possible pairs of new basis functions Bm(x)(xi � t)+ and
Bm(x)(t� xi)+, where xi is one of the predictors, t is a new knot in that predictor, and Bm(x) is
a basis function currently in the model that does not depend on xi. (Some of these additions may
involve adding only one genuinely new basis function since one new basis function would already
be in the span of the existing basis functions and the other new basis function; see Friedman (1991).)
In the MARS algorithm every data coordinate that is sufficiently far from existing knots for the
corresponding variable is a candidate for a new knot for that variable. The best model of dimension
J + 2 or J + 1 is chosen among such candidates for stepwise addition using a Generalized Cross
Validation (GCV) criterion. The stepwise addition of basis functions continues until a user specified
maximum number of basis functions is reached. During the stepwise deletion stage of MARS, any
of the nonconstant basis functions can be removed at any step. GCV is used to select the overall
best model during the addition or deletion stage.

An option in MARS allows the user to restrict the basis functions to depend on at most d pre-
dictors. The POLYMARS methodology described below corresponds to MARS with d = 2.

10.2 POLYMARS

The set up for POLYMARS is identical to that for MARS, except that with POLYCLASS (Sec-
tion 6) in mind we allow the response Y to be in IRK with K � 1. For simplicity, however, we will
assume here that K = 1 since all computations generalize trivially. As in the other methodologies,
we model f(X) in a linear space, so that (10.1) again holds.

For POLYMARS it is convenient to define an allowable space by listing its basis functions. For
1 � m � M , let Km be an integer with Km � �1; if Km = �1 there are no basis functions
depending on xm; if Km = 0, consider the basis functionBm0(xm) = xm; if Km � 1, consider the
basis function Bm0(xm) = xm, let xmk for 1 � k � Km be distinct real numbers, and consider the
additional basis functions Bmk(xm) = (xm � xmk)+ for 1 � k � Km.

Let G be the linear space having basis functions 1, Bmk(xm) for 1 � m � M and 0 �
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k � Km, and perhaps certain tensor products of two such basis functions. It is required that if
Blj(xl)Bmk(xm) be among the basis functions for some j � 1, thenBl0(xl)Bmk(xm) = xlBmk(xm)
and hence (if k > 0) xlxm be among the basis functions. One reason for this requirement is that it
leads to models that are simpler and easier to interpret; another is to reduce the variance associated
with the overall modeling procedure.

It is easy to check that the collection G of such spaces satisfies the properties listed in Section 3.
In particular, the minimal allowable space Gmin for the POLYMARS model is the space of constant
functions. Thus the minimal model for (10.1) has J = 1, B1 = 1 and f(X) = �1 so that f(X) does
not depend on the vectorX of predictors. Note that the highest order d of interactions allowed in a
POLYMARS model is two.

Given the basis of an allowable spaceG as defined above, it is obvious whether any given basis
function can be deleted in one step.

Example. Let M = 4, B1 = 1, B2 = x1, B3 = (x1 � 1)+, B4 = x2, B5 = x3, and B6 = x1x2.
Then B1; : : : ; B6 span an allowable space G. In this example, B3, B5 or B6 could be removed and
the remaining space would still be allowable. If one of the basis functionsB2 or B4 were removed,
however, the remaining space would not be allowable since it would still contain B6 = B2B4 (as
well as B3 in the case of removingB2). The constant basis function B1 can never be removed.

Let G0 be the allowable space having basis functions 1, Bmk(xm) for 1 � m � M and 1 �
k � Km, and perhaps certain tensor products of two such basis functions. To decide which basis
function to add to this model, we compute the Rao statistic as described in Section 3,

(i) for all spaces that can be obtained from G0 by adding a basis function Bl0(xl) = xl to G0;
(ii) for all allowable spaces that can be obtained fromG0 by adding a basis function to G0 that is

a tensor product of two basis functionsBlj(xl) and Bmk(xm), l 6= m, that are in G0;
(iii) for an allowable space that can be obtained fromG0 by adding a basis function corresponding

to a potential new knot in predictor m for 1 � m � M . For every predictor we consider
a fixed number N0 of potential new knots, which typically are preselected order statistics of
the data.

As the new spaceGwe choose the one corresponding to the largest absolute value of the Rao statis-
tic among those candidates listed above that are nonvacuous.

Example (continued). Corresponding to (i), we can add the basis function x4 to the space in the
above example. Corresponding to (ii), we can add B2B5 = x1x3, B3B4 = (x1� 1)+x2 or B4B5 =
x2x3 to the space. The basis function B3B5 = (x1 � 1)+x3 cannot be added, since the resulting
space would not containB2B5 = x1x3 so it would not be allowable. Corresponding to (iii), a basis
function (x1� x1k)+ with x1k 6= 1, (x2� x2k)+ or (x3� x3k)+ could be added. No basis function
of the form (x4 � x4k)+ could be added before x4 is added.

For a given allowable space, the parameters �j in (10.1) can be estimated using least squares.
The Rao and Wald statistics that are used to decide which basis function to add or delete now reduce
to the difference in the residual sum of squares between two nested models. The AIC criterion to
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select the final model is replaced by a penalized residual sum of squares called GCV (Friedman,
1991). In particular, we select the model that minimizes

RSSJ

n

,"
1 �

a(J � 1)

n

#
2

;

where RSSJ is the residual sum of squares for the model with J basis functions and a is a parameter
that we typically set equal to 2.5.

Several computational tricks make it possible for the POLYMARS algorithm to be extremely
fast, even for huge data sets and many basis functions. (See Kooperberg, Bose and Stone (1995)
for more details.) In particular, since we limit the number of potential locations for new knots, in-
ner products need to be computed at most once. We show that if the maximum number of basis
functions considered is Pmax, the complete POLYMARS program requires O(N0nP

2

max
) floating

point operations (flops), while MARS (which has to recompute inner products since there are too
many candidate basis functions to store them all) requires O(MnP 3

max
) flops. In particular, on an

example with n = 10000, M = 63, N0 = 20, and Pmax = 80, the POLYMARS program required
474 seconds of cpu time, while MARS required 12,636 seconds on the same machine.

Besides these computational issues, there are other differences between MARS and POLYMARS:

� The allowable spaces are different. This is most evident in the addition stage, during which
we add first a linear term and perhaps later a knot, while in Friedman’s program two basis
functions, essentially corresponding to a linear function and a knot, are added at the same
time.

� During the deletion stage POLYMARS requires interaction basis functions to be removed
before the corresponding main effects can be removed. Knots have to be removed before
linear terms are removed. MARS has no such restrictions.

� In MARS, but not in POLYMARS, a piecewise cubic approximation to the piecewise linear
function is applied after a basis function is added.

10.3 An example

For a comparison of the two MARS programs on a small data set, we applied them to the well stud-
ied Boston housing data [see, for example, Belsley, Kuh and Welsch (1980) and Breiman, Friedman,
Olshen and Stone (1984)]. The response is the median value of homes in thousands of dollars, and
there are 13 predictors, many of which are highly collinear.

In our experiment we randomly divided the data into a training set of 304 cases and a test set of
202 cases. Both MARS programs were applied to the training set, using 30 as the maximum number
of basis functions, GCV to select the final model, and otherwise the default options in both program.
(In MARS we set the maximum number of terms in each basis function equal to two, to make the
program comparable to POLYMARS.) We then computed the mean squared error on the test set.
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TABLE 4.
MARS fits for the Boston housing data.

Method MSE CPU
MARS - linear fit 14.37 5.07
MARS - cubic approximation 15.91 5.07
POLYMARS 14.07 3.41

We repeated this experiment ten times. The results are summarized in Table 4, together with the
average cpu time on our SGI workstation. Since MARS supplies both a piecewise linear fit and a
piecewise cubic approximation to this fit, there are two MSE’s for this program. The standard errors
in the estimates of the mean squared error are all approximately 1.5, while the variation in the cpu
times is negligible. Over these ten repetitions, the correlation between the MSE of the POLYMARS
fit and the piecewise linear MARS fit is 0.94, while the two other correlations are between 0.4 and
0.6. From this table we see that the difference between the two piecewise linear fits is negligible,
while both are a little better than the piecewise cubic approximation.

We then applied both MARS procedures to the complete data, with 80 as the maximum number
of basis functions. MARS used 78.6 seconds cpu time to select 53 basis functions, while POLY-
MARS used 33.7 seconds to select 41 basis functions. Both models were very complicated: for
example, POLYMARS used 10 of the 13 covariates, and 12 pairs of covariates had at least one
tensor-product basis function involving both covariates in the pair. MARS program used 11 of the
13 covariates, and 22 pairs of covariates had at least one tensor-product basis function involving
both covariates in the pair.

