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Function Estimation

Familiar statistical problems requiring function estimation:

N . From observations (Y}, X;), we want
to estimate the conditional expectation E(Y |z) =
f(x), where x = (x1,...,x1)

o . From observations Y; we try to
uncover the important features in the density f(y)




Function Estimation

Classical Parametric Framework

flxy,...,2) = Bo + Brzy + -+ + By,

A nonparametric approach removes such severe restric-
tions, but modeling f = f(x1,...,z;) can be difficult.
This motivated the use of additive models

fo1,....21) = fo+ fi(z1) + - + fulop)
...possibly allowing for interactions

flz1,22) = fo + filz1) + folza) + fia(wr,z2)




Function Estimation

There are many procedures based on polynomial splines
and their tensor products

e Regression

TURBO (Friedman and Silverman)
MARS (Friedman)

Pi (Breiman)

br() (Smith and Kohn)

Bayesian CART/MARS (Denison et al.)

e Density estimation

Logspline (Kooperberg and Stone)

Salsa (Hansen and Kooperberg)




Function Estimation

In each of these cases, f and its components are ex-
panded in a basis. For example,

fi(z1) = > B1iB1i(z1)
i=1

where the basis functions Bq; are determined adaptively.
Think of this as selecting from the set

K
1,zq,...,27,
k k
(r1 — t11)%, ..., (w1 — t1m)Y

...but it can be much more interesting!




A Regression Surface with a Ridge

Experimental data: Cleveland and Fuentes (1996) con-
sider an experiment aimed at improving the processing
of liquid crystal mixtures.

P: percentage of liquid crystal in mixture
T: temperature (degrees Celsius)
V: voltage needed to make material clear
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A Regression Surface with a Ridge

e Starting triangulation: smallest triangle containing the
data, enlarged by 15%.

e Adaptation: Stepwise addition and deletion of ver-
tices
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Function Estimation

e Stone (1994) treats the case where each component
IS the tensor product of univariate spline functions

k
1,z1,...,27,

k k
(r1 — t11)%, ..., (21 — t1m)Y

e Hansen (1994) and Stone et al. (1997) extend this to
allow z; € IRPi; 1 < ¢ < k. In this case, the effects
in the previous expansion are multivariate splines and
their tensor products.

Finite elements

multivariate B-splines




Function Estimation

In general, to estimate a function of d variables in this
way, the L» rate of convergence is n—?/(2P+d) where p
IS related to the smoothness of f.

By considering an unsaturated approximation, we can
improve the rate n—?/(2P+d%) where d* is the largest num-
ber of terms in any single interaction component.




Functional ANOVA

An additive model
flz1,22) = fo + fi(z1) + fo(z2)
The unsaturated approximation

[ (w1,22) = f'o + ff1(z1) + ffo(22)

minimizes E[Y — f*(X1, X5)]? over the space H of ad-
ditive functions in z1 and x».




Function Estimation

These results can be derived from the somewhat more
iInformative expression (Hansen, 1994)

1f— 17 = Op(p?(@®) + 8% n)

where § and § represent the size of the largest and small-
est cells in the patrtition, respectively, and p is the approx-
imation rate of the underlying spline space.

Huang (1997) extends these results to include general
approximating spaces like trigonometric polynomials




General Rates for ELMs

Rates of convergence for the components in these func-
tional ANOVA models can be established in the context
of an extended linear model

Regression

Generalized Regression
Hazard Regression
Polychotomous Regression
Censored Regression
Density Estimation

Conditional Density Estimation




General Adaptation in ELMs

Adaptively placing knots in a spline expansion can be
treated (roughly) like a problem in subset selection

e Stepwise Addition: Maximize Rao Statistic
e Stepwise Deletion: Minimize Wald Statistic

e Model Selection:
Minimize AIC,, = —2I, + ap,




Maximize Rao Statistic

Let ) be the quadratic approximation to the log-likelihood
function about a point 5o € B

Q(B) = (Bo) + [V B)I (B = Bo)
+%(5 — Bo)'H(Bo) (B — Bo)

If H( 5o ) is negative definite, the @ is uniquely maxi-
mized at the point

B = Bo—H (Bo)VE(So)

From these two expressions, we find that

2[Q(Po) — Q(B1)] =

[Ve(Bo)I"H(Bo) VE(Bo)

If Go Is the MLE in a subspace Bg, then this is the Rao
statistic for testing that 5 € Bo.




Minimize Wald Statistic

Let ) be the quadratic approximation to the log-likelihood
function at the MLE 3 € B and let By be a subspace of
B consisting of those £ satisfying A3 = 0, A having full
rank. Then, the maximum of Q over By occurs at

Bo = B—H Y B)A[AH Y (B)A']TAB
and hence
2[Q(fo) — Q(B)] =
(AB) [AH Y (B)A'1AB

which is the familiar Wald statistic for testing that 5 € Bg
under the assumption that 3 € B.




