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Abstract

Linear mixed-effects models are frequently used to analyze repeated measures data, be-
cause they model flexibly the within-subject correlation often present in this type of
data. The most popular linear mixed-effects model for a continuous response assumes
normal distributions for the random effects and the within-subject errors, making it sen-
sitive to outliers. Such outliers are more problematic for mixed-effects models than for
fixed-effects models, because they may occur in the random effects, in the within-subject
errors, or in both, making them harder to be detected in practice. Motivated by a real
dataset from an orthodontic study, we propose a robust hierarchical linear mixed-effects
model in which the random effects and the within-subject errors have multivariate t-
distributions, with known or unknown degrees-of-freedom, which are allowed to vary
with subject. By using a gamma-normal hierarchical structure, our model allows the
identification and classification of both types of outliers, comparing favorably to other
multivariate t models for robust estimation in mixed-effects models previously described
in the literature, which use only the marginal distribution of the responses. Allowing
for unknown degrees-of-freedom, which may vary with subject and are estimated from
the data, our model provides a balance between robustness and efficiency, leading to
reliable results for valid inference. We describe and compare efficient EM-type algo-
rithms, including ECM, ECME, and PX-EM, for maximum likelihood estimation in the
robust multivariate t model. We compare the performance of the Gaussian and the
multivariate t models under different patterns of outliers. Simulation results indicate
that the multivariate t substantially outperforms the Gaussian model when outliers are
present in the data, even in moderate amounts.

Key words: EM; ECM; ECME; PX-EM; Random effects; Repeated measures; Longitu-
dinal data; Outliers.
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1 Introduction

Linear mixed-effects models (Hartley and Rao, 1967) have become a popular tool for analyzing
repeated measures data which arise in many areas as diverse as agriculture, biology, economics,
and geophysics. The increasing popularity of these models is explained by the flexibility they
offer in modeling the within-subject correlation often present in repeated measures data, by the
handling of both balanced and unbalanced data, and by the availability of reliable and efficient
software for fitting them (Wolfinger, Tobias and Sall, 1991; MathSoft, 1997). The most commonly
used linear mixed-effects model for a continuous response was proposed by Laird and Ware (1982)
and is expressed as

yi = Xiβ +Zibi + ei, i = 1, . . . ,m, (1)

where i is the subject index, yi is an ni-dimensional vector of observed responses, Xi and Zi are
known ni × p and ni × q design matrices corresponding to the p-dimensional fixed effects vector
β and the q-dimensional random effects vector respectively, and ei is an ni-dimensional vector of
within-subject errors. The bi are assumed to be independent with distribution N (0,Ψ) and the ei
are assumed to be independent with distributionN (0,Λi), independent of the bi. The Ψ covariance
matrix may be unstructured or structured – e.g. diagonal (Jennrich and Schluchter, 1986). The Λi

matrices are typically assumed to depend on i only through their dimensions, being parametrized by
a fixed, generally small, set of parameters ρ – e.g. an AR(1) covariance structure (Box, Jenkins and
Reinsel, 1994). The most popular estimation methods for the parameters in model (1) are maximum
likelihood and restricted maximum likelihood (Lindstrom and Bates, 1988). Confidence intervals
and hypothesis tests for the parameters are generally based on asymptotic results (Miller, 1977).

Though model (1) offers great flexibility for modeling the within-subject correlation frequently
present in repeated measures data, it suffers from the same lack of robustness against outlying
observations as other statistical models based on the Gaussian distribution. An interesting feature
of mixed-effects models is that outliers may occur either at the level of the within-subject error ei,
called e−outliers, or at the level of the random effects bi, called b−outliers. In the first case, some
unusual within-subject values are observed, whereas in the second case some unusual subjects are
observed. Depending on the percentage of e-outliers and the number of observations per subject,
it may not be possible to distinguish between the two cases.

A vast statistical literature exists on robust modeling methods, with some authors concentrat-
ing more on methods for outlier identification (Barnett and Lewis, 1994) and others on methods
for outlier accommodation (Huber, 1981; Hampel, Ronchetti, Rousseeuw and Stahel, 1986). We
follow here the robust statistical modeling approach described in Lange, Little and Taylor (1989)
and consider a version of model (1) in which the multivariate normal distributions for the bi and
the ei are replaced by multivariate t-distributions, with known or unknown degrees-of-freedom,
which are allowed to vary with subject. This approach can be regarded as outlier-accommodating,
though it also provides useful information for outlier identification.
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A multivariate t linear mixed-effects model has been described by Welsh and Richardson (1997),
but using only the marginal distribution of the response vectors, without reference to the hierar-
chical structure of the model. In particular, they do not derive, or discuss, the distributions of the
random effects and the error terms under the multivariate t model, which help understanding the
robustness of the model. In their description of estimation procedures, the degrees-of-freedom are
assumed fixed and computational algorithms are not addressed.

A similar approach to the multivariate t model, but restricted to the distribution of the bi, has
been considered by Wakefield, Smith, Racine-Poon and Gelfand (1994) and Racine-Poon (1992),
within a Bayesian framework. Pendergast and Broffitt (1986) also have mentioned the multivariate
t-distribution in connection with M-estimation for growth curve models. Robust estimation in
mixed-effects models with variance components only (i.e. without covariance among random effects)
using bounded influence estimators has been considered by Richardson and Welsh (1995) and
Richardson (1997).

In Section 2, we describe growth curve data in which both b- and e-outliers seem to be present.
The multivariate t version of model (1) is described in Section 3. In Section 4 we describe efficient
EM-type algorithms for maximum likelihood estimation in the multivariate t linear mixed-effects
model. We compare the robust maximum likelihood estimators obtained under the multivariate
t-distribution to the Gaussian maximum likelihood estimators corresponding to model (1) in Sec-
tion 5. Our conclusions and suggestions for further research are presented in Section 6.

2 An example: orthodontic distance growth in boys and girls

Our data come from an orthodontic study of 16 boys and 11 girls between the ages of 8 and 14
years and were originally reported in Potthoff and Roy (1964). The response variable is the distance
(in millimeters) between the pituitary and the pterygomaxillary fissure, which was measured at 8,
10, 12, and 14 years for each boy and girl. Figure 1 presents a Trellis display (Becker, Cleveland
and Shyu, 1996) of the data, along with individual least-squares fits of the simple linear regression
model.

Figure 1 about here

Figure 1 reveals that the estimated slope for subject M13 is considerably larger than the re-
maining estimated slopes and that the responses for subject M09 are more variable around the
fitted line. Overall, the responses for the boys vary more around the least squares lines, than do
those for the girls. These features are more evident in the residuals plots by gender, displayed in
Figure 2 and in the normal plots of the individual coefficients estimates, displayed in Figure 3.
These plots suggest that two of the observations on subject M09 are e-outliers and that subject
M13 is a b-outlier. Subject M10 is also identified in Figure 3 because he is indicated as a possible
b-outlier later in Section 5.1.

Figures 2 and 3 about here
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Because both intercept and slope seem to vary with subject and the within-subject variation
is larger among boys than girls, the following linear mixed-effects model can be used to describe
the orthodontic distance growth with age.

yij = β0 + δ0Ii(F ) + (β1 + δ1Ii(F )) tj + b0i + b1itj + eij , i = 1, . . . , 27 and j = 1, . . . , 4, (2)

where yij denotes the orthodontic distance for the ith subject at age tj , β0 and β1 denote respectively
the intercept and the slope fixed effects for boys, δ0 and δ1 denote respectively the difference in
intercept and slope fixed effects between girls and boys, Ii(F ) denotes an indicator variable for
females, bi = (b0i, b1i) is the random effects vector for the ith subject, and eij is the within-subject
error.

In Section 5.1, we compare the maximum likelihood estimates (MLEs) under the Gaussian
version of the linear mixed-effects model (2) to the MLEs obtained under the multivariate t model
described in Section 3.

3 A multivariate t linear mixed-effects model

The Gaussian linear mixed-effects model (1) can alternatively be written as:[
yi
bi

]
ind∼ Nni+q

([
Xiβ

0

]
,

[
ZiΨZ ′i + Λi ZiΨ

ΨZ ′i Ψ

])
, i = 1, . . . ,m, (3)

with Λi = Λi(ρ). For robust estimation of β, Ψ, and ρ, we proceed as in Lange et al. (1989) and
replace the multivariate normal distribution in (3) with the multivariate t-distribution:[

yi
bi

]
ind∼ tni+q

([
Xiβ

0

]
,

[
ZiΨZ ′i + Λi ZiΨ

ΨZ ′i Ψ

]
, νi

)
, i = 1, . . . ,m, (4)

where νi represents the multivariate t-distribution degrees-of-freedom (d.f.) for the ith subject. It
follows from (4) that the yi are independent and marginally distributed as

yi
ind∼ tni

(
Xiβ,ZiΨZ ′i + Λi, νi

)
, (5)

which provides yet another characterization of the multivariate t linear mixed-effects model. If Ψ
is assumed to be diagonal and νi = ν are fixed for all subjects, (5) reduces to the model considered
in Welsh and Richardson (1997).

The multivariate t model (4) can also be expressed as the marginal distribution of
[
y′i, b

′
i

]′ in
the following hierarchical models:[

yi
bi

]∣∣∣∣∣ τi ind∼ Nni+q

([
Xiβ

0

]
,

1
τi

[
ZiΨZ ′i + Λi ZiΨ

ΨZ ′i Ψ

])
and (6)

τi
ind∼ Γ

(νi
2
,
νi
2

)
, i = 1, . . . ,m,
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or

yi|bi, τi
ind∼ N (Xiβ +Zibi,

1
τi

Λi), bi|τi
ind∼ N (0,

1
τi

Ψ), and (7)

τi
ind∼ Γ

(νi
2
,
νi
2

)
, i = 1, . . . ,m.

As described in the sequel, this gamma-normal hierarchical representation of the multivariate t
model leads not only to natural EM implementations for maximum likelihood estimation of the
unknown parameters, but also to diagnostic statistics that are useful for identification and classifi-
cation of outliers.

It follows from (6) and (7) that the multivariate t model can be written as

yi = Xiβ +Zibi + ei, i = 1, . . . ,m (8)

bi
ind∼ tq (0,Ψ, νi) ei

ind∼ tni (0,Λi, νi)

with bi|τi independent of ei|τi, implying that bi and ei are uncorrelated, but not independent, when
νi < ∞. The multivariate t model assumes that the random effects and the within-subject errors
have multivariate t distributions and, therefore, can accommodate both b-outliers and e-outliers.

From standard properties of the multivariate t-distribution (Johnson and Kotz, 1972), it follows
that, for νi > 2,

var (bi) =
νi

νi − 2
Ψ and var (ei) =

νi
νi − 2

Λi, i = 1, . . . ,m.

Therefore, the interpretation of Ψ and Λi is different in the Gaussian model (1) and in the multi-
variate t model (4). Note, in particular, that var (bi) is allowed to change with i in the multivariate
t model, while it is independent of i in the Gaussian model. Provided νi > 1 in (4), both mod-
els have E (yi) = Xiβ, so that the fixed effects have the same interpretation: they represent the
population average of the individual parameters.

Generally, some constraints are needed on the νi when these are to be estimated from the data.
Common constraints are νi = ν for all i = 1, . . . ,m, or, more generally,

νi = λh(i), i = 1, . . . ,m, (9)

where h(i) ∈ {1, . . . , l} denotes the group to which the ith subject belongs and λ1, . . . , λl are l
distinct positive scalar parameters, which can be treated as known, or unknown. We shall focus
here on the t linear mixed-effects model (4) with the constraints (9).

Integrating out the bi in (7), we can express the distribution of yi as the marginal distribution
of the following hierarchical model.

yi|τi
ind∼ N

(
Xiβ,

1
τi

(
Λi +ZiΨZ ′i

))
and τi

ind∼ Γ
(νi

2
,
νi
2

)
, i = 1, . . . ,m. (10)

A useful consequence of (10) is that

τi|yi
ind∼ Γ

(
νi + ni

2
,
νi + δ2

i (β,Ψ,ρ)
2

)
,
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where

δ2
i (β,Ψ,ρ) = (yi −Xiβ)′

(
ZiΨZ ′i + Λi

)−1 (yi −Xiβ). (11)

Note that, in particular,

E(τi|yi) =
νi + ni

νi + δ2
i (β,Ψ,ρ)

.

4 Efficient EM algorithms for maximum likelihood estimation

In this section, we consider the maximum likelihood (ML) estimation of the parameters in the mul-
tivariate t linear mixed-effects model (4). We describe three EM-type algorithms for ML estimation
with known and unknown degrees-of-freedom, based on two types of missing data structures. The
first two algorithms use the hierarchical model (7) with both the bi and the τi treated as missing.
The third algorithm is based on the hierarchical model (10) which, by integrating out the bi, has
just the τi as missing data. The first two algorithms are computationally simpler, with closed-form
expressions for the estimates of β, Ψ, and ρ in the maximization step, but require additional as-
sumptions about the structure of the Λi matrices. The last algorithm has a more computationally
intensive maximization step, but allows more generality in the model specification and only requires
minor modifications to existing software for fitting the Gaussian linear mixed-effects model (1). It
should be noted that all three algorithms lead to the same MLEs (up to numerical round-off error)
under the same structure of the Λi matrices.

Letting ψ denote a minimal set of parameters to determine Ψ (e.g. the upper triangular ele-
ments of Ψ in the unstructured case), we define the population parameters vector θ =

[
β′,ψ′,ρ′,λ′

]′
.

Compared to the Gaussian linear mixed-effects model (1), the multivariate t model (4) allows each
subject to have its own scale τi, which is unobserved and needs to be imputed from the data. The
different individual scales result in different weights for estimating the population parameters θ.
For example, conditional on Ψ, ρ, and the τi, the ML estimate of β minimizes

∑m
i=1 τiδ

2
i (β,Ψ,ρ),

with δ2
i as defined as (11). Because E (τi | yi) decreases with δ2

i , subjects with larger residual sum
of squares δ2

i will have less weight in the determination of the ML estimates. The influence of δ2
i

on the τi scales is controlled by the individual degrees-of-freedom νi – the smaller νi the larger the
influence of δ2

i on τi.