11 Polychotomous regression and multiple classification (POLY-
CLASS)

12 Polychotomous regression and multiple classification (POLY-
CLASS)

12.1 The POLYCLASS model

The multiple classification problem is well studied in statistics. Typically, there is a qualitative ran-
dom variable Y that takes on a finite numberK + 1 of values, which we refer to as classes. Based
on a vector of predictorsX 2 IRM , we want to predict Y .

In POLYCLASS we use piecewise linear splines and selected tensor products (d � 2) to model
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the conditional class probabilities. Specifically, suppose P (Y = kjX = x) > 0 for k 2 K =
f1; : : : ;K + 1g and x 2 X , where X is a subset of IRM over which X ranges. Set

�(kjx) = log
P (Y = kjX = x)

P (Y = K + 1jX = x)
; x 2 X and k 2 K:

Then �(K + 1jx) = 0 for x 2 X and

P (Y = kjX = x) =
exp �(kjx)

exp �(1jx) + � � �+ exp �(K + 1jx)
; x 2 X and k 2 K: (12.1)

We refer to (12.1) as the polychotomous regression model; when K = 1 it is referred to as the
logistic regression model.

Let J be a positive integer and let G be a J -dimensional linear space of functions on X with
basis B1; : : : ; BJ . Consider the model

�(kjx) = �(kjx;�k) =
JX

j=1

�jkBj(x); x 2 X and k 2 K; (12.2)

here �k = (�k1; : : : ; �kJ)
T for 1 � k � K , �K+1 = 0, and � is the JK-dimensional column

vector consisting of the entries of �
1
; : : : ;�K , which ranges over B = IRJK . Correspondingly, set

P (Y = kjX = x;�) =
exp �(kjx;�)

exp �(1jx;�) + � � �+ exp �(K + 1jx;�)

for � 2 B; x 2 X and k 2 K.

In POLYCLASS the basis functions Bj(x) that are used in (12.2) are piecewise linear splines
and their selected tensor products. Based on sample data, the coefficients �jk can be estimated by
maximum likelihood, yielding a concave optimization problem; see Kooperberg, Bose and Stone
(1995) for more details.

As in most of the procedures that we describe in this paper, we use stepwise addition based on
Rao statistics and stepwise deletion based on Wald statistics to select the basis functions. Some de-
tails specific to POLYCLASS are discussed in Section 12.3. The model selection in POLYCLASS
can be carried out using AIC, an independent test set, or cross-validation [see Kooperberg, Bose
and Stone (1995)].

12.2 A phoneme recognition example

In Kooperberg, Bose and Stone (1995), POLYCLASS is applied to a huge data set from the area
of speech recognition. Here we present an abbreviated version of this analysis. The source of this
data set is the Center for Spoken Language Understanding in Portland, Oregon [Cole et al. (1992,
1994)]. It consists of 2165 utterances from telephone calls, which are numbers that typically are
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parts of addresses, zip-codes and street numbers. Each utterance was processed by one or more
listeners, who produced a time-aligned phonetic description of the utterance. For example, for one
particular utterance, “3o3” (three-oh-three), it was determined that from 1 millisecond (ms) to 167
ms, the speaker produced phonemeT, followed by phoneme r from 167 ms to 193 ms, and so on. It
should be noted that the person who decided which phoneme was spoken was not aware of the text
of the utterance. The phoneme transcription, which we obtained from the International Computer
Science Institute (ICSI) in Berkeley, California, is based on the LIMSI phonetic alphabet (Gauvain
et al. 1994).

The utterances were also processed to produce perceptual linear predictive (PLP) features. Ev-
ery 12.5 ms the audible spectrum, based on a concentric 25 ms piece of sound, is determined. Since
we consider telephone data, which is sampled at the frequency of 8 kHz, there are 200 observations
of the sound wave in such a 25 ms interval. A Hamming window is applied to these 200 observa-
tions before the spectrum is estimated using the discrete Fourier transform. The estimated spectrum
is next transformed to yield a critical-band integrated power spectrum with an equal-loudness pre-
emphasis and a cube root nonlinearity to simulate the auditory intensity-loudness relation. Then
the eighth-order autoregressive all-pole model of the transformed spectrum is obtained. The coef-
ficients of the Fourier transform representation of the log-magnitude of this model are known as its
cepstral coefficients. The PLP features (Bourlard and Morgan, 1994; Hermansky, 1990; Rabiner
and Juang, 1993) that we used are the log-gain of the model (similar to the variance) and the next
eight cepstral coefficients (similar to the autoregressive coefficients).

The goal in our analysis is to estimate the probability distribution over all phonemes at intervals
of 12.5 ms based on the (nine) features available at that time point as well as the features available
at the c time points, each 12.5 ms apart, before and after the point at which we want to estimate the
phoneme distribution.

Such a probability distribution (or, more precisely, a likelihood that is obtained by weighting the
estimated probabilities by the empirically determined frequencies of the phonemes) can be used as
input to train (estimate) a hidden Markov model, which in turn can be used for automatic speech
recognition (Bourlard and Morgan, 1994). In the hybrid approach described by Bourlard and Mor-
gan, a multilayer perceptron network (a type of artificial neural network) is used to estimate these
probabilities.

There were 45 different phonemes, yielding 247,039 cases (12.5 ms intervals). We randomly
divided the data into a training set of approximately 112,000 cases and a test set of about 135,000
cases. We used the vector of features at seven different time points, so that c = 3 above. The eight
cepstral coefficients were used exactly as we received them from ICSI. Since some speakers speak
more loudly than others, the log-gain by itself is not an informative predictor of the phoneme that is
being spoken. Differences in the log-gain may be more informative. If e(i) is the log-gain at time
instance i, we used

d(i) = e(i)�
1

7

3X
j=�3

e(i+ j)

instead of e(i).
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TABLE 5.
The features in the POLYCLASS model.

time
cepstral coefficient �3 �2 �1 0 1 2 3
log-gain 5 4 3 5 3
lag one 5 4 5 4
lag two 4 5 2 5
lag three 4 4 5
lag four 5 5 1 5
lag five 3 4 4
lag six 4 3
lag seven 3 2 3
lag eight 3 3 4

The standard POLYCLASS methodology would be practically impossible to apply to the phoneme
recognition data, for which K = 44, M = 9 � 7 = 63 and the sample size is given by n = 112; 115.
In Kooperberg, Bose and Stone (1995) a number of modifications, which make it possible for POLY-
CLASS to deal with this data set, are discussed. The most important such modification is that
instead of computing the regular Rao statistics during the stepwise addition stage a related least
squares problem is solved.

We fitted a POLYCLASS model with 350 basis functions to the data. This maximum number
was constrained by the computing resources that were available to us on a network of workstations
at the Maui High Performance Computing Center. We believe that a larger number of basis func-
tions would give better results. Exhaustion of our computing resources also prevented us from ap-
plying the stepwise deletion algorithm to the largest model. However, intermediate results suggest
that the deletion of some basis functions would not significantly improve our results.

Of the 350 basis functions that were selected by the POLYMARS algorithm, one is the constant
function, 31 are of the form xi, 45 are of the form (xi � xik)+, 134 are of the form xixj , 87 are of
the form (xi�xik)+xj , and eleven are of the form (xi�xik)+(xj�xjl)+. Thus, of the 63 features,
32 are not used. Of the remaining 31, ten are involved in all types of basis functions, ten more are
involved in all types of basis functions except for (xi � xik)+(xj � xjl)+, and eight are involved
in basis functions of the types xi, (xi � xik)+, xixj and xi(xj � xjk)+. Finally, two features have
basis functions of the types xi, (xi�xik)+ and xixj only, and one feature appears only linear in the
model.

The 63 features can be organized in a 9 (cepstral coefficients) � 7 (time points) table. If we
label the features from “1”, for the feature that occurs only linearly, to “5”, for the features that
are involved in all types of basis functions, and we ignore the entries for the 32 features that are
unused, we obtain Table 5. From this table we clearly see that the most important information is
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obtained from time points �3 (37.5 ms before the phoneme was spoken), 0 (when the phoneme is
spoken) and 3 (37.5 ms after the phoneme was spoken). This table suggests that, in retrospect, it
would have been better to use the cepstral coefficients at more than seven time points. (We also see
that the log-gain and the shorter lags are more important than the longer lags.)

In Figure 3 we report the misclassification rate and the fitted log-likelihood
P

i logP (Y = YijX = Xi)

n

for the training set and the test set combined. From these graphs it appears that the fit would continue
to improve if we were to increase the number of basis functions.

As mentioned earlier, in this particular application the estimation of conditional class probabil-
ities is more important than classification, since these probabilities can be used as the inputs to the
hidden Markov model for the approach to speech recognition described in Bourlard and Morgan
(1994). POLYCLASS is particularly useful in this situation, since, unlike most other classification
methods, it provides viable estimates of the conditional class probabilities. In Figure 4 we plot the
estimated probability that a case is a particular phoneme grouped in bins of size 0.01 on the hori-
zontal axis and the fraction of cases with that probability that corresponded to the correct phoneme
on the vertical axis. Note that every case contributes 45 observations to this graph: one observa-
tion per candidate phoneme. These graphs are extremely close to the ideal straight line (fraction
true class) = (estimated probability) for the test set (left side) and the training set (right side).

Clearly, not all phonemes are correctly estimated with the same probability. In Figure 5 we plot
the average probability, over the test set, assigned to each phoneme. We see from Figure 5 that,
not surprisingly, this probability is much larger for the frequently occurring phonemes than for the
infrequently occurring ones.

Other aspects of the analysis that are discussed in Kooperberg, Bose and Stone (1995) are a com-
parison of POLYCLASS with other classification methods and an analysis of the patterns of mis-
classification by POLYCLASS. In particular, it was found that most of the traditional classification
methods either are not able to deal with such a huge data set or are outperformed by POLYCLASS.
Neural networks, however, do give better results on related, but not identical, data. It was hypoth-
esized that for POLYCLASS to be competitive with neural networks it should be able to fit larger
models faster, so that, for example, one could experiment with different sets of features. It may be
that other optimization methods, for example the one-case-at-a-time gradient based methods used
in neural networks, can give POLYCLASS the required computing power.

12.3 Some more details of POLYCLASS

The basis functions that are used in POLYCLASS are piecewise linear splines and their tensor prod-
ucts. We impose similar restrictions as in POLYMARS on which basis functions are allowed; that
is, linear functions in one of the predictors are always allowed, while basis functions of the form
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Fig. 3. Misclassification rate (left) and fitted log-likelihood (right) versus the number of basis func-
tions. Solid = training set, dashed = test set.
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Fig. 5. Average probability assigned to the correct class and fraction correctly classified versus the
class frequency for the test set.

(xi � xik)+ are allowed in the model only when the corresponding linear function is already in-
cluded in the model. Tensor products of basis functions involving two different predictors already
in the model are allowed, except that if such a tensor product involves a knot in either or both of the
predictors, the corresponding basis functions with linear terms must already be in the model. Thus,
for (xi � xik)+(xj � xjl)+ to be allowed in the model xi(xj � xjl)+, (xi � xik)+xj , and xixj need
already be in the model.

The main difference between POLYCLASS and the other methodologies discussed in this pa-
per is that in POLYCLASS there are K parameters for each basis function, while for the other
methodologies there is only one parameter. This seriously increases the amount of computation
needed for large data sets. For example, for the phoneme recognition problem discussed in the pre-
vious section the number of parameters for the largest model equals 15,400. Thus even storage of
a (pseudo-)Hessian becomes prohibitively expensive, while the computation of one score function
takes O(JKn) floating point operations (flops) for a model with J basis functions and the compu-
tation of a Hessian takes O(J2K2n) flops. The following modifications of the POLYCLASS algo-
rithm, to make it feasible to deal with very large data sets, are discussed in Kooperberg, Bose and
Stone (1995):

� During the stepwise addition stage of the program we use a multiresponse least squares ap-
proximation to the POLYCLASS problem. That is, we regress K + 1 response vectors Zk

on the basis functions, where Zki = ind(Yi = k), i = 1; : : : ; n and k = 1; : : : ;K + 1, with
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ind(�) being the usual indicator function.

This least squares approximation can conveniently be carried out using a multiresponse ver-
sion of the MARS algorithm described in Section 5. Selecting J basis functions now requires
O(50nJ(J +K)) flops.

� After the J basis functions have been selected using this least squares approximation, we
immediately fit the largest model using maximum likelihood. To obtain good starting values
we successively add basis functions to the model, using only a fraction of the cases, until all
basis functions are in the model.

� The maximum likelihood fitting was carried out on a network of 64 workstations at the Maui
High Performance Computing Center.

With these modifications, the time needed to fit the largest POLYCLASS model was reduced from
an estimated several years to one day on the network of workstations.

13 Hazard regression (HARE)

14 Hazard regression

Recall the discussion of hazard regression in Section 2. Let F (t jX) = P (T � t jX) denote the
conditional distribution function of the survival timeT given the random vectorX of covariates and
let f(t jX) denote the corresponding conditional density function. Define the conditional hazard
function by �(t jX) = f(t jX)=[1 � F (t jX)] and set �(t jX) = log �(t jX). A proportional
hazard model is specified by setting �(t jX) = �0(t) +X�; here �0(�) is the baseline log-hazard
function and� 2 IRM is a vector of parameters. Cox (1972) suggested a partial likelihood principle
for estimating �. Since then, analyses of censored outcome data have largely been confined to the
estimation of linear covariate effects. See, for example, Andersen et al. (1993), Cox and Oakes
(1984), Fleming and Harrington (1991), Kalbfleisch and Prentice (1980), and Miller (1981).

The desire to relax the proportionality and linearity assumptions has led to many further devel-
opments in survival analysis. For example, Hastie and Tibshirani (1990), Sleeper and Harrington
(1990), and Gray (1992) considered using splines to model nonlinear covariate effects in large clini-
cal studies. In practice, it is even more desirable to estimate the conditional hazard, distribution and
density functions. Based on proportional hazards models, Breslow (1972, 1974) suggested estimat-
ing the conditional distribution by combining Cox’s partial likelihood principle for the covariate
effects and the Kaplan–Meier (1958) method for estimating the baseline survival function. Fol-
lowing the extended linear modeling framework described in Sections 2 and 3, Kooperberg, Stone
and Truong (1995a, 1995b) developed a more general approach, which, without requiring the pro-
portionality and linearity assumptions, yields estimates of the conditional hazard, density, survival
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and quantile functions in a unified manner using the relationships

F (tjx) = 1 � exp
�
�
Z t

0

�(ujx) du
�

and f(tjx) = [1� F (tjx)]�(tjx); t � 0:

In the remainder of this section, we describe the methodologies for hazard estimation with flexi-
ble tails (HEFT) and hazard regression (HARE), and we give an example to illustrate their practical
application.

14.1 The HEFT and HARE methodologies

HEFT

The HEFT methodology is designed to estimate the unconditional (or baseline) log-hazard func-
tion. Let f denote a positive density function on (0;1), and let F , � and � be its distribution,
hazard and log-hazard functions, respectively. Given the integer J � 3 and the sequence t1; : : : ; tJ
with 0 < t1 < � � � < tJ <1, let G0 be the (J � 2)-dimensional space of twice continuously dif-
ferentiable, cubic spline functions s on [0;1) with knots t1; t2; : : : ; tJ�1; tJ such that s is constant
on [0; t1] and on [tJ ;1). Let B1; : : : ; BJ�2 be a basis of this space such that BJ�2 = 1 on [0;1)
and B1; : : : ; BJ�3 equal zero on [tJ ;1).

To enhance its flexibility in estimating the hazard function, the space G0 can be augmented by
adding the basis functions

B�1(t) = log
t

t+ c
and B0(t) = log (t+ c); t > 0;

with c > 0 being a parameter. In fact, the linear space G spanned by G0 [ fB�1; B0g includes
Weibull and Pareto distributions as special cases [see Kooperberg et al. (1995a)]. The collection G
of such J -dimensional spaces G form a family of allowable spaces.

Set � = (��1; �0; �1; : : : ; �J�2) 2 IRJ ,

�(�;�) = ��1B�1(�) + �0B0(�) + �1B1(�) + � � �+ �J�2BJ�2(�);

and
B =

n
(��1; �0; �1; : : : ; �J�2) 2 IRJ : ��1 > �1 and �0 � �1

o
:

The above constraints ensure thatZ t

0

exp �(u;�) du <1; 0 < t <1; and
Z 1

0

exp �(t;�) dt =1:

We use �(�;�), � 2 B, to model the log-hazard function.

Given a random sample, the maximum likelihood estimate b� of � is obtained by using the
Newton–Raphson method. (Note that the log-likelihood function here can be easily obtained from
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that for hazard regression discussed in Section 2 by ignoring the covariates.) Estimates of the log-
hazard, hazard, survival, distribution, and density functions are given by b�(t) = �(�; b�), b�(t) =
exp b�(t), bS(t) = exp ( �

R t
0

b�(u) du), bF (t) = 1 � bS(t), and bf(t) = bS(t) b�(t), t � 0. The corre-
sponding estimate of the pth quantile is given by bQp = bF�1(p).

Observe that the above log-hazard estimate depends on the choice of G. HEFT selects such a
G adaptively from G by following the methodology for model selection described in Section 3. (In
the current implementation of HEFT, the choice of which logarithmic terms to include in the model
is made initially by the user and is not modified during the process of stepwise addition and deletion
of knots.)

