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Abstract

A multilevel mixed-effects model has random effects at each of several nested
levels of grouping of the observed responses. We may use these, for example, when
modelling observations taken over time on students who are grouped into classes
that are grouped into schools that are grouped into districts. If each of the distri-
butions of the random effects is Gaussian and if the disturbance term at the lowest
level of grouping is also Gaussian it is straightforward to define a likelihood for
the fixed effects and the parameters defining the random effects distribution. We
show that by expressing the random effects distribution in terms of relative preci-
sion factors and using matrix decompositions, this likelihood can be profiled and
can be compactly expressed. The same decompositions provide rapid evaluation
of the profiled log-restricted-likelihood for REML estimation.

The conditional distribution of the random effects given the data can be derived
from the decomposed matrices. From this a compact and rapidly evaluated expres-
sion for the EM iterations can be derived. Reasonable starting estimates for the
relative precision factors can be derived from the design alone. These starting es-
timates, refined by a moderate number of EM iterations, provide excellent starting
values for a Newton-Raphson or quasi-Newton optimization of the log-likelihood
or the log-restricted-likelihood. The methods we describe extend easily to models
with non-spherical distributions for the within-group errors and to nonlinear mul-
tilevel models.

Key words and phrases:mixed-effects models, EM algorithm, maximum likeli-
hood, restricted maximum likelihood

1 Introduction

We consider computational methods for Gaussian multilevel mixed-effects models as
described, for example, in Longford (1993) or Goldstein (1995). These models are used
with data where the individual observations are grouped at one or more hierarchical lev-
els. For example, we may wish to model observations on students who are grouped into
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classes that are grouped into schools that are grouped into school districts. If, at each
level in the grouping hierarchy, the experimental units that are observed constitute a
sample from the population about which we wish to make inferences, we model the ef-
fect of each unit at each level as a random effect. A model including random effects for
the individual units as well as overall fixed effects is called a mixed-effects model.

Our computational methods are suitable for maximum likelihood or maximum re-
stricted likelihood estimation of the parameters in linear mixed-effectsmodels with Gaus-
sian distributions for the random effects at each level. These techniques can also form
the basis for parameter estimation methods for general linear mixed-effects models or
for nonlinear mixed-effects models.

1.1 Description of the model

For a single level of grouping, the linear mixed-effects model described by Laird and
Ware (1982) expresses theni-dimensional response vectoryi for theith unit as

yi =Xi� +Zibi + �i; i = 1; : : : ;M (1)

bi � N (0;�); �i � N (0; �2I)

where� is thep-dimensional vector offixed effects, bi is theq-dimensional vector of
random effects, Xi (of sizeni � p) andZi (of sizeni � q) are known fixed-effects
and random-effects regressor matrices, and�i is theni-dimensionalwithin-group error
vector with a spherical Gaussian distribution. The assumptionVar(�i) = �2I can be
relaxed as shown inx5.1.

The random effects for theith unit,bi, are also assumed to have a Gaussian distri-
bution but with a general positive-definite variance-covariance matrix�.

In some of the multilevel modelling literature, notably in Goldstein (1995), the model
(1) is called a “two-level model” because there are two levels of random variation:bi
and�i. In other references this model would be described as having one level of ran-
dom effects in the model. We will adopt the latter convention and count the “levels” in
a multilevel model as the number of levels of nested random effects.

In a multilevel model with two levels of random effects thenij-dimensional vector
of responses for thejth level-2 unit nested within theith level-1 unit is written

yij =X ij� +Zi;jbi +Zijbij + �ij i = 1; : : : ;M j = 1; : : : ;Mi (2)

bi � N (0;�1); bij � N (0;�2); �ij � N (0; �2I)

The regressor matricesXij (of sizenij � p), Zi;j (of sizenij � q1) andZij (of size
nij�q2) correspond to the fixed effects� and the first- and second-level random effects
bi andbij .

Extensions to an arbitrary number of levels of random effects follow the same gen-
eral pattern. For example, with three levels of random effects the response for thekth
level-3 unit within thejth level-2 unit within theith level-1 unit will be written

yijk =Xijk� +Zi;jkbi +Zij;kbij +Zijkbijk + �ijk

i = 1; : : : ;M j = 1; : : : ;Mi k = 1; : : : ;Mij

bi � N (0;�1); bij � N (0;�2); bijk � N (0;�3); �ijk � N (0; �2I)
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Note that the distinction between, say, thekth horizontal section of the regressor matrix
for the level-2 random effectbij , writtenZij;k , and thejkth horizontal section of the
regressor matrix for the level-1 random effectbi, writtenZi;jk , is the position of the
comma in the subscripts.

1.2 The variance-covariance of the random effects

In a model withQ nested levels of random effects, the variance-covariance matrices
�q; q = 1; : : : ; Q of the random effects must be symmetric and at least positive semi-
definite. We consider only positive definite�q because any indefiniteness can be re-
moved by re-expressing the model in terms of a random-effects vector of lower dimen-
sion.