A Bayesian Alternative

Regression: Y = f(X) +¢, e ~ N(0,02)

Fix a knot sequence and consider the basis
Lo, ... 28 (z — tl)]j_,...,(a: - tm)]j_

Introduce a vector v = (71,...,vm+4) indexing the
columns of the resulting design matrix: If v, = O the co-
efficient 5; on the :th basis function is zero.

Smith and Kohn (1995) make computationally efficient
choices for 8 = (B1,...,Bmra)ly, 02 and o2|y, and
use the Gibbs sampler to simulate from the posterior dis-
tribution of .




A Bayesian Alternative

Regression: Y = f(X) + ¢, e ~ N(0, 02)

Foster and George (1996) have found that in this frame-
work, the mode of the posterior distribution for ~ corre-
sponds to a model that minimizes an expression of the
form

1+ c

RSS(v) + log(c + 1)p(y)52

where c is a hyperparameter from the prior on 5.

This means that the Gibbs sampler can be thought of as
a stochastic search procedure to find the best model ac-
cording to BIC




A Bayesian Alternative

We gain insight into the behavior of the posterior mean
of 3 by considering the equivalent kernel of the smoother




A Bayesian Alternative
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An Alternative Bayesian Framework

Borrowing heavily from Green (1995), Denison et al. used
reversible jump MCMC to average across competing spline

models.

e For computational reasons, a full Bayesian approach
IS not taken

e A Poisson prior with mean X is assigned to the num-
ber of knots

Hansen and Kooperberg (1997) apply these ideas to den-
sity estimation, replacing the Poisson prior with a geo-
metric distribution withp =1 — 1//n.

With this choice, posterior model probabilities again scale
like BIC




Density

Density
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Density

Salsa and bLogspline
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Salsa and bLogspline
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A Hybrid Smoother

Recently, Luo and Wahba (1996) proposed a hybrid be-
tween the greedy ELM procedure and smoothing splines.
The idea is to follow a stepwise addition phase (this time

with RKs) by a penalized fit.




Triogram Models

e Bivariate functions
(spatial data, two-factor interactions, ...)

e Continuous, piecewise linear functions defined over

arbitrary triangulated regions in the plane
e Adaptive, local refinements to the space based on

“classical”’ procedures for stepwise model building




Piecewise Linear Basis Functions




Conforming Triangulations

Non-Conforming Partition Conforming Partition




Stepwise Addition

pally.4

Original Triangulation Splitting Boundary Edge

- (¥

Splitting an Interior Edge Subdividing a Triangle




Candidate Vertices

Candidates for K=2 Candidates for K=5




Candidate Vertices

Candidate vertices are located at the barycentric coordi-
nates

( k1 ko K—|—1—]€1—]€2>
K41 K41 K+1 ’

forki,ko, K €eINand k1 + k> < K + 1.




Stepwise Deletion

Deleting an Edge 3 Deleting a Vertex 3




Simulated Example




Simulated Example
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Data Restricted to a Triangle

100 protein structures from the Brookhaven

Protein Data Bank

Each amino acid in each protein was assigned to
one of three secondary structure classes:

helix, sheet, coill

Two measurements taken for each amino acid

e Fraction of the amino acid side-chain area

buried in the protein structure

e Fraction of the amino acid side-chain area

covered by polar atoms




Protein Example: Lysine
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Lysine, Helix

e Each set of measurements is restricted to a triangle

Lysine, Sheet

e We will fit separate densities to each
collection of measurements

Lysine, Coil




Protein Example: Lysine

Lysine, Helix Lysine, Sheet Lysine, Coil
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Implementation in S

plot(x,y)

tri <— triangulate(x,y,“del”)
lines(tri)

net <— bnet(tri,d=3)
points(net)




Implementation in S

plot(x,y)

tri <— triangulate(x,y,”del”)
lines(tri)

Vs <— gvs(tri)
net <— as.bnet(vs)
lines(net)




Implementation in S

Given bivariate data X and a response variable Z, we
have the following fitting routines

fit <— elm( Z ~ triogram( X, obj ), method,
model, family )

fit <— elm( ~ triogram( X, obj ), method)

where objcontains starting values, and method specifies
the type of model adaptation.




Implementation in S

*
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fit <— elm(~ triogram(x,y))
contour(fit,add=T)
lines(triangulate(fit))

geomview.triogram(fit)




A Bayesian Alternative

Building from the ideas of Green (1995), we have also
iImplemented a full Bayesian Triogram procedure. Es-
sentially, we specify a prior on triangulations and use rjM-
CMC to step through model space.

By averaging, our bTriograms are much smoother than
their greedy counterparts.




New Moves

>4 D)

Original Triangulation Swapping a Diagonal

>4 8

Original Triangulation Moving a Vertex




Simulated Example

In this example, we generate 300 (essentially) random
points in the unit square, evaluate the function

f(x) = 40 exp{8[(z1 — 0.5)% + (x> — 0.5)?]}/
(exp{8[(xz1 — 0.2)? + (22 — 0.7)?]} + exp{8[(z1 — 0.7)%2 4+ (a2 — 0.2)?]})

and add N (0O, 1) noise.




Simulated Example




Ridge Example