HARE

HARE is a routine for estimating covariate effects on a possibly censored response variable. Here
the allowable spaces are similar to those used in POLYMARS, except that the conditional log-
hazard function also depends on time. To this extent we also allow piecewise linear basis functions
depending on time and tensor products of these with (piecewise linear) basis functions depending
on a covariate. As with POLYMARS and POLYCLASS, the highest order of interactions allowed
is two. Let G denote the collection of such allowable spaces.

For an allowable space in G, we get estimates of the coefficients of basis functions by maximiz-
ing the log-likelihood function given in the discussion of hazard regression in Section 2. This pro-
cedure is carried out using the Newton–Raphson method. Estimates of the conditional log-hazard,
conditional hazard, conditional survival, conditional distribution, and conditional density functions
are obtained in a manner similar to HEFT.

For model selection, the adaptive methodology is essentially the same as described in Section 3
with d � 2. In the current implementation of HARE, the fitted conditional log-hazard function has
a constant tail. For details, see Kooperberg et al. (1995a).

Besides providing a unified framework for estimating the conditional hazard, survival, density
and quantile functions, HEFT and HARE also allow considerable flexibility in fitting survival data.
If the fitted model contains an interaction involving time and a covariate, then the assumption of
proportionality is questionable. On the other hand, HARE can be forced to fit a proportional hazards
model or even an additive model (d = 1).

HEFT as preprocessor to HARE

Before applying HARE, it is useful to transform the time variable using HEFT. There are two ad-
vantages in doing this. First, because of the piecewise linear nature of HARE, the first derivative
of the baseline hazard function can have big jumps at various knots in time. The HARE model for
the transformed data, on the other hand, typically has fewer knots, and the jumps in the first deriva-
tive of the hazard function at these knots tend to be smaller. Secondly, the fitted conditional hazard
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function beyond the last knot is necessarily constant when HARE is applied to the original data, but
this is not the case when HARE is applied to the transformed values of time.

Let �0 denote the unconditional (baseline) hazard function of T and set q0 = � log(1�F0)with
F0 being the distribution function corresponding to �0, so that q0 is the baseline cumulative hazard
function. Then q0(T ) has constant hazard function [see Kooperberg et al. (1995a)]. This motivates
the use of HARE on the transformed responses.

We next describe relationships between the transformed and untransformed data. Let f1, F1

and �1 denote the conditional density, distribution and hazard functions of q0(T ) given X. Then
the corresponding functions for T givenX are given respectively by

f(tjX) = �0(t)f1(q0(t)jX); F (tjX) = F1(q0(t)jX); and �(tjX) = �0(t)�1(q0(t)jX):

Moreover, the pth conditional quantile function is given by

Qp(x) = F�1(pjx) = q�1
0
(F�1

1
(pjx)):

Given a random sample, our methodology starts by applying HEFT to the response variables
(no covariates), yielding an estimate b�0 of �0. Then bq0 is constructed based on the formula of the
cumulative hazard function. Next the HARE methodology is applied to the transformed responsesbq0(T ), yielding an estimate b�1 of the conditional hazard function for the transformed data. Finally,
we obtain estimates of the original conditional density, distribution, hazard and quantile functions
using the relationships given above.

14.2 An example

In this section we use HEFT and HARE to analyze data from a clinical trial. The Studies of Left
Ventricular Dysfunction [SOLVD (1990)] involves two double-blind, randomized clinical trials to
test improved survival by treatment with enalapril, an inhibitor of angiotensin-converting enzyme,
in patients with left ventricular dysfunction with or without congestive heart failure (CHF). The
study started with a registry of 6,273 patients involving 23 centers located in the United States,
Canada, and Belgium. Men and women aged 21 to 80 years with an ejection fraction (defined be-
low) of at most 35% were eligible for the trials. In particular, patients with overt CHF were eligible
for the treatment trial, whereas those with left ventricular dysfunction but no history of overt CHF
were eligible for the prevention trail. Recruitment began in 1986, and the study terminated in 1991.

We will illustrate the use of HEFT and HARE on the treatment arm consisting of 2569 patients.
Here the event is defined as death or hospitalization due to CHF. The response is time (in days).
Among the 2569 observations, 1219 were censored. The censoring occurred when the patient was
lost to follow-up or was still alive and never hospitalized due to CHF by the end of the study. We
begin our analyses by applying HEFT to the possibly censored responses, yielding a model for the
unconditional log-hazard function consisting of three knots and a log term (B�1). Figure 6 shows
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Fig. 6. Estimated unconditional hazard and distribution functions using HEFT for the SOLVD data.

estimates of the unconditional hazard and survival functions. As the right side of Figure 6 shows,
our survival function estimate is remarkably close to the Kaplan–Meier estimate.

Next, HARE was applied to examine covariate effects on CHF. We used a set of ten covariates:
treatment (1=enalapril, 0=placebo); serum sodium level (serum); systolic blood pressure (SBP);
dystolic blood pressure (DBP); smoking (1=currently smoking, 0=not currently smoking); sex (1=fe-
male, 0=male); age; adherence (a measure of treatment or placebo use in terms of numbers of pills
taken and dispensed); New York Heart Association (NYHA) functional class I–IV (with I indicating
the least severity of illness and IV indicating the greatest severity); and ejection fraction (EF).

The ejection fraction (EF) is the fraction (measured as a percentage) of the blood that is pumped
from the left ventricle into the body’s vascular system. After oxygenation in the lung, blood flows
back to the left atrium of the heart and continues to the left ventricle. This is the chamber that
“ejects” the blood from the heart into the body. Clearly, 100% of the blood cannot be ejected, but in
normal hearts this fraction is at least 60%. In damaged hearts, where the muscle of the left ventricle
is not working well (maybe from the effects of a previous heart attack), the fraction can be much
lower, say 25–40%. Clinically, an EF of less than 35% is reason for concern. Below 15–20% the
blood backs up into the atrium and lung, causing congestion and malfunctioning of the lung (CHF)
and possibly death!

After removing the 69 cases involving missing values on one or more covariates, we obtained
a data set with 2500 observations and 1308 events. In our analyses we treated the covariate NYHA
as an unordered categorical variable. Alternatively, we could have treated it as an ordinary variable
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TABLE 5
HARE analyses of the SOLVD data.
(See text for the model descriptions.)

Basis function Model 1 Model 2 Model 3 Model 4
1 7.550 34.900 32.016 32.706
Age 0.013 0.010 0.009 0.011
Smoking 0.400 0.184
DBP �0:424 �0:388 �0:400
EF �0:567 �0:026 �0:026 �0:026
NYHA I �0:294 �0:291
NYHA II �0:462
NYHA III 0.757 0.527 0.485 0.479
NYHA IV 1.210 0.980 18.577 19.004
Serum �0:114 �0:248 �0:227 �0:233
Treatment �0:124 �0:312 �0:302 �0:303
(111 � t)+ 0.006
(562 � t)+ 0.002
DBP� Serum 0.003 0.003 0.003
EF� Serum 0.004
NYHA IV� Serum �0:127 �0:130
(562 � t)+ � Smoking �0:001
(562 � t)+ � NYHA II 0.001
(562 � t)+ � Treatment �0:001
BIC 21620.17 21562.30 21561.83 21562.32

having the four possible values 1, 2, 3 and 4.

Table 5 shows the results of applying HARE in various ways. Specifically, Model 1 summa-
rizes the fit to the untransformed responses, which has 15 basis functions and BIC = 21620:17.
As discussed in Section 7.1, the above analysis can further be refined by applying HARE to the
transformed responses using bq0(t) = � log (1 � bF0(t)), where bF0(t) is shown on the right side
of Figure 6. This yields a proportional hazards model having 9 basis functions with no knots and
BIC = 21562:30. (Actually, BIC for the transformed data is 2480.49. We used the relationships
described in Section 7.1 to retrieve BIC for the untransformed data.) The resulting fit is referred to
as Model 2 in Table 5. Note that all of the interactions and the two nonlinear terms involving time
have disappeared; this may be explained by the nature of the transformation bq0(T ). While HARE
models allow for non-linearity, this smaller model is linear and easier to interpret. In general, one
of the strengths of HARE is that it chooses more complicated models only when simpler ones do
not fit nearly as well [see the examples in KST (1995a)].

HARE facilitates the visual examination of covariate effects. For example, Figure 7 shows es-
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Fig. 7. Estimated conditional hazard and survival functions for an average smoking, NYHA class
IV, treated patient using HARE for the SOLVD data.

timates of the conditional hazard and survival functions for a patient having the covariate values
given by

treatment=1, serum sodium=138.95, EF=24.85,
DBP=76.81, NYHA=IV, smoking=1, age=60.88.

These values were chosen to represent an average smoking, NYHA class IV, treated patient. Fig-
ure 7 also compares results from untransformed data (Model 1) and transformed data (Model 2).
We remark that the estimated hazard function for the untransformed data exhibits a constant tail, as
was discussed in Section 7.1. Estimates of the conditional density and quantile functions are also
easily obtained using HARE.