Within the set of positive-definite�q we may impose further constraints such as
requiring that�q be diagonal or that it be a multiple of the identity or that it have a
particular structure such as compound symmetry.

Whatever structure we assume for�q we will always express�q as a function of
an unconstrained parameter vector�q as described in Pinheiro and Bates (1996). By
doing this we can ensure that the optimization of the likelihood can be expressed as an
unconstrained optimization.

We extend the techniques of Pinheiro and Bates (1996) by expressing the conversion
from �q to�q is two stages. First, we write

�q = �2Dq

where�2 is the variance of the components of�i. The matrixDq is thus a relative
or scaled variance-covariance matrix for the random effects. This re-expression of�q

does not change the form of the model but, as shown inx2, it does provide a more con-
venient expression of the likelihood or restricted likelihood for the model.

The next stage is to use a “square-root” factor of the relative precision matrixD�1
q .

This relative precision factor,�q, is any matrix such that

D�1
q =�0

q�q

Such a�q always exists but does not have to be unique. We could, for example, use
the Cholesky factor (Thisted, 1988,x3.3) ofD�1

q or the transpose of the inverse of the
Cholesky factor ofDq .

The parameter vector�q defines�q through some unconstrained parameterization
from whichDq and�q are subsequently defined. Especially in deriving the EM itera-
tions (x3.4) we can work with�q directly so the parameterization used is not an issue.
When we do need to work in terms of�q one of the parameterizations considered in
Pinheiro and Bates (1996) could be used to define�q from �q.

1.3 An example: variability in IC manufacturing

To illustrate the multilevel model described in this section and the methodology pre-
sented in the following sections, we present an example from integrated circuit (IC)
manufacturing.
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Figure 1: Current versus voltage curves for each of 67 sites within 10 wafers. Each
panel presents data for the wafer whose number is given above the panel. The panels
are ordered starting from the lower left by increasing maximum current intensity. There
are 67 lines, one for each site, on each panel.

In an experiment conducted at the Microelectronics Division of Lucent Technolo-
gies to study different sources of variability in the manufacturing of analog MOS cir-
cuits, the intensity of current (in milli-Amperes) at 0.8, 1.2, 1.6, 2.0, and 2.4 Volts was
measured on 80�m�0.6�mn-channeldevices. Measurements were made on 10 wafers,
each subdivided into 67 sites containing one device. The data are presented on Figure 1,
where each panel represents a different wafer and each curve on a panel represents a dif-
ferent site.

Two levels of nesting are present in these data:wafer andsite within wafer. The
main objective of the experiment was to construct an empirical model for simulating
the behavior of similar circuits.

In Figure 1 it appears that current could be modelled as a quadratic function of volt-
age. Preliminary analyses indicate that random effects are needed to account for the
wafer-to-wafer variability of the intercept and the linear terms as well as for the site-
to-site variability of the intercept. The corresponding multilevel model for the intensi-
ties of current in thejth site within theith wafer is expressed, fori = 1; : : : ; 10 and
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j = 1; : : : ; 67; as266664
yij1
yij2
yij3
yij4
yij5

377775
| {z }
yij

=

266664
1 0:8 0:82

1 1:2 1:22

1 1:6 1:62

1 2:0 2:02

1 2:4 2:42

377775
| {z }

Xij

24�0�1
�2

35
| {z }
�

+

266664
1 0:8
1 1:2
1 1:6
1 2:0
1 2:4

377775
| {z }

Zi;j

�
bi1
bi2

�
| {z }
bi

+

266664
1
1
1
1
1

377775
|{z}
Zij

�
bij1
�| {z }

bij

+

266664
�ij1
�ij2
�ij3
�ij4
�ij5

377775
| {z }
�ij�

bi1
bi2

�
� N

��
0
0

�
;

�
�111 �112

�112 �122

��
; bij1 � N (0;�2); �ijk � N (0; �2)

In this exampleQ = 2;M = 10;Mi = 67; nij = 5; q1 = 2; q2 = 1; �1 is of dimension
3, and�2 is of dimension 1.

2 Expressing the likelihood

2.1 Single level of random effects

The likelihood function for model (1) can be written

L(�;�; �2jy) =
MY
i=1

p(yij�;�; �2)

=

MY
i=1

Z
p(yijbi;�; �2) p(bij�; �2) dbi

=

MY
i=1

1p
(2��2)

ni jDj �Z
exp

�
�1
2�2

�kyi �X i� �Zibik2 + b0iD
�1bi

��
(2��2)

q=2
dbi (3)

The expressionkyi �X i� � Zibik2 + b0iD
�1bi in the exponent within the integral

has the form of a penalized residual sum-of-squares. The termkyi�Xi��Zibik2 is
exactly the residual sum of squares for theith unit, and the additional term,b0iD

�1bi,
can be viewed as a “penalty” that inhibits the size of the random-effectsvectorbi. Using
a relative precision factor�we can write the penalty term in the form of a residual sum-
of-squares as

b0iD
�1bi = k�bik2 = k0� 0� ��bik2

This re-expression of the penalty is sometimes called a “pseudo-data” representation
because it is equivalent to augmenting the observations and the regressor matrices with
q new rows that look like additional observations. Writing

~yi =

�
yi
0

�
~Xi =

�
Xi

0

�
~Zi =

�
Zi

�

�
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the expression in the exponent becomes

kyi �Xi� �Zibik2 + b0iD
�1bi = kyi �Xi� �Zibik2 + k0� 0� ��bik2

= k~yi � ~Xi� � ~Zibik2

Having made the exponent expression look like a residual sum-of-squares we can
employ standard numerical techniques for least squares problems. If we form the orthogonal-
triangular decomposition (Thisted, 1988,x3.1)

~Zi = Q(i)

�
R11(i)

0

�
whereQ(i) is a(ni+ q)� (ni+ q) orthogonal matrix andR11(i) is an upper-triangular
q � q matrix, then the properties of orthogonal matrices ensure that


~yi � ~Xi� � ~Zibi




2 = 


Q0
(i)

�
~yi � ~Xi� � ~Zibi

�


2
=


c1(i) �R10(i)� �R11(i)bi



2 + 

c0(i) �R00(i)�


2

where theq�pmatrixR10(i), theni�pmatrixR00(i), theq-vectorc1(i) andni-vector
c0(i) are defined by�

R10(i)

R00(i)

�
= Q0

(i)
~Xi and

�
c1(i)
c0(i)

�
= Q0

(i)~yi

Furthermore, if� is positive definite, as we require, then� is non-singular and hence
R11(i) is also non-singular.

Another way of thinking of this decomposition is as the orthogonal-triangular (QR)
decomposition of an augmented matrix�

Zi X i yi
� 0 0

�
= Q(i)

�
R11(i) R10(i) c1(i)
0 R00(i) c0(i)

�
(4)

where the reduction to triangular form is halted after the firstq columns. (The peculiar
numbering scheme for the submatrices and subvectors is designed to allow easy exten-
sion to more than one level of random effects as seen inx2.4 andx2.5.)

The calculation of the decomposition in (4) is straightforward, efficient, and numer-
ically stable. Standard software such as Linpack (Dongarra, Bunch, Moler and Stew-
art, 1979) or LAPACK (Anderson, Bai, Bischoff, Demmel, Dongarra, DuCroz, Green-
baum, Hammarling, McKenney, Ostrouchov and Sorensen, 1994) can be used.

Returning to the integral in (3) we can now remove a constant factor and reduce it
to Z

exp
�
�1
2�2

�kyi �Xi� �Zibik2 + b0iD
�1bi

��
(2��2)

q=2
dbi

= exp

�kc0(i) �R00(i)�k2
�2�2

�Z
exp

�
�1
2�2

�kc1(i) �R10(i)� �R11(i)bik2
��

(2��2)
q=2

dbi

(5)
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BecauseR11(i) is non-singular we can perform a change of variable to�i = (c1(i) �
R10(i)� �R11(i)bi)=� with the differentiald�i = ��q abs jR11(i)j dbi and write the
integral asZ

exp
�
�1
2�2

�kc1(i) �R10(i)� �R11(i)bik2
��

(2��2)
q=2

dbi

=
1

abs jR11(i)j
Z

exp
��k�ik2=2�
(2�)

q=2
d�i

= abs jR11(i)j�1
(6)

Since, by construction,R11(i) is upper-triangular, its determinant is simply the product
of its diagonal elements.

Substituting (6) into (5) into (3) provides the likelihood as

L(�;D; �2jy) =
MY
i=1

exp
�
kc0(i)�R00(i)�k

2

�2�2

�
p
(2��2)ni jDj abs jR11(i)j�1

which is now in the form of a regression model for the fixed effects�. Forming another
orthogonal-triangular decomposition264R00(1) c0(1)

...
...

R00(M) c0(M)

375 = Q0

�
R00 c0
0 c�1

�
(7)

and noting that1=
pjDj = abs j�j reduces this to

L(�;�; �2jy)

=
�
2��2

��N=2
exp

�kc�1k2 + kc0 �R00�k2
�2�2

� MY
i=1

abs

� j�j
jR11(i)j

�
(8)

whereN =
PM

i=1 ni is the total number of observations.

2.2 The profiled log-likelihood for �

With the likelihood expressed as (8) we can derive explicit expressions for the optimal
values of� and�2 conditional on a value of�. We assumeR00 is non-singular, in
which case the optimal value of� satisfies

R00
b�(�) = c0 (9)

Substituting this value in (8) and taking the logarithm provides the profiled log-likelihood

`(�; �2jy) = logL(b�(�);�; �2jy)
= �N log(2��2)

2
+
kc�1k2
�2�2 +

MX
i=1

log abs

� j�j
jR11(i)j

�

7



which is maximized with respect to�2 byc�2(�) = kc�1k2=N
We can now write the profiled log-likelihood as a function of� alone as

`(�jy) = logL(b�(�);�;c�2(�)jy)
= const �N log kc�1k+

MX
i=1

log abs

� j�j
jR11(i)j

� (10)

2.3 Restