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Function Estimation

Familiar statistical problems requiring function estimation:

� Regression: From observations (Yi; Xi), we want
to estimate the conditional expectation E(Y jx) =

f(x), where x = (x1; : : : ; xk)

� Density Estimation: From observations Yi we try to
uncover the important features in the density f(y)



Function Estimation

Classical Parametric Framework

bf(x1; : : : ; xk) = b�0 + b�1x1 + � � � + b�kxk
A nonparametric approach removes such severe restric-
tions, but modeling bf = bf(x1; : : : ; xk) can be difficult.
This motivated the use of additive models

bf(x1; : : : ; xk) = bf0 + bf1(x1) + � � � + bfk(xk)
. . .possibly allowing for interactions

bf(x1; x2) = bf0 + bf1(x1) + bf2(x2) + bf12(x1; x2)



Function Estimation

There are many procedures based on polynomial splines
and their tensor products

� Regression

TURBO (Friedman and Silverman)

MARS (Friedman)

Pi (Breiman)

br() (Smith and Kohn)

Bayesian CART/MARS (Denison et al.)

� Density estimation

Logspline (Kooperberg and Stone)

Salsa (Hansen and Kooperberg)



Function Estimation

In each of these cases, bf and its components are ex-
panded in a basis. For example,

cf1(x1) =

J1X
i=1

�1iB1i(x1)

where the basis functionsB1i are determined adaptively.
Think of this as selecting from the set

1; x1; : : : ; x
k
1;

(x1 � t11)
k
+; : : : ; (x1 � t1m)

k
+

...but it can be much more interesting!



A Regression Surface with a Ridge

Experimental data: Cleveland and Fuentes (1996) con-
sider an experiment aimed at improving the processing
of liquid crystal mixtures.

P: percentage of liquid crystal in mixture
T: temperature (degrees Celsius)
V: voltage needed to make material clear
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A Regression Surface with a Ridge

� Starting triangulation: smallest triangle containing the
data, enlarged by 15%.

� Adaptation: Stepwise addition and deletion of ver-
tices
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Function Estimation

� Stone (1994) treats the case where each component
is the tensor product of univariate spline functions

1; x1; : : : ; x
k
1;

(x1 � t11)
k
+; : : : ; (x1 � t1m)

k
+

� Hansen (1994) and Stone et al. (1997) extend this to
allow xi 2 IRpi, 1 � i � k. In this case, the effects
in the previous expansion are multivariate splines and
their tensor products.

Finite elements

multivariate B-splines
...



Function Estimation

In general, to estimate a function of d variables in this
way, the L2 rate of convergence is n�p=(2p+d) where p
is related to the smoothness of f .

By considering an unsaturated approximation, we can
improve the raten�p=(2p+d�) where d� is the largest num-
ber of terms in any single interaction component.



Functional ANOVA

An additive model

bf(x1; x2) = bf0 + bf1(x1) + bf2(x2)
The unsaturated approximation

f�(x1; x2) = f�0 + f�1(x1) + f�2(x2)

minimizes E[Y �f�(X1; X2)]
2 over the space H of ad-

ditive functions in x1 and x2.



Function Estimation

These results can be derived from the somewhat more
informative expression (Hansen, 1994)

kf̂ � f�k2 = OP( �
2(�) + ��d=n )

where � and � represent the size of the largest and small-
est cells in the partition, respectively, and � is the approx-
imation rate of the underlying spline space.

Huang (1997) extends these results to include general
approximating spaces like trigonometric polynomials



General Rates for ELMs

Rates of convergence for the components in these func-
tional ANOVA models can be established in the context
of an extended linear model

Regression

Generalized Regression

Hazard Regression

Polychotomous Regression

Censored Regression

Density Estimation

Conditional Density Estimation



General Adaptation in ELMs

Adaptively placing knots in a spline expansion can be
treated (roughly) like a problem in subset selection

� Stepwise Addition: Maximize Rao Statistic

� Stepwise Deletion: Minimize Wald Statistic

� Model Selection:

Minimize AIC�;� = �2bl� + �p�



Stepwise Addition: Maximize Rao Statistic

LetQ be the quadratic approximation to the log-likelihood
function about a point �0 2 B

Q( � ) = `(�0 ) + [r`( b�0 ) ]t ( � � �0 )

+
1

2
( � � �0 )

tH( �0 ) ( � � �0 )

If H( �0 ) is negative definite, the Q is uniquely maxi-
mized at the point

�1 = �0 �H�1( �0 )r`( �0 )

From these two expressions, we find that

2[Q( �0 ) � Q( �1 ) ] =

[r`( �0 ) ]
tH�1( �0 )r`( �0 )

If �0 is the MLE in a subspace B0, then this is the Rao
statistic for testing that � 2 B0.



Stepwise Deletion: Minimize Wald Statistic

LetQ be the quadratic approximation to the log-likelihood
function at the MLE b� 2 B and let B0 be a subspace of
B consisting of those � satisfying A� = 0, A having full
rank. Then, the maximum of Q over B0 occurs at

b�0 = b� �H�1( b� )At [AH�1( b� )At ]�1A b�
and hence

2[Q( b�0 ) � Q( b� ) ] =

(A b� )t [AH�1( b� )At ]A b�
which is the familiar Wald statistic for testing that � 2 B0

under the assumption that � 2 B.



A Bayesian Alternative

Regression: Y = f(X) + �, � � N(0; �2)

Fix a knot sequence and consider the basis

1; x; : : : ; xk; (x � t1)
k
+; : : : ; (x � tm)

k
+

Introduce a vector 
 = (
1; : : : ; 
m+4) indexing the
columns of the resulting design matrix: If 
i = 0 the co-
efficient �i on the ith basis function is zero.

Smith and Kohn (1995) make computationally efficient
choices for � = (�1; : : : ; �m+4)j
; �

2 and �2j
, and
use the Gibbs sampler to simulate from the posterior dis-
tribution of 
.



A Bayesian Alternative

Regression: Y = f(X) + �, � � N(0; �2)

Foster and George (1996) have found that in this frame-
work, the mode of the posterior distribution for 
 corre-
sponds to a model that minimizes an expression of the
form

RSS(
) +
1+ c

c
log(c+ 1)p(
)�̂2

where c is a hyperparameter from the prior on �.

This means that the Gibbs sampler can be thought of as
a stochastic search procedure to find the best model ac-
cording to BIC



A Bayesian Alternative

We gain insight into the behavior of the posterior mean
of � by considering the equivalent kernel of the smoother
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A Bayesian Alternative
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An Alternative Bayesian Framework

Borrowing heavily from Green (1995), Denison et al. used
reversible jump MCMC to average across competing spline
models.

� For computational reasons, a full Bayesian approach
is not taken

� A Poisson prior with mean � is assigned to the num-
ber of knots

Hansen and Kooperberg (1997) apply these ideas to den-
sity estimation, replacing the Poisson prior with a geo-
metric distribution with p = 1� 1=

p
n.

With this choice, posterior model probabilities again scale
like BIC



Salsa and bLogspline
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Salsa and bLogspline
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Salsa and bLogspline
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A Hybrid Smoother

Recently, Luo and Wahba (1996) proposed a hybrid be-
tween the greedy ELM procedure and smoothing splines.
The idea is to follow a stepwise addition phase (this time
with RKs) by a penalized fit.



Triogram Models

� Bivariate functions
(spatial data, two-factor interactions, . . . )

� Continuous, piecewise linear functions defined over
arbitrary triangulated regions in the plane

� Adaptive, local refinements to the space based on
“classical” procedures for stepwise model building



Piecewise Linear Basis Functions



Conforming Triangulations

Non-Conforming Partition Conforming Partition



Stepwise Addition

Original Triangulation Splitting Boundary Edge

Splitting an Interior Edge Subdividing a Triangle



Candidate Vertices

Candidates for K=2 Candidates for K=5



Candidate Vertices

Candidate vertices are located at the barycentric coordi-
nates

�
k1

K + 1
;

k2

K + 1
;
K + 1� k1 � k2

K + 1

�
;

for k1; k2; K 2 IN and k1+ k2 � K + 1.



Stepwise Deletion

Deleting an Edge

1

3

2

4
Deleting a Vertex
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Simulated Example



Simulated Example



Data Restricted to a Triangle

100 protein structures from the Brookhaven

Protein Data Bank

Each amino acid in each protein was assigned to

one of three secondary structure classes:

helix, sheet, coil

Two measurements taken for each amino acid

� Fraction of the amino acid side-chain area

buried in the protein structure

� Fraction of the amino acid side-chain area

covered by polar atoms



Protein Example: Lysine

Lysine, Helix Lysine, Sheet Lysine, Coil

� Each set of measurements is restricted to a triangle

� We will fit separate densities to each
collection of measurements



Protein Example: Lysine

Lysine, Helix Lysine, Sheet Lysine, Coil



Implementation in S

plot(x,y)

tri <� triangulate(x,y,“del”)
lines(tri)

net <� bnet(tri,d=3)
points(net)



Implementation in S

plot(x,y)

tri <� triangulate(x,y,”del”)
lines(tri)

vs <� gvs(tri)
net <� as.bnet(vs)
lines(net)



Implementation in S

Given bivariate data X and a response variable Z, we
have the following fitting routines

fit <� elm(Z � triogram( X, obj ), method,
model, family )

fit <� elm( � triogram( X, obj ), method )

where obj contains starting values, and method specifies
the type of model adaptation.



Implementation in S

plot(x,y)

fit <� elm(� triogram(x,y))
contour(fit,add=T)
lines(triangulate(fit))

geomview.triogram(fit)



A Bayesian Alternative

Building from the ideas of Green (1995), we have also
implemented a full Bayesian Triogram procedure. Es-
sentially, we specify a prior on triangulations and use rjM-
CMC to step through model space.

By averaging, our bTriograms are much smoother than
their greedy counterparts.



New Moves

Original Triangulation Swapping a Diagonal

Original Triangulation Moving a Vertex



Simulated Example

In this example, we generate 300 (essentially) random
points in the unit square, evaluate the function

f(x) = 40expf8[(x1 � 0:5)2+ (x2 � 0:5)2]g=

(expf8[(x1 � 0:2)2+ (x2 � 0:7)2]g+expf8[(x1 � 0:7)2+ (x2 � 0:2)2]g)

and add N(0;1) noise.



Simulated Example



Ridge Example