We continue our analysis by using other options in HARE. Since Model 2 is a proportional haz-
ards model, we decided to reapply HARE forcing it to fit such a model. Model 3 of Table 5 sum-
marizes the resulting fit, indicating a slightly different proportional hazards model with 11 basis
functions and BIC = 21561.83. (BIC for the transformed data is 2480.01.) Comparing this model
with the Model 2, we note that HARE has reduced BIC slightly by including two more basis func-
tions, NYHA I and NYHA IV� Serum.

For a further comparison, we fit the transformed values of time and the same covariates as above
using coxreg from S-PLUS. In the light of the analysis using HARE, we forced the two interaction
terms of Model 3 into the Cox model (the default form of coxreg estimates main effects only).
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TABLE 6
Analyses of the SOLVD data using coxreg from S-PLUS.

Variable Coefficient SE P -value
Age 0.011 0.003 0.000
Smoking 0.185 0.067 0.006
DBP �0:401 0.106 0.000
EF �0:027 0.004 0.000
NYHA I �0:293 0.106 0.005
NYHA III 0.479 0.059 0.000
NYHA IV 19.480 6.040 0.001
Serum �0:234 0.061 0.000
Treatment �0:304 0.056 0.000
DBP� Serum 0.003 0.001 0.000
NYHA IV� Serum �0:134 0.044 0.002

Table 6 provides a summary of the fit.

Observe that the interaction terms are highly significant and that the fit is similar to Model 3,
except that the covariate smoking is significant and the constant term is not allowed in coxreg.
Since there is no knot in Model 3, we felt that the default penalty value of log(2500) :

= 7:82 of
HARE might have been too high. (This is equivalent to using the chi-square test with one degree
of freedom and the significance level of� :

= 0:005 to test the model with 12 basis functions vs a sub-
model with 11 basis functions.) By using a smaller penalty value of 7.1 (� :

= 0:007) and refitting
the data using HARE, we obtained Model 4 in Table 5, which has 12 basis functions. This model is
in close agreement with the one obtained by using coxreg and shown in Table 6. Moreover, the
standard errors of the coefficients in Model 4 (not shown) are remarkably close to the corresponding
ones in Table 6. We conclude that Model 4 is our most reasonable HARE model for the data.

Note that the treatment effect is included in all five models discussed above. In fact, the treat-
ment was so effective that, for ethical reasons, the trial was terminated early. Other important co-
variates are the ejection fraction (EF), age, and the NYHA functional class. To demonstrate another
strength of HARE, we use Model 4 to examine graphically some of the above covariate effects. Fig-
ure 8 illustrates estimates of the conditional hazard rate and survival probability after 3 years as a
function of EF. We see that the hazard rate decreases and the survival probability increases with
EF. Figure 9 shows estimates of the hazard rate and survival probability after 3 years as functions
of age. It is observed that older participants have a higher risk than the younger ones.

As a final illustration of HARE, Figure 10 shows estimates of the 20th, 50th and 80th percentiles
as functions of age and EF based on Model 4. Observe that the median survival time decreases with
age, while it increases with EF.

In summary, in the above analyses the HEFT and HARE methodologies yielded estimates of
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Fig. 8. Left side: estimated conditional hazard rate after 3 years as a function of EF. Right side:
estimated conditional survival probability after 3 years as a function of EF. Same covariates as in
Fig. 7.

the (conditional) hazard, survival, density and quantile functions in a consistent manner without
requiring the proportionality assumption. Moreover, our highly adaptive methodology performs
well in comparison with the traditional approach even when that approach is applicable. In light
of this example and those given in Kooperberg et al. (1995a), we find that HEFT and HARE are
useful tools for survival analysis.

15 Spectral estimation (LSPEC)

16 Spectral analysis

For stationary times series, it is known that the periodogram ordinates at the Fourier frequencies
are approximately independent and have an exponential distribution with mean equal to the spec-
tral density function. This implies that the periodogram is not a consistent estimate, but consistency
can be achieved by smoothing the periodogram ordinates [see Brillinger (1981)]. In this section we
present our version of the spectrum estimate by treating it as a special case of the generalized regres-
sion problem discussed in Section 2. Specifically, we use the theory and methodology of extended
linear models to estimate the logarithm of the mean of the exponential distribution function. Here
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the mean is the spectral density function.

To describe the possibly mixed spectral distribution, consider a real-valued, second-order sta-
tionary time seriesXt with meanE(Xt) = E(X0) and covariance function 
(u) = cov(Xt;Xt+u).
Assume that the time series has the form

Xt =
pX

j=1

Rj cos(t�j + 'j) + Yt:

Here 0 < �j � �; 'j are independent and uniformly distributed on [��; �]; Rj are independent,
nonnegative random variables such thatR2

j has positive mean 4�j ; and Yt is a second-order station-
ary time series with E(Yt) = E(X0) and autocovariance function 
c(u) = cov(Yt; Yt+u) satisfyingP

u j
c(u)j <1.

The spectral distribution function ofXt is given by

F (�) =
Z �

��
fc(!)d! +

X
!��

fd(!); j�j � �;

where

fc(�) =
1

2�

1X
u=�1


c(u) exp(iu�); j�j � �;

and

fd(�) =

(
�j if � = ��j ;
0 otherwise:

The functions fc and fd are referred to as the spectral density function and line spectrum of the time
series Xt.

Note that fc and fd are nonnegative and symmetric about zero and that they can be extended to
periodic functions on (�1;1) with period 2�. From now on we limit our attention to the interval
[0; �]. Observe that if the indicated derivatives of fc exist, then f 0c(0), f

000
c (0), f

0
c(�) and f 000c (�) all

equal zero.

16.1 The LSPEC methodology

Let �a(�) equal one or zero according as � = a or � 6= a. Given a time series X1;X2; : : : ;XT�1,
set f = fc +

T
2�
fd, � = log f and �c = log fc. Then � = �c + �d, where �d = �1��1 + � � �+ �p��p

with �1; : : : ; �p > 0. Moreover, fd = (2�=T )(exp �d � 1)fc. In the following discussion, we will
use cubic splines to obtain a finite-dimensional approximation to �c and hence to �.

First, we describe the space of splines that will be used to model the logarithm of the spectral
density function. Given the positive integer Jc, let Gc be the Jc-dimensional space of twice contin-
uously differentiable, cubic spline functions s with the knot sequence 0 � t1 < � � � < tJc � �. We
require that s0(0) = s0(�) = 0. Also, s000(0) = 0 unless t1 = 0, and s000(�) = 0 unless tJc = �. Let
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B1; : : : ; BJc be a basis ofGc. Then functions inGc can be extended to splines on (�1;1) that are
symmetric about zero, periodic with period 2�, have a knot at zero if and only if t1 = 0, and have
a knot at � if and only if tJc = �.

Next, we describe the space that will be used indirectly to model the line spectrum. Given the
nonnegative integer Jd and the increasing sequence a1; : : : ; aJd of members of f2�j=T : 1 � j �
T=2g, letGd be the Jd-dimensional space of nonnegative functions s on [0; �] such that s = 0 except
at a1; : : : ; aJd . Set Bj+Jc(�) = �aj(�) for 1 � j � Jd. Then BJc+1; : : : ; BJ form a basis of Gd,
where J = Jc + Jd.

Let G be the space spanned by B1; : : : ; BJ . The collection G of such J -dimensional spaces G
form a family of allowable spaces. Set

�c(�;�c) = �1B1(�) + � � �+ �JcBJc(�); �c = (�1; : : : ; �Jc) 2 IRJc ;

�d(�;�d) = �Jc+1BJc+1(�) + � � � + �JBJ(�); �d = (�Jc+1; : : : ; �J) with �Jc+1; : : : ; �J � 0;

and
�(�;�) = �c(�;�c) + �d(�;�d); � = (�1; : : : ; �J):

We use �c(�;�c) to model the logarithm of the spectral density function and �(�;�) to model log f .
Thus, fc(�;�c) = exp�c(�;�c), f(�;�) = exp�(�;�), and

fd(�;�c) =
2�

T
[exp �d(�;�d)� 1]fc(�;�c):

Denote the Fourier frequencies by �k = 2�k=T for k = 0; 1; : : : [T=2]. Let Ik denote the k-th
ordinate of the periodogram, which is given by

Ik = I(T )(�k) = (2�T )�1
����
T�1X
t=0

exp(�i�kt)Xt

����2:
For Gaussian time series, Ik, 1 � k � [T=2], are independent and have the exponential distribution
with mean equal to f(�k) = exp�(�k). Hence, the log-likelihood function is given by

`(�) =
1

[T=2]

[T=2]X
k=1

�
��(�k)

2
� 1

�
[�(�k;�) + Ik exp(��(�k;�))]; � 2 IRJ :

Observe that the log-likelihood is a concave function of �.