4.1 The EM algorithm

The EM algorithm (Dempster, Laird and Rubin, 1977) is a popular iterative algorithm for ML
estimation in models with incomplete data. More specifically, let yobs denote the observed data
and ymis denote the missing data. The complete data ycom = (yobs,ymis) is yobs augmented
with ymis. We denote by f(ycom|θ) the complete-data likelihood function of a parameter vector
θ ∈ Θ, by L(θ) = f(yobs|θ) the log-likelihood function and by Q(θ|θ′) the expected complete-data
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log-likelihood

Q(θ|θ′) = E
{

ln [f (ycom|θ)] |yobs,θ
′} .

Each iteration of the EM algorithm consists of two steps, the Expectation step and the Maximization
step:

E-step: Compute Q(θ|θ(t)) as a function of θ;

M-step: Find θ(t+1) such that Q(θ(t+1)|θ(t)) = maxθ∈ΘQ(θ|θ(t)).

Each iteration of the EM algorithm increases the likelihood function L(θ) and, under mild condi-
tions, the EM algorithm converges to a local or global maximum of L(θ) (Dempster et al., 1977;
Wu, 1983).

When the M-step in the EM algorithm is difficult to implement, it is often useful to replace it
with a sequence of constrained maximization (CM) steps, each of which maximizes Q(θ|θ(t)) over θ
with some function of θ held fixed. The sequence of CM-steps is such that the overall maximization
is over the full parameter space. This leads to a simple extension of the EM algorithm, called the
ECM algorithm (Meng and Rubin, 1993). A further extension of the EM algorithm is the ECME
algorithm (Liu and Rubin, 1994). This algorithm replaces each CM-step of ECM with a CM-step
that maximizes either the constrained Q function, as in ECM, or the correspondingly constrained
L function. Liu and Rubin (1994) showed that ECME typically shares with EM the simplicity
and stability, but has a faster rate of convergence, especially for the t distribution with unknown
degrees of freedom.

4.2 EM algorithms with bi and τi as missing data

First consider the hierarchical multivariate t model (7) with both the bi and the τi as missing data.
For simplicity, assume that

Λi = σ2
iRi, σ2

i = σ2
g(i), i = 1, . . . ,m, (12)

with g(i) ∈ {1, . . . , k} representing the group to which the ith subject belongs. The Ri are known
matrices, usually equal to the identity. We denote by σ2 the unique elements in

{
σ2

1, . . . , σ
2
m

}
.

The within-subject covariance structure (12) allows for variance heterogeneity among different
groups of subjects, but does not include serial correlation structures such as in ARMA models (Box
et al., 1994).

4.2.1 ML estimation with known degrees-of-freedom using ECM

Let y = [y′1, . . . ,y
′
m]′ , b =

[
b′1, . . . , b

′
m

]′
, and τ = [τ1, . . . , τm] . Under the constraints (12), the

log-likelihood for the complete data in the multivariate t linear mixed-effects model (4) is

L(β,Ψ,σ2|y, b, τ ) = L1(β,σ2|y, b, τ ) + L2(Ψ|b, τ ) + constant,
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where

L1(β,σ2|y, b, τ )

=
m∑
i=1

[
−ni

2
lnσ2

i −
τi

2σ2
i

(yi −Xiβ −Zibi)′R−1
i (yi −Xiβ −Zibi)

]

= −
m∑
i=1

ni
2

lnσ2
i −

m∑
i=1

τi
2σ2

i

trace
[
R−1
i (yi −Zibi)(yi −Zibi)′

]
+

m∑
i=1

τi
σ2
i

β′X ′iR
−1
i (yi −Zibi)−

m∑
i=1

τi
2σ2

i

β′X ′iR
−1
i Xiβ

and

L2(Ψ|b, τ ) = −m
2

ln |Ψ| − 1
2

trace

(
Ψ−1

m∑
i=1

τibib
′
i

)
.

Letting

τ̂i = E(τi|θ = θ̂,y), b̂i = E(bi|θ = θ̂,y), and Ω̂i = τicov(bi|θ = θ̂,y),

we obtain

Ω̂i = Ψ̂− Ψ̂Z ′i(ZiΨ̂Z ′i + σ̂2
iRi)−1ZiΨ̂ =

(
Ψ̂
−1

+
1
σ̂2
i

Z ′iR
−1
i Zi

)−1

, (13)

b̂i = Ψ̂Z ′i(ZiΨ̂Z ′i + σ̂2
iRi)−1(yi −Xiβ̂)

=
(

Ψ̂
−1

+
1
σ̂2
i

Z ′iR
−1
i Zi

)−1 1
σ̂2
i

Z ′iR
−1
i (yi −Xiβ̂), and

τ̂i =
νi + ni

νi + δ2
i (β̂, Ψ̂, σ̂2)

.

From standard multivariate analysis results (Fang and Zhang, 1990, p. 4) we have

[
(yi −Xiβ)′, b′i

] [ ZiΨZ ′i + σ2
iRi ZiΨ

ΨZ ′i Ψ

]−1 [
yi −Xiβ

bi

]
= b′iΨ

−1bi +
1
σ2
i

(yi −Xiβ −Zibi)′R−1
i (yi −Xiβ −Zibi).

Replacing θ and bi with their current estimates, we obtain the following useful decomposition:

δ2
i (β̂, Ψ̂, σ̂2) = (yi −Xiβ̂)′

(
ZiΨ̂Z ′i + σ̂2

iRi

)−1
(yi −Xiβ̂) (14)

= b̂
′
iΨ̂
−1
b̂i +

1
σ̂2
i

(yi −Xiβ̂ −Zib̂i)′R−1
i (yi −Xiβ̂ −Zib̂i) = δ̂2

bi
+ δ̂2

ei .

Equation (14) provides a simple way to compute δ2
i (β̂, Ψ̂, σ̂2) as well as the weights τ̂i. It also gives

some insight on how the estimated random effects b̂i and the estimated residuals êi = yi −Xiβ̂−
Zib̂i affect the individual weights τ̂i.
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Using simple algebra we get

E
[
L1(β,σ2|y, b, τ)|y, θ̂)

]
= −

m∑
i=1

ni
2

lnσ2
i −

m∑
i=1

1
2σ2

i

trace
[
R−1
i

(
τ̂i(yi −Zib̂i)(yi −Zib̂i)′ +ZiΩ̂iZ

′
i

)]
+

m∑
i=1

τ̂i
σ2
i

β′X ′iR
−1
i (yi −Zib̂i)−

m∑
i=1

τ̂i
2σ2

i

β′X ′iR
−1
i Xiβ

and

E
[
L2(Ψ|b, τ)|y, θ̂

]
= −m

2
ln |Ψ| − 1

2
trace

[
Ψ−1

m∑
i=1

(
τ̂ib̂ib̂

′
i + Ω̂i

)]
.

We then have the following ECM algorithm:

E-step: Given θ = θ̂, compute b̂i, τ̂i, and Ω̂i for i = 1, . . . ,m, using (13).