Let b� denote the maximum likelihood estimate of �, which is obtained as usual by the Newton–
Raphson method. The corresponding estimate of the function f is given by bf(�) = f(�; b�). Simi-
larly, estimates of the spectral density function and line spectrum are given by bfc(�) = fc(�; b�c) andbfd(�) = fd(�; b�d), where b�c = ( b�1; : : : ; b�Jc) and b�d = ( b�Jc+1; : : : ; b�J).

As in other cases discussed in this paper, our spectral estimate depends on G. We follow the
procedure described in Section 3 (with d = 1) to select G adaptively from G. This methodology
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Fig. 11. Averages of 30 series of electrical potential (EP) measurements from the scalp (top) and
wrist (bottom).

is referred to as LSPEC in Kooperberg, Stone and Truong (1995c). (In the current implementation
of LSPEC, if an atom has a frequency that is not of the form 2� k=T , then it is typically replaced
by the two closest adjacent atoms with frequencies of this form. Also, LSPEC prevents atoms with
small mass from entering the model.)

In the absence of atoms, the rate of convergence of the maximum likelihood estimate b�c is given
in Kooperberg, Stone and Truong (1995d). This result lends theoretical support to LSPEC.

In the next subsection, we use LSPEC to analyze time series arising from a neurophysiological
study.

16.2 An example

We will analyze the result of a neurophysiological experiment consisting of 30 trials of electrical
potential (EP) measurements [see Durka, Kelly and Blinowska (1995)]. It started with a 24 Hz (cy-
cles/sec), 500�m peak to peak sinusoidal stimulus applied to the right fingertip. The responses are
the EP measurements at the scalp and wrist. Each EP measurement lasted for 6 seconds, with the
stimulus coming on at 2 seconds and staying on for the remainder of the trial. The channels were
sampled at 256 times/sec, giving a total of 1536 sampling points per channel.

Since the stimulus was not active for the first 2 seconds, our analyses were based on the last 4
seconds of recordings, so that T = 1024. Figure 11 shows the averages of 30 EP responses from
the scalp and wrist, which appear to be stationary. The left side of Figure 12 shows the LSPEC
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Fig. 12. The scalp EP spectrum (left side) has line frequencies = 9.25 Hz and 9.75 Hz; the peak
has a frequency = 48 Hz. The line frequencies of the wrist EP spectrum (right side) are 24 Hz and
60 Hz.

estimate of the scalp EP spectrum. We observe two lines with frequencies of 9.25 Hz and 9.75 Hz
[the former frequency corresponds to k = 4(9:25) = 37 and � = 2�(37)=1024

:
= 0:227, and the

latter frequency corresponds to k = 39 and � :
= 0:239]. These are approximately the alpha-rhythm

frequencies. There is also a peak with a frequency of 48 Hz (�
:
= 1:178), corresponding to the

second harmonic of the stimulus frequency 24 Hz. In the right side of Figure 12, we observe that
the wrist EP responded with a frequency (the first line) at 24 Hz, while it also picked up the electrical
power line frequency at 60 Hz. Note that the background noise level (the continuous spectrum) is
much higher in the scalp EP than in the wrist EP.

The responses were then filtered to remove the unwanted (alpha-rhythm, electrical power line)
signals and low frequency components of background noise and sampled at 128 times/sec, yielding
a total of 512 sampling points. Applications of LSPEC to the filtered observations are illustrated
in Figure 13. For the scalp EP data, the resulting fit is a spline with seven knots and three lines in
the model. The first line has a frequency of 24 Hz (� :

= 1:178), showing that LSPEC has located
the desired signal. The other two lines correspond to the second harmonic. The fit for the wrist EP
data shows a spline with eight knots and one line (at 24 Hz) in the model.

In summary, in this example the LSPEC methodology yielded a precise estimate of the stimulus
frequency (24 Hz) and provided an informative description of the neurophysiological data. More
generally, in the light of the present example and those given in Kooperberg et al. (1995c), we find
the LSPEC methodology to be both effective and of considerable practical value.
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Fig. 13. Spectra of the filtered EP data. The scalp (left side) has line frequencies equal to 24 Hz
and 48 Hz. The wrist (right side) has a line frequency equal to 24 Hz.

17 Bivariate splines

18 Models based on multivariate splines

In the last two decades, a considerable body of literature on multivariate spline spaces has been
amassed by approximation theorists, numerical analysts, and computer scientists. In this section,
we demonstrate the practicality of these tools for statistical applications. We begin our survey on
a theoretical note, developing rates of convergence for ANOVA decompositions based on multi-
variate splines and their tensor products. Then we shift our emphasis somewhat and consider tech-
niques for adaptively constructing multivariate spline spaces, borrowing heavily from the ideas of
knot addition and deletion presented in previous sections. Finally, we present a simple illustrative
application of these ideas to bivariate logspline density estimation.

18.1 The extended linear model revisited

In Section 2, we introduced the notion of a concave extended linear model and discussed a variety
of statistical problems that can be treated effectively within this framework. In each of these cases,
our data consists of a sample from the distribution of a random vectorW. In this section, we focus
our attention on the derived variable U, which is typically a subvector of W. Broadly speaking,
we are interested in estimating a (possibly) vector-valued function �� = (��

1
; : : : ; ��K), where the
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constituents ��k, 1 � k � K , are real-valued functions on a set U = U1 � � � � � UM , the range of
U. So far, we have considered only the case in which each of the sets U1; : : : ;UM is (in theory) a
compact interval with positive length. Under this restriction, we are naturally led to estimators of
�� that are built up from univariate spline spaces defined on these intervals. From a methodological
perspective, however, tensor products of univariate splines may not be flexible enough to capture
all of the features exhibited by a particular data set. In addition, known structural relationships
between the variables that constituteUmight suggest that the domain of �� is something other than
a hyperrectangle.

In the rest of our discussion, we allow U1; : : : ;UM to be compact subsets of IRd1; : : : ; IRdM ,
respectively. In this case, the unknown function �� = ��(u1; : : : ; uM) is still defined on U =
U1 � � � � � UM , with the distinction that now the individual variables um may be vectors. Recall
that our approach to estimating �� 2 HK begins with an ANOVA decomposition �� =

P
s2S �

�
s

that divides �� into its components ��s; s 2 S . A parallel construction is then used to define an
ANOVA decomposition of the maximum likelihood estimate b� =

P
s2S

b�s in a space GK consist-
ing of smooth, piecewise polynomials. Not surprisingly, this approach can successfully be applied
to derive the convergence properties of b� even when we allow the sets U1; : : : ;UM to be more com-
plicated than compact intervals of the real line. Once we remove these restrictions, the componentsb�s; s 2 S , of the ANOVA decomposition of b� become multivariate splines and their tensor prod-
ucts.

To be more specific, for 1 � m � M , let 4m be a partition of Um � IRdm into disjoint (mea-
surable) sets and for simplicity assume that each set has a common diameter a. By a piecewise
polynomial of degree q over4m, we now mean a function g on Um such that the restriction of g to
each set � 2 4m is a polynomial of degree q in the dm variables that constitute um. Let Gm be a
linear space of multivariate splines; that is, piecewise polynomials of degree q on Um that satisfy
certain smoothness constraints. Following the development in Section 2, for each s 2 S , we let Gs

denote the tensor product of the spaces Gm, m 2 s.

The rate at which b� and its components approach �� and its components was derived in Hansen
(1994). In the simple case described so far, if we assume that the spaces Gs are flexible enough to
ensure that

inf
g2Gs

kg � ��ksk1 = O(ap); 1 � k � K and s 2 S;

where p is a measure of smoothness of the constituents of ��, we find that

k b�s � ��sk
2 = OP

�
a2p +

1

nad

�
; s 2 S;

and

k b�� ��k2 = OP

�
a2p +

1

nad

�
;

where d = maxs2S
P

m2s dm. As we collect more and more data, if the sets in our partition shrink
so that a � n�1=(2p+d), then we obtain the rates in (4.3) and (4.4) with the indicated definition of
d. Hansen (1994) extends these results, and in particular, derives L2 rates of convergence for the
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case when the various constituents ��s satisfy different smoothness conditions and the sets in the
triangulations4m do not share a common diameter.

18.2 Bivariate splines and the extended linear model

For simplicity, we now focus our discussion on saturated, bivariate models. Assume that U is a
compact region in the plane so that �� is a function of u 2 IR2. In the context of our previous
discussion, we now view U as a single variable and hence will not attempt to decompose �� into
components based on individual spatial coordinates. In the remaining pages, we will discuss the
use of bivariate splines to construct estimates of ��.

Triangulations and piecewise linear basis functions

Let 4 be a collection of closed subsets of U having disjoint interiors and satisfying U = [�24�.
In general, the set 4 is a tessellation of U . If each element � 2 4 is a triangle,4 is said to form a
triangulation of U . Furthermore, a triangulation4 is said to be conforming if the nonempty inter-
section between pairs of triangles in4 consists of either a single shared vertex or an entire common
edge (see Figure 14). Throughout this section, we reserve the symbol4 for this special type of tes-
sellation.

Given such a conforming triangulation4, we let G denote the space of continuous, piecewise
linear functions over4. There is a natural association between the vertices v1; : : : ;vJ of the trian-
gles in 4 and the basis functions B1(u); : : : ; BJ (u) of G. To be more precise, we define Bj(u) to
be the unique function that is linear on each of the triangles in4 and takes on the value 1 at vj and
0 at the remaining vertices in the partition. This collection of tent functions is frequently used in
the finite element method and is often the starting point for defining multivariate splines of higher
degrees [see Chui (1988), de Boor (1987), Farin (1986)].

Many of the important properties of this basis can be obtained from a local representation of
the tent functions. For the moment, consider a single triangle � 2 4 having vertices v1, v2 and v3.
Relative to �, the barycentric coordinates of any point u = (u1; u2) 2 IR2 are defined as a triple
'(u) = ('1(u); '2(u); '3(u)) such that

u = '1(u)v1 + '2(u)v2 + '3(u)v3 and '1(u) + '2(u) + '3(u) = 1 :

Casting these conditions into a simple set of linear equations we find that

0
B@ v11 v21 v31
v12 v22 v32
1 1 1

1
CA
0
B@ '1(u)
'2(u)
'3(u)

1
CA =

0
B@ u1
u2
1

1
CA : (9:1)

Provided that � has a nonempty interior, this system can be solved explicitly, and the solution is best
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Non-Conforming Partition Conforming Partition

Fig. 14. In a nonconforming partition, at least one vertex of a triangle in4 falls along the interior
of an edge of another triangle in the partition.

written in terms of the function SignedArea(v1;v2;v3), which we define by

SignedArea(v1;v2;v3) =
1

2

�������
v11 v21 v31
v12 v22 v32
1 1 1

������� :

As its name suggests, the absolute value of SignedArea(v1;v2;v3) is just the area of the triangle
with vertices v1, v2 and v3. By applying Cramer’s method to the set of equations (9.1) we find that
'1(u) is given by the ratio

'1(u) = '1(u1; u2) =
SignedArea(u;v2;v3)
SignedArea(v1;v2;v3)

: (9:2)

From this last expression, we see that the barycentric coordinates are linear functions of u1 and u2,
where u = (u1; u2), and satisfy the interpolation conditions

'i(vj) =

(
0 i 6= j;

1 i = j;
i; j = 1; 2; 3 ; (9:3)

hence the vertices v1, v2 and v3 have barycentric coordinates (1; 0; 0), (0; 1; 0) and (0; 0; 1), re-
spectively. Furthermore, from (9.2) we see that the points on the edge connecting v2 and v3 have
barycentric coordinates of the form (0; �; 1 � �), � 2 [0; 1].

Given the interpolation conditions (9.3) and the consequence of (9.2) that the barycentric co-
ordinate functions are linear functions of u, we now have an explicit representation of the basis
functions ofG that correspond to the vertices of �; that is, for all u 2 �,Bi(u) = 'i(u), i = 1; 2; 3.
As an immediate consequence of this local (triangle by triangle) representation, we find that the
basis functionsB1; : : : ; BJ associated with the triangulation4 are bounded between zero and one
and satisfy

B1(u) + � � �+BJ(u) = 1; u 2 U :
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From (9.2) it is also possible to demonstrate that, for any nonsingular, 2-by-2 matrix A and any
vector b 2 IR2,

Bj(u) = B�
j (Au+ b); u 2 IR2 ;

where B�
1
; : : : ; B�

J is the basis associated with vertices Av1 + b; : : : ; AvJ + b of the transformed
set U� = fAu + b;u 2 Ug. This means that models built from functions in G have a natural
invariance under affine transformations. Using the barycentric coordinate functions, we will see in
the next subsection that this invariance carries over to our adaptive methodology as well.

To summarize, we have derived some of the essential properties of a basis for the space of con-
tinuous, piecewise linear functions associated with a triangulation4 of U . An important observa-
tion here is that there is a simple correspondence between the structure of the partition 4 and the
basis functions ofG. As in the previous sections, this relationship will allow us to use simple model
selection criteria to construct a functional form of our estimate b� of the unknown function ��. The
only issue left to resolve is how we generalize the notion of stepwise addition and deletion of knots
in this context.

Stepwise addition

The most natural way to proceed from one step to the next in the stepwise addition procedure is to
introduce a new vertex into the existing triangulation, thereby adding one new basis function to the
existing spline space. This operation requires a rule for connecting this point to the vertices in4 so
that the new mesh is also a conforming triangulation. In Figure 15, we illustrate three options for
vertex addition: we can place a new vertex on either a boundary or an interior edge, splitting the
edge, or we an add a point to the interior of one of the triangles in4. Note that the space obtained
by adding a vertexv to an interior edge of a triangle � 2 4 cannot be achieved as the limit of spaces
constructed by adding v to the interior of �. In this case, if v is very close to an edge of � the new
triangulation is essentially nonconforming and the associated space of linear functions G contains
elements that are discontinuous along that edge. Similar discontinuities arise when the new point
v is positioned extremely close to an existing vertex. Degeneracies such as these are encountered
in the context of univariate spline spaces when knots are allowed to coalesce (de Boor 1978).

Given a triangulation4, we construct a set of candidate vertices by considering the points with
barycentric coordinates 

k1

K + 1
;

k2

K + 1
;
K + 1� k1 � k2

K + 1

!
�

; � 2 4 ; (9:4)

where k1, k2 and K are nonnegative integers satisfying k1+ k2 � K +1 and no coordinate equals
one. We have introduced a subscript “�” to make it clear that these points are calculated for each
triangle in4. At each step in the addition process, we select from this set of candidate vertices the
point that maximizes the Rao statistic described in Section 3. Stability considerations may dictate
that we do not consider for addition vertices in areas where there is little data. Moreover, we have
found it useful to avoid creating triangles having one or two very small angles. Restrictions such
as these are easily incorporated into the stepwise addition procedure.
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Original Triangulation Splitting Boundary Edge

Splitting an Interior Edge Subdividing a Triangle

Fig. 15. Three ways to add a new vertex to an existing triangulation. Each addition represents the
introduction of a single basis function, the support of which is colored gray.

Stepwise deletion

There are two possible strategies for reducing the dimension of an existing piecewise linear spline
space. In each case, we enforce the condition that a function in the space be continuously differen-
tiable across a given edge in the existing triangulation. Observe that a continuous, piecewise linear
function has continuous partial derivatives across an edge if and only if the function is linear on
the union of the two triangles that share the edge. Using the correspondence between vertices and
basis functions described above, we can show that the subspace of spline functions satisfying this
condition is characterized by a simple linear constraint of the type discussed in Section 3. In each
of the examples in Figure 15, enforcing continuity of the first partial derivatives across any of the
gray edges is equivalent to removing the added vertex, returning us to the original partition in the
upper left hand corner of the figure. Thus, in light of the stepwise knot deletion strategy discussed
in the previous sections, one procedure for stepwise deletion in the bivariate context involves us-
ing the Wald statistic to choose between continuity constraints across edges that fall into one of the
three categories listed in Figure 15. An alternative deletion procedure is somewhat more aggres-
sive and involves choosing from among all the continuity constraints, regardless of how the edge
is positioned relative to the other edges in the partition. The important distinction between these
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two procedures is that only in the first case are we actually guaranteed that the structure of 4 is
simplified at each step.

18.3 Bivariate logspline density estimation

Maximum likelihood estimation

While the bivariate methodology introduced in the previous paragraphs has been implemented for
a variety of extended linear models, we will focus mainly on logspline density estimation. In this
context, we choose to model the logarithm of an unknown density �� of a random vector U as a
bivariate spline. For ease of presentation, we restrict our attention to densities that are supported
on a simply connected region U 2 IR2 having a polygonal boundary. As usual, let 4 denote a con-
forming partition of U , and let B1(u); : : : ; BJ (u) denote the basis functions of the corresponding
space G of continuous, piecewise linear functions over 4.

Given a vector � = (�1; : : : ; �J) 2 IRJ , we can define a density f(u;�) over U having the
form

f(u;�) = exp
�
�1B1(u) + � � �+ �JBJ (u)� C(�)

�
;

where
C(�) =

Z
U
exp

�
�1B1(u) + � � �+ �JBJ (u)

�
du

is the normalizing constant. Based on a random sample U1; : : : ;Un from the distribution of U,
we estimate �� by the function b� = f(u; b�), where b� maximizes the “log-likelihood” `(�) =
log f(U1;�) + � � � + log f(Un;�). While we do not believe that `(�) is the true log-likelihood
function corresponding to our sample, we know from the discussion at the beginning of this section
that as n!1, b� tends to ��.

As in univariate logspline density estimation (see Section 4), the likelihood equations take on
the very simple form

E�Bj(U) = EnBj(U) ; 1 � j � J ; (9:5)

where

E�Bj(U) =
Z
U
Bj(u)f(u;�)du and EnBj(U) =

1

n

nX
i=1

Bj(Ui) :

Since the functions Bj are piecewise linear over U , it is possible to evaluate the required integrals
exactly. As in previous sections, the equations in (9.5) are solved using Newton–Raphson iterations.
To obtain the Hessian matrix required for this procedure, we must also calculate expressions of
the form E�[Bj1(U)Bj2(U)] for 1 � j1; j2 � J . Since the basis functions are piecewise linear,
however, we again do not require numerical quadrature to carry out these computations.
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Original Triangulation

1

3

2

Updated Triangulation

1

3

2

Fig. 16. Adding a new vertex at the point v = '1(v)v1 + '2(v)v2 + '3(v)v3. In this case, we
are adding to G the continuous, piecewise linear function that takes on the value one at the point
v and zero at each of v1, v2, and v3.

Implementing stepwise addition and deletion

Recall that we add basis functions to G by adding vertices to 4 and that our strategy for choosing
between the competing basis functions is based on the heuristic maximization of Rao statistics. This
process can be simplified considerably by making explicit use of the barycentric coordinate func-
tions discussed above. For example, suppose that we want to add a node v inside �, the right hand
triangle in Figure 16. Once again, suppose that � has vertices v1, v2, and v3 and let '1(u), '2(u),
and '3(u) denote the barycentric coordinates of a point u 2 IR2 relative to �. Now, if we let B1(u),
B2(u), and B(u) represent the piecewise linear basis functions associated with the points v1, v2,
and v in the updated triangulation, then it is straightforward to demonstrate that, for all points u in
the shaded triangle on the right in Figure 16,

'1(u) = B1(u) + '1(v)B3(u) ; '2(u) = B2(u) + '2(v)B3(u) ; and '3(u) = '3(v)B3(u) :

Combining these relationships with the fact that within �, the piecewise linear basis functions asso-
ciated with v1, v2, and v3 are exactly the barycentric coordinate functions relative to �, we arrive
at simple formulae for calculating the necessary inner products and empirical moments that go into
forming the Rao statistic for adding v to the partition 4. Similar expressions can be derived for
evaluating the candidate function over the remaining two triangles in the right hand plot of Fig-
ure 16. In the numerical example discussed below, we introduce vertices at the points correspond-
ing to K = 5 in expression (9.4).

Using these ideas, we can also derive a simple procedure for determining the constraint that
a function in G be continuously differentiable across a given edge in 4. To make this more pre-
cise, consider the triangulation on the left in Figure 17 and let '1(u), '2(u), and '3(u) denote the
barycentric coordinates of a point u 2 IR2 relative to the triangle with vertices v1, v2, and v3.
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Given a function g 2 G, let �1, �2, and �3 denote the coefficients of the basis functions associ-
ated with these vertices. Then for all points u in this triangle, g(u) is the linear function given by
�1'1(u) + �2'2(u) + �3'3(u). Now, if we let �4 denote the coefficient of the basis function of G
associated with the vertex v4, then g(v4) = �4. Therefore, the function g is linear on the union of
the two triangles in left hand portion of Figure 17 provided that

�4 = g(v4) = �1'1(v4) + �2'2(v4) + �3'3(v4) :

By swapping the roles of v1 and v4 in this argument, we find that that C1 continuity of a function
g 2 G can also be assured by the constraint

�1 = g(v1) = �2 ~'2(v1) + �3 ~'3(v1) + �4 ~'4(v1) ;

where ~'2(u), ~'3(u), and ~'4(u) denote the barycentric coordinates of a point u relative to the trian-
gle with vertices v2, v3, and v4. It is not hard to demonstrate that these two constraints are equiv-
alent up to a multiplicative constant. Observe, however, that when this condition is enforced, we
are left with a single linear function over the pair of triangles that constitute 4, but we have not
produced a simpler triangulation in the process.

Suppose instead that we want to remove the vertex v4 in the middle of the triangle in the right
hand portion of Figure 17. Given g 2 G and 1 � i � 4, we again let �i correspond to the coefficient
of the basis function associated with the vertex vi. It can be shown that each of the C1 continuity
constraints across the shaded interior edges shown in the figure is of the form

�4 = '1(v4)�1 + '2(v4)�2 + '3(v4)�3 ; (9:6)

where '1(u), '2(u) and '3(u) are the barycentric coordinates of a point u relative to the outer
triangle in Figure 17. Observe that the expression on the left is the value at v4 of the unique linear
function interpolating �1, �2 and �3 at the points v1, v2 and v3, respectively. Recalling that g(v4) =
�4, we see that the constraint in (9.6) has considerable intuitive appeal.

18.4 An example

We end our discussion of bivariate logspline density estimation with an example suggested to us by
Karl Broman. The points in the left hand panel of Figure 18 represent a collection of amino acids
obtained from 100 protein structures taken from the Brookhaven Protein Data Bank [see Hobohm
et al. (1992)]. In order to characterize the local environment of each amino acid within a given
protein structure, three pieces of information were recorded: the local structure of the protein at the
given amino acid (whether the protein is twisting around a helix, for example), the fraction of the
amino acid side-chain area that is buried in the protein structure, and the fraction of the side-chain
area that is covered by polar atoms. Because the unburied portion of the amino acid is exposed to
a polar solvent, the final two quantities are restricted to the upper triangle of the unit square. In
Figure 18, for example, we plot these two measurements for all of the occurrences of the amino
acid Lysine for which the local protein structure is a helix.
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Deleting an Edge

1

3

2

4
Deleting a Vertex

1

4

3

2

Fig. 17. The effect of enforcing the constraint that functions in G be continuously differentiable
across edges in two triangulations.

Bivariate density estimates computed for each amino acid and each local protein structure are
the basis for an approach to solving the so-called inverse folding problem [see Bowie, Luthy and
Eisenberg (1991) and Zhang and Eisenberg (1994)]. Evaluating the structure of a given protein is
extremely difficult. Determining the sequence of amino acids that comprise the protein, however,
is relatively simple. It would seem reasonable, therefore, to attempt to infer the protein’s structure
from its amino acid sequence. Unfortunately, many rather different sequences produce very simi-
lar structures, so the objective of the inverse folding problem is to determine which amino acid se-
quences might result in a given known structure. This can be accomplished by studying the propen-
sity for certain amino acids to occur in certain local environments in a large collection of known
protein structures. The procedure described by Zhang and Eisenberg involves a log-odds calcula-
tions, the main ingredient of which is a set of bivariate density estimates for the type of data given
in Figure 18.

In the bottom panel of Figure 18, we present a contour plot of the density estimate obtained by
stepwise addition followed by stepwise deletion. The model shown was encountered during step-
wise deletion and attains the minimum BIC value among all the models obtained during both the
stepwise addition and deletion processes. During this process, we selected candidate knots corre-
sponding to K = 5 in (9.4), and did not consider any new vertices that would result in a triangle
containing fewer than 25 points. In the panel on the upper right in the same figure, we present the
final triangulation along with dashed edges to indicate the additional structure present when the
stepwise deletion process began. The fits as well as the various plots in Figure 18 were produced
using a library of S/S-PLUS routines that are available from the second author.

In this section we have introduced a method for bivariate density estimation using piecewise lin-
ear, bivariate splines based on an adaptively constructed triangulation. We have also implemented
this procedure for both regression and generalized regression. The resulting estimates, which we
have named Triograms, have performed well on a variety of of bivariate data sets taken from a
number of different estimation contexts. The interested reader is referred to Hansen, Kooperberg
and Sardy (1996) where Triograms are compared to several existing function estimation routines.
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polar

helix

Fig. 18. Applying the density estimation routine. In the top row we present the data and both the
triangulation obtained form stepwise addition (thin, dashed line) and that obtained from stepwise
deletion (thick, solid line). In the bottom row we present the data along with a contour plot of the
final fit from the deletion process.
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One advantage that Triograms have over these other methods is that the entire estimation proce-
dure is invariant under affine transformations and is the most natural approach for modeling data
when the domain of the predictor variables is a polygonal region in the plane. As anticipated by the
convergence rate derived at the beginning of this section, if our underlying function �� is smooth,
piecewise linear estimates are suboptimal. This problem can be corrected by using higher-order
splines, and we are currently investigating how to extend the Triogram procedure to make use of
the generalized vertex splines of Chui and He (1990).
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