CM-step 1: Fix σ2
i = σ̂2

i for i = 1, . . . ,m and update β̂ by maximizing E
[
L1(β, σ̂2|y, b, τ )|y, θ̂

]
over β, which leads to

β̂ =

(
m∑
i=1

τ̂i
σ̂2
i

X ′iR
−1
i Xi

)−1 m∑
i=1

τ̂i
σ̂2
i

X ′iR
−1
i

(
yi −Zib̂i

)
.

CM-step 2: Fix β = β̂ and update σ̂2
i for i = 1, . . . ,m by maximizing E

[
L1(β̂,σ2|y, b, τ )|y, θ̂

]
over σ2

i , which gives, for j = 1, . . . , k

σ̂2
j =

∑
i:g(i)=j

[
τ̂i(yi −Xiβ̂ −Zib̂i)′R−1

i (yi −Xiβ̂ −Zib̂i) + trace(Ω̂iZ
′
iR
−1
i Zi)

]
/
∑

i:g(i)=j

ni.

CM-step 3: Update Ψ̂ by maximizing E
[
L2(Ψ|b, τ )|y, θ̂

]
over Ψ, that is,

Ψ̂ =
1
m

m∑
i=1

(
τ̂ib̂ib̂

′
i + Ω̂i

)
.

4.2.2 ML estimation with unknown degrees-of-freedom using ECME

When some, or all, of the degrees-of-freedom ν1, . . . , νm are unknown, we can use the ECME
algorithm that has the same E and CM steps as the ECM algorithm described in 4.2.1 for updating
the estimates of β,Ψ, and σ2 and an additional CML step that maximizes the constrained likelihood
over the degrees-of-freedom with β, Ψ, and σ2 fixed at their current estimates. When λj is
unknown, the constrained likelihood is computed using

yi
ind∼ tni

(
Xiβ̂,ZiΨ̂Z ′i + σ̂2

iRi, λj

)
, for i ∈ {i : g(i) = j}.

More specifically, we have
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CML-step: Update each unknown λj (j = 1, . . . , l) by maximizing

L3(λ|y,β,Ψ,σ2) =∑
i:h(i)=j

{
ln
[
Γ
(
λ+ ni

2

)]
− ln

[
Γ
(
λ

2

)]
+
λ

2
ln (λ)− λ+ ni

2
ln
[
λ+ δ2

i

(
β̂, Ψ̂, σ̂2

)]}
over λ. This requires only a one-dimensional search and can be obtained, for example, using
the Newton-Raphson method (Thisted, 1988, §4.2.2).

4.2.3 Accelerating EM via parameter expansion

Liu, Rubin and Wu (1998) proposed the method of Parameter Expansion (PX) to accelerate EM-
type algorithms and showed that the PX-EM algorithm shares the simplicity and stability of or-
dinary EM, but has a faster rate of convergence. The intuitive idea behind PX-EM is to use
a covariance adjustment to correct the analysis of the M step, capitalizing on extra information
captured in the imputed complete data. Technically, PX-EM expands the complete-data model
f(ycom | θ) to a larger model, fx(ycom | Θ), with Θ = (θ?, α), where θ? plays the same role in
fx(ycom | Θ) that θ plays in f(ycom | θ), and α is an auxiliary parameter which value is fixed at α0

in the original model. Formally, two conditions must be satisfied. First, the observed-data model
is preserved in the sense that, for all Θ, there is a common many-to-one reduction function R, such
that yobs | Θ ∼ f{yobs | θ = R(Θ)}. Secondly, the complete-data model is preserved at the null
value of α, α0, in the sense that, for all θ, fx{ycom | Θ = (θ?, α0)} = f(ycom | θ = θ?). These
conditions imply that if θ1 6= θ2 then Θ1 6= Θ2, and that, for all θ, there exists at least one Θ
such that yobs | Θ ∼ f{yobs | θ = R(Θ)}.

The PX-EM algorithm uses fx(ycom | Θ) to generate an EM algorithm, by iteratively maxi-
mizing the expected log-likelihood of fx(ycom | Θ). Specifically, let Θ(t) = (θ(t), α0) be the estimate
of Θ with α(t) = α0 from the tth iteration. Then, at the (t+ 1)th iteration:

PX-E step: Compute Qx

(
Θ | Θ(t)

)
= Eycom

{log fx(ycom | Θ) | yobs,Θ
(t)}.

PX-M step: Find Θ(t+1) = arg maxΘQx(Θ | Θ(t)); then apply the reduction function R(θ) to
obtain θ(t+1) = R(Θ(t+1)).

The PX-EM algorithm can be used in the context of the multivariate t model to accelerate
the EM algorithms described in Sections 4.2.1 and 4.2.2, by adjusting the M step using parameter
expansions based on the imputed weights τ̂i and the imputed random effects b̂i.

The imputed values of τi are only used in the ECM and ECME algorithms of Sections 4.2.1 and
4.2.2 to update the estimates of β, Ψ, and σ2

j . The goodness-of-fit of the model τi
ind∼ Γ(νi/2, νi/2)

to these values is ignored by the EM algorithms. We make use of this information to adjust the
current estimates, by expanding the parameter space to include the scale parameter γ such that

τi
γ

ind∼ Γ
(νi

2
,
νi
2

)
, i = 1, ...m.

10



With the current estimate of γ fixed at γ0 = 1, routine algebraic operations lead to the following
CM-step for updating γ:

γ̂ =
∑m

i=1 νiτ̂i∑m
i=1 νi

.

Because

yi|β,Ψ,σ2, γ
ind∼ tni

(
Xiβ,

1
γ

(
ZiΨZ ′i + σ2

iRi

)
, νi

)
, i = 1, ...,m,

the application of the reduction function in the PX-EM algorithm leads to adjustments in the
estimates of Ψ and σ2, which correspond to replacing their CM-steps in the previous ECM and
ECME algorithms with

CM-step 2.X1:

σ̂2
j =

∑m
i=1 νi∑m
i=1 νiτ̂i

∑
i:g(i)=j

[
τ̂i(yi −Xiβ̂ −Zib̂i)′R−1

i (yi −Xiβ̂ −Zib̂i) + trace(Ω̂iZ
′
iR
−1
i Zi)

]
∑

i:g(i)=j ni

for j = 1, ..., k.

CM-step 3.X1:

Ψ̂ =
∑m

i=1 νi∑m
i=1 νiτ̂i

∑m
i=1

(
τ̂ib̂ib̂

′
i + Ω̂i

)
m

.

The PX-EM algorithm can also be used to adjust the current parameter estimates by making
use of the information on the covariance matrices between yi and bi, given τi, that is, ZiΨ/τi, for
all i = 1, ...,m. To do this, we expand the parameter space to include a q × q matrix ζ in such a
way that the complete-data model for yi becomes

yi|bi, τi
ind∼N(Xiβ +Ziζbi,

σ2
i

τi
Ri), i = 1, ...,m.

The covariance matrix between yi and bi given τi is then ZiζΨ/τi.

Letting the current estimate of ζ be ζ0 = Iq, the q×q identity matrix, and the other parameters
be fixed at their current estimates, a CM-step for updating ζ (together with β) is obtained as
follows.

CM-step 1.X1:[
β̂

vec(ζ̂)

]
=

[
m∑
i=1

1
σ̂2
i

(
τ̂iX

′
iR
−1
i Xi τ̂iX

′
iR
−1
i (b̂

′
i ⊗Zi)

τ̂i(b̂i ⊗Z ′i)R−1
i Xi (τ̂ib̂ib̂

′
i + Ω̂i)⊗ (Z ′iR

−1
i Zi)

)]−1 m∑
i=1

τ̂i
σ̂2
i

(
X ′i

b̂i ⊗Z ′i

)
R−1
i yi,

11



where vec(ζ̂) =
(
ζ̂1,1, ..., ζ̂q,1, ..., ζ̂1,q, ..., ζ̂q,q

)′
and ⊗ stands for the Kronecker, or direct product,

operator.

The application of the reduction function in PX-EM replaces the current estimate of Ψ, Ψ̂, with
ζ̂Ψ̂ζ̂

′
.

4.3 ML estimation integrating out the bi

The EM algorithms described in Section 4.2 provides closed form expressions for updating the
estimates of θ, but require that the within-subject covariance matrices Λi be constrained to the
form given in (12). A more flexible formulation, with no constraints on the Λi, can be used when
the bi are integrated out of the complete data likelihood, so that only the τi are treated as missing
data, at the expense of a more computationally intensive CM-step. We describe here an ECME
algorithm for this missing data scheme.

The log-likelihood of the complete data [y′, τ ′]′ in the multivariate t model (4) is

L (β,Ψ,ρ|y, τ ) = L1 (β,Ψ,ρ|y, τ ) + constant,

where

L1 (β,Ψ,ρ|y, τ ) = −1
2

m∑
i=1

[
ni log |V i|+ τi (yi −Xiβ)′ V −1

i (yi −Xiβ)
]
,

with V i = Λi +ZiΨZ ′i. Letting τ̂i be defined as in (13), it follows that

E
[
L1

(
β,Ψ,ρ|y, θ̂

)]
= −1

2

m∑
i=1

[
ni log |V i|+ τ̂i (yi −Xiβ)′ V −1

i (yi −Xiβ)
]

and, therefore, the following ECME algorithm can be used to obtain the MLEs of θ.

E-step: Given θ = θ̂, compute τ̂i = (νi + ni) /
[
νi + δ2

i

(
β̂, Ψ̂, ρ̂

)]
, with δ2

i (β,Ψ,ρ) as defined
in (11).

CM-step: For fixed τ̂ , update β̂, Ψ̂, and ρ̂ by maximizing the function E
[
L1

(
β,Ψ,ρ|y, θ̂

)]
over

β, Ψ, and ρ.

The CM-step in this ECME algorithm is equivalent to maximum likelihood estimation in the
Gaussian linear mixed-effects model y∗i = X∗iβ + Zibi + ei, i = 1, . . . ,m, where y∗i =

√
τiyi and

X∗i =
√
τiXi. Reliable and efficient implementations of Newton-Raphson algorithms for obtain-

ing the MLEs in the general Gaussian linear mixed-effects model (1) are available in commercial
products such as SAS (PROC MIXED) and S-PLUS (lme function). These programs can be used to
implement the ECME algorithm described here at low additional cost.

The decomposition of δ2
i

(
β̂, Ψ̂, ρ̂

)
given in (14) remains valid for general Λi. That is,

δ̂2
i = δ2

i (β̂, Ψ̂, ρ̂) = b̂
′
iΨ̂
−1
b̂i + (yi −Xiβ̂ −Zib̂i)′Λ̂

−1

i (yi −Xiβ̂ −Zib̂i) = δ̂2
bi

+ δ̂2
ei ,

12



where b̂i = E
(
bi|yi, θ̂

)
= Ψ̂Z ′iV̂

−1

i

(
yi −Xiβ̂

)
.

When the degrees-of-freedom νi are unknown, an additional CML-step, identical to the one
described in Section 4.2.2, can be used to estimate the λj , j = 1, . . . , l. We have used the lme

function to implement the ECME algorithm described here in S-PLUS. This implementation allows
the degrees-of-freedom to be fixed in advance, or estimated from the data.

4.4 Inference based on the maximum likelihood estimates

One is generally interested in using MLEs to obtain confidence intervals and test hypotheses about
the parameters. Because the distribution of the MLEs cannot be explicitly derived, approximate
inference methods must be employed. The most common method uses the asymptotic normal
approximation to the distribution of the MLEs (Miller, 1977; Lange et al., 1989). Other methods
include the bootstrap (Efron and Tibshirani, 1993) and likelihood profiling (Bates and Watts,
1988). These last two methods usually give more accurate approximations, but are computationally
intensive for the multivariate t model (4). This paper considers only confidence intervals and tests
based on the normal approximation, concentrating on methods for the fixed effects β.

Asymptotic confidence intervals and tests based on the MLEs can be obtained using either the
observed or the expected Fisher information matrix. For the multivariate t model, these can be
derived using the results in Appendix B of Lange et al. (1989). Let J denote the expected Fisher
information matrix for the marginal log-likelihood L of the multivariate t model and ω denote the
set of parameters excluding the fixed effects, so that θ =

(
β′,ω′

)′
. It can be shown that

Jββ = E
∂2L
∂β∂β′

=
m∑
i=1

νi + ni
νi + ni + 2

X ′iV
−1
i Xi and Jβω = E

∂2L
∂β∂ω′

= 0.

It follows that the expected Fisher information matrix is block diagonal and, in particular,
[
J−1

]
ββ

=
J−1
ββ. Asymptotic confidence intervals and hypothesis tests for the fixed effects are obtained assum-

ing that the MLE β̂ has approximately a Np
(
β,J−1

ββ

)
distribution. In practice, Jββ is usually

unknown and has to be replaced by its MLE Ĵββ.

4.5 Choosing starting values for the parameters

As with most iterative optimization procedures, initial values for the parameters in the multivariate
t model must be provided to any of the EM-type algorithms described previously. A simple and
generally successful algorithm for deriving initial estimates for the fixed effects β and the variance-
covariance components Ψ and ρ is to fit separate regression models to each subject in the sample
and to form “method of moments” estimates of the population parameters by averaging out the
individual estimates. That is, letting β̂i and ρ̂i denote the individual parameter estimates obtained
by fitting a linear regression to the data of the ith subject, i = 1, . . . ,m, the initial values for the

13



EM-type algorithms are calculated as

β̂0 =
m∑
i=1

β̂i/m Ψ̂0 =
m∑
i=1

(
β̂i − β̂0

)(
β̂i − β̂0

)′
/(m− 1) ρ̂0 =

m∑
i=1

ρ̂i/m. (15)

If the parameters in Λi vary according to which group g(i) ∈ {1, . . . , k} subject i belongs (e.g.
model (12), separate initial estimates are obtained averaging over the separate groups

ρ̂j =
∑

i:g(i)=j

ρ̂i/mj ,

where mj denotes the number of subject in group j.
If the degrees-of-freedom λj for the multivariate t distributions are assumed unknown, initial

values for them also need to be provided. It is generally enough to use a relative large initial
value for the λj , say λ̂0 = 40, which corresponds to an initial assumption of near-normality for the
random effects and within-subject errors.

The EM-type algorithms described in the previous sections tend to be robust to the choice of
starting values for the parameters but, depending on characteristics of the data and of the model
being used, it is possible that convergence to local optima occurs. Therefore, it is recommended
that different starting values be used with the algorithms to assess the stability of the resulting
estimates.

5 Comparing the Gaussian and the multivariate t MLEs

In this section we compare the MLEs under the Gaussian model (1) to the MLEs obtained under
the multivariate t model (4). Firstly, we compare the Gaussian MLEs and the multivariate t MLEs
for the orthodontic growth example of Section 2. The performance of the two sets of estimators
are then compared under different outlier patterns, using results of a simulation.

5.1 The orthodontic growth example revisited

The distributional assumptions for the Gaussian version of the orthodontic growth model (2) are:
bi

ind∼N (0,Ψ) and eij
ind∼N

(
0, σ2

g(i)

)
, with the bi independent of the eij . g(i) = Ii(F ) + 1 denotes

the gender group for the ith subject. The corresponding MLEs are given below.
β̂0

δ̂0

β̂1

δ̂1

 =


16.34
1.03
0.78
−0.31

 , Ψ̂ =

[
3.20 −0.11
−0.11 0.02

]
,

[
σ̂2

1

σ̂2
2

]
=

[
2.63
0.45

]
. (16)

The corresponding approximate standard errors for the MLEs of the fixed effects, given by the
square-roots of the diagonal elements of (

∑m
i=1X

′
iV̂
−1

i Xi)−1, are

σ̂
(
β̂0

)
= 1.111 σ̂

(
δ̂0

)
= 0.097 σ̂

(
β̂1

)
= 1.334 σ̂

(
δ̂1

)
= 0.115

14



The multivariate t version of model (2) has the following distributional assumptions:

bi|τi
ind∼N

(
0, τ−1

i Ψ
)

eij |τi
ind∼N

(
0, τ−1

i σ2
g(i)

)
τi

ind∼ Γ
(
λg(i)/2, λg(i)/2

)
which imply that bi

ind∼ t
(
0,Ψ, λg(i)

)
, eij

ind∼ t
(
0, σ2

g(i), λg(i)

)
.

As mentioned in Section 3, the parameters Ψ, σ2
1, and σ2

2 in the Gaussian model do not
have the same interpretation as in the multivariate t model. To make the MLEs comparable,
we consider the parameters var (bi) = Ψg(i) (t) =

[
λg(i)/

(
λg(i) − 2

)]
Ψ and var (eij) = σ2

g(i) (t) =[
λg(i)/

(
λg(i) − 2

)]
σ2
g(i). The fixed effects β0, δ0, β1, δ1 have the same interpretation in both models:

they represent the population average of the individual parameters and establish the growth pat-
terns for an “average girl” and an “average boy” in the population. The MLEs for the multivariate
t model are shown below.

β̂0

δ̂0

β̂1

δ̂1

 =


16.83
0.54
0.73
−0.25

 , Ψ̂1(t) =

[
4.79 −0.16
−0.16 0.03

]
, Ψ̂2(t) =

[
3.13 −0.11
−0.11 0.02

]

[
σ̂2

1(t)
σ̂2

2(t)

]
=

[
2.43
0.45

]
,

[
λ̂1

λ̂2

]
=

[
5.78

6× 106

]
. (17)

The corresponding approximate standard errors for the MLEs of the fixed effects, given by the
square-roots of the diagonal elements of the Ĵ

−1

ββ matrix defined in Section 4.4, are

σ̂
(
β̂0

)
= 0.895 σ̂

(
δ̂0

)
= 0.078 σ̂

(
β̂1

)
= 1.158 σ̂

(
δ̂1

)
= 0.099

These are consistently smaller than the corresponding estimated standard errors in the Gaussian
model.

The multivariate t MLEs for the orthodontic growth model with unknown degrees-of-freedom
were obtained using the three EM algorithms described in Section 4: the ECME algorithm of
Section 4.2.2, its PX-EM version presented in Section 4.2.3, and the ECME algorithm of Section 4.3.
Stand-alone implementations of the first two algorithms, written in C, were used to obtain the
corresponding MLEs, while a modified version of the lme function in S-PLUS was used for the
third algorithm, denoted by S-PLUS-ECME. Table 1 presents the number of EM iterations and the
user time (on an SGI Challenge XL workstation running Iris 5.3) used to obtain the multivariate t
MLEs in the orthodontic growth example, for each algorithm implementation. A relative tolerance
of 10−7 for the parameter estimates was used as the convergence criterion for the three algorithms.

Table 1 about here

Because the implementations use languages with very different characteristics (compiled C and
interpreted S-PLUS), the user times in Table 1 are not directly comparable, but give a sense of the
actual performance of the algorithms in a practical setting.
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Comparing these estimates to the Gaussian MLEs in (16), we see that the estimates of the
incremental parameters (δ0 and δ1) fixed effects and the boys’ random effects covariance matrix
Ψ1(t) are considerable different. The multivariate t MLEs of δ0 and δ1 are respectively 50%
smaller and 20% larger than the corresponding Gaussian MLEs. The boys’ random effects variances
multivariate t MLEs are 50% larger than the Gaussian MLEs. The MLEs of the girls’ parameters
are essentially unchanged. Using

t
(
µ,σ2, ν

) ν→∞−→ N (µ,σ2
)
, (18)

it is clear that the estimated degrees-of-freedom λ̂2 indicate that a Gaussian model is adequate
for the girls’ orthodontic growth. The multivariate t linear mixed-effects model (4) can be easily
modified into a hybrid model in which some of the subjects have a multivariate t-distribution, while
others follow a Gaussian distribution (by setting τi = 1 for these subjects).

To better understand the differences between the MLEs under the Gaussian and the multi-
variate t models, we consider the approximate distributions of the fixed effects estimators (cor-
responding to the asymptotic distributions evaluated at the MLEs) for each model, presented in
Figure 4.

Figure 4 about here

The incremental parameters δ0 and δ1 have estimates closer to zero in the multivariate t model
and the slope for the girls β1 appears to be overestimated under the Gaussian model. The estimated
variability for the MLEs is smaller in the multivariate t fit (the 95% confidence intervals are between
12 and 16% smaller than in the Gaussian model), suggesting that the parameters are estimated
with greater precision.

Because of (18), the Gaussian linear mixed-effects model (1) can be viewed as a particular case
of the multivariate t model (4). In the orthodontic growth example, the maximum log-likelihood
for the Gaussian model is −203.021 and for the multivariate t model the maximum log-likelihood
is −184.555, corresponding to likelihood ratio statistic of 36.932 (p-value of 10−8). This indicates
that the multivariate t model fits the data substantially better than the Gaussian model.

The estimated average distances δ2
i , δ

2
bi
, and δ2

ei , defined in (14), provide useful diagnostic statis-
tics for identifying subjects with outlying observations. Note that, under the Gaussian model (1),
E (δbi) = E

(
b′iΨ

−1bi
)

= q, E (δεi) = E
[
(yi −Xiβ −Zibi)

′Λ−1
i (yi −Xiβ −Zibi)

]
= ni, and

E
[
δ2
i (β,Ψ,ρ)

]
= ni. Therefore, δ̂2

i /ni, δ̂
2
bi
/q, and δ̂2

εi/ni are expected to be close to 1 under the
Gaussian model, and can be used as diagnostics statistics for identifying subjects with outliers
(under this Gaussian model). Figure 5 presents these diagnostic statistics for the boys (because of
the large value of λ̂2, the girls’ estimated weights τ̂i are all essentially equal to 1). Subjects M09 and
M13 present large values of δ̂2

i and δ̂2
ei , suggesting outlying observations at the within-subject level.

This is consistent with the preliminary plot of the data, included in Figure 1, which suggests that
both subjects have unusual growth patterns. The δ̂2

bi
plot gives some indication that subject M10
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is possibly a b-outlier, which can not be concluded from Figure 3. Inspection of Figure 1 reveals
that this subject has an unusually high orthodontic distance at the time of the first measurement.

Figure 5 about here

5.1.1 Influence of a single outlier

The robustness of the multivariate t MLEs with respect to the Gaussian MLEs can also be assessed
through the influence of a single outlying observation (corresponding to a single e-outlier) on
the estimated parameters. To simplify, we consider only the model for the girls, which can be
represented as

yij = β0 + β1tj + b0i + b1itj + eij , i = 1, . . . , 11 j = 1, . . . , 4

with bi
ind∼N (0,Ψ) and eij

ind∼N
(
0, σ2

)
in the Gaussian model and bi|τi

ind∼N
(
0, τ−1

i Ψ
)
,

eij |τi
ind∼ N

(
0, τ−1

i σ2
g(i)

)
, and τi

ind∼ Γ (λ/2, λ/2) in the multivariate t model.
We consider the influence of a change of ∆ units in a single measurement on the estimated

parameters. That is, we replace a single data point yij by the contaminated value yij (∆) = yij+∆,

re-estimate the parameters, and record the relative change in the estimates
(
θ̂ (∆)− θ̂

)
/θ̂, where

θ̂ denotes the original estimate and θ̂ (∆) the estimate for the contaminated data. In this example,
we contaminated a typical value, the fourth observation (age = 14 years) on subject F01, and varied
∆ between -20mm and 20mm by increments of 2mm. The Gaussian and the multivariate t fits were
identical for the uncontaminated data in this case. Because Ψ and σ2 have different interpretations
under the Gaussian model (1) and the multivariate t model (4), and even within the multivariate t
model for different degrees-of-freedom, we concentrate here on the estimation of the fixed effects β,
which have the same interpretation under both models and for different degrees-of-freedom within
the multivariate t model. We study the influence of the single outlier yij (∆) on the estimation of
β̂ and of its estimated covariance matrix V

β̂
.

Figure 6 presents the percent change curves for β̂ and the upper-triangular elements of V
β̂

for
different values of ∆.

Figure 6 about here

The influence of the single outlier is unbounded in the case of the Gaussian model, but clearly
bounded in the multivariate t model. In the Gaussian model, the outlying observation has con-
siderable more impact on the estimates of V

β̂
(changes between -2000% and 1800%), than on the

fixed effects β̂ (changes up to ±60%). This has a direct impact on inferences drawn from the fit:
confidence intervals increase unboundedly and test statistics go to zero. In the multivariate t fit,
the influence of the single outlier for the fixed effects estimates remains bounded between -10% and
6% and for the estimates of V

β̂
it remains between -107% and 86%.
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For closer contamination values (|∆| ≤ 2), the multivariate t fit and the Gaussian fit are essen-
tially identical and therefore have the same influence curves. This occurs because the contaminated
observation is not distant enough from the typical data to be identified as an outlier, resulting in
λ̂ =∞. Therefore, the two estimation methods will have about the same efficiency for no or close
contamination cases.

5.2 Comparing the MLEs under different outlier patterns

To compare the performance of the maximum likelihood estimators under the Gaussian model (1)
and the multivariate t model (4), we conducted a simulation study involving different patterns of
b- and e-outliers.

The linear mixed-effects model used to simulate the data is

yi = X (β + bi) + ei, i = 1, . . . , 27, X =


1 8
1 10
1 12
1 14

 , (19)

with the following mixture of normals models being used to contaminate the distributions of the
bi and the ei.

bi
ind∼ (1− pb) · N (0,Ψ) + pbf · N (0,Ψ) , (20)

eij
ind∼ (1− pe) · N

(
0, σ2

)
+ pef · N

(
0, σ2

)
, i = 1, . . . , 27, j = 1, . . . , 4,

where pb and pe denote, respectively, the expected percentage of b- and e-outliers in the data and
f denotes the contamination factor. This model is a simplified version of the orthodontic growth
model (2), with no gender differences. The parameters in the uncontaminated distributions are
similar to the MLEs (17). It follows from (20) that var (bi) =

[
1 +

(
f2 − 1

)
pb
]
Ψ and var (eij) =[

1 +
(
f2 − 1

)
pe
]
σ2.

All thirty-two combinations of pb, pe = 0, 0.05, 0.1, 0.25, and f = 2, 4 were used in the simu-
lation study. The f = 2 case corresponds to a close contamination pattern, while f = 4 illustrates
a more distant contamination pattern. A total of 500 Monte Carlo replications were obtained for
each (pb, pe, f) combination.

An S-PLUS implementation of the ECME algorithm of Section 4.3 was used to obtain the multi-
variate t MLEs at each replication. For the Gaussian MLEs, the lme function in S-PLUS (MathSoft,
1997) was used. To enhance the comparability of the results, the same data set was used to obtain
the multivariate t estimates and the Gaussian estimates, at each replication. The degrees-of-freedom
for the multivariate t-distribution were assumed unknown, being estimated in the ECME algorithm.

As mentioned in Section 5.1, Ψ and σ2 have different interpretations under the Gaussian
model (1) and the multivariate t model (4) and their corresponding MLEs under the two models
cannot be directly compared. As before, we concentrate on the estimation of the fixed effects β,
which have the same interpretation under both models.
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For the simulation model (19), under estimation method E, the approximate covariance matrix
V
β̂

of the fixed effects estimates has the form

V
β̂

=
[
σ̂2
E

(
X ′X

)−1 + Ψ̂E

]
/m.

Under the Gaussian model, σ̂2
G = σ̂2 and Ψ̂G = Ψ̂, while under the multivariate t model σ̂2

T =
m [
∑m

i=1 (ν̂i + ni) / (ν̂i + ni + 2)]−1 σ̂2 and Ψ̂T = m [
∑m

i=1 (ν̂i + ni) / (ν̂i + ni + 2)]−1 Ψ̂, with θ̂ de-
noting the MLE of θ under the appropriate estimation method. For the purpose of the simulation
study, robustness is determined by how close the estimated values are to the parameters of the
uncontaminated distribution. The asymptotic covariance matrix for the MLE of β based on the
uncontaminated data only is

[
σ2 (X ′X)−1 + Ψ

]
/m. Therefore, we define σ2 as the target value

for σ̂2
G and σ̂2

T σ
2 and Ψ as the target value for Ψ̂G and Ψ̂T . These estimators can then be used to

compare the performance of the two estimation methods with respect to the variance-covariance
components Ψ and σ2.

The following parameters, with respective target values, are used in the comparison of the two
estimation methods:

β0 = 17, β1 = 0.8, Ψ11 = 4, Ψ22 = 0.0225, Ψ12 = 0, and σ2 = 1.

For the Gaussian model, the MLEs are considered and for the multivariate t model the MLEs of
the fixed effects and the modified estimators Ψ̂T and σ̂2

T of the variance-covariance components are
considered.

Let θ denote a parameter of interest, with target value θ0 6= 0, estimated by θ̂. The efficiency
of the Gaussian estimator θ̂G relative to the multivariate t estimator θ̂T is defined as the ratio of the

respective mean square errors, E
(
θ̂G − θ0

)2
/E
(
θ̂T − θ0

)2
. Expectations are taken with respect

to the simulation distribution, that is, E
(
θ̂ − θ0

)2
=
∑500

i=1

(
θ̂i − θo

)2
/500.

Figures 7 and 8 present the relative efficiency of the multivariate t estimators with respect
to the Gaussian estimators. There are substantial gains in efficiency for all parameters under the
more distant contamination patterns (f = 4) and moderate gains under the close contamination
patterns (f = 2). The efficiency gains are bigger for the variance-covariance components than for
the fixed effects. The two methods have about the same efficiency under the no-contamination case.
For the close contamination patterns (Figure 7), the efficiency increases with the percentage of b−
and e−outliers (except for the Ψ11 parameter, for which there is a slight efficiency decrease when
the percentage of e−outliers increases from 10% to 25%). In the case of distant contamination
(Figure 8, the efficiency shows a non-monotone behavior with respect to the percentage of b− and
e−outliers. This pattern suggests that the multivariate t model is more robust than the Gaussian
model especially for moderate percentages (5-10%) of outliers.

Figures 7 and 8 about here
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The simulation results for the mean square error (not shown here) indicate that outliers affect
the variance-covariance components estimates more than they affect the fixed effects estimates.
The precision of the estimator of σ2 seems to be affected only by the percentage of e−outliers,
while the fixed effects and random effects variance-covariance components estimators are affected
by both types of outliers.

The MLEs of the fixed effects are nearly unbiased (relative bias ≤ 0.7%) for both estimation
methods under all contamination patterns. The bias for the variance-covariance components follows
the same basic pattern as the mean square error: it increases with the percentage of e−outliers, is
insensitive to the percentage of b−outliers for σ2, and increases in absolute value with the percentage
of both types of outliers for the random effects variance-covariance components.

The coverage probabilities of the approximate 95% confidence intervals for the fixed effects,
not included here, are generally close to the nominal level for both estimation methods, with
the smallest coverage probability 90.4% and the largest 97%. The coverage probabilities tend to
increase with the percentage of outliers, because the fixed effects estimators remain unbiased and
the confidence intervals get larger. The average length of the 95% confidence intervals is about the
same under Gaussian and multivariate t estimation for the close contamination patterns, but 10%
to 25% larger in the Gaussian model for the more distant contamination patterns.

6 Conclusion

This article describes a robust version of the linear mixed-effects model of Laird and Ware (1982) in
which the Gaussian distributions for the random effects and the within-subject errors are replaced
by multivariate t-distributions. Analysis of examples and simulation results indicate that the mul-
tivariate t linear mixed-effects model substantially outperforms the Gaussian model when outliers
are present in the data, even in moderate amounts. Gains in efficiency for the multivariate t MLEs
relative to the Gaussian MLEs, under outlier contamination, are observed for all parameters, being
particularly high in the estimation of variance-covariance components, ranging from 20%–30% in
the case of close contamination (two standard deviations) to 200%–400% in the case of distant con-
tamination (four standard deviations). This has a direct impact on confidence intervals and test
statistics obtained from the fit, which determine all inferences drawn from the estimated model.
The influence function is bounded for the multivariate t model and unbounded for the Gaussian
model. The multivariate t model also provides diagnostics tools for graphically identifying subjects
with outlying observations.

We describe EM-type algorithms for efficient maximum likelihood estimation under two missing
data structures: with both the random effects and the individual weights treated as missing and
with only the individual weights treated as missing. The former leads to algorithms with closed
form expressions for both the E- and the M-step, but imposes some restrictions on the correlation
structure of the within-subject errors. The algorithm corresponding to the latter missing data
structure, which allows general correlation structures for the within subject errors, involves a more
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computationally intensive M-step, but can be implemented using existing, reliable software.
The robust estimation approach described in this article can also be extended to nonlinear

mixed-effects models (Lindstrom and Bates, 1990). The computations become considerably more
complex, but algorithms based on linear approximations to the marginal distribution of the yi can,
in principle, be used in conjunction with the methods described here.
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Table 1: Number of iterations and user time to obtain the multivariate t maximum likelihood
estimates in the orthodontic growth model.

Algorithm Iterations Time (sec)
ECME for missing bi and τi 268 3.01

PX-EM 134 2.51
S-PLUS-ECME for missing τi 16 78.16



20

25

30

M11

8 10 12 14

M16 M08

8 10 12 14

M05 M14

8 10 12 14

M02 M07

8 10 12 14

M03

M04 M12 M06 M13 M15 M01 M09

20

25

30

M10

20

25

30

F10 F09 F06 F01 F05 F08 F07 F02

F03 F04

8 10 12 14

20

25

30

F11

Age (years)
�

D
is

ta
nc

e 
fr

om
 p

itu
ita

ry
 to

 p
te

ry
go

m
ax

ill
ar

y 
fis

su
re

 (
m

m
)

Figure 1: Orthodontic growth patterns in 16 boys(M) and 11 girls(F) between 8 and 14 years of
age. Lines represent the individual least squares fits of the simple linear regression model.
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Figure 2: Residuals versus fitted values plots by gender, corresponding to individual least squares
fits of the orthodontic growth data.
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Figure 3: Normal plots of estimated coefficients corresponding to individual least squares fits of
the orthodontic growth data.
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Figure 4: Approximate densities of the fixed effects MLEs in the orthodontic growth model (2)
under Gaussian and multivariate t estimation.
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Figure 5: Estimated δ2
i (Total), δbi (R.E.), and δei (Error) for boys in the multivariate t fit of the

orthodontic distance data.
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Figure 6: Percent change in maximum likelihood estimates under the Gaussian and multivariate t
models for different contaminations ∆ of a single observation.
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Figure 7: Relative efficiencies of the multivariate t MLEs with respect to the Gaussian MLEs under
close outlier contamination patterns.
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Figure 8: Relative efficiencies of the multivariate t MLEs with respect to the Gaussian MLEs under
distant outlier contamination patterns.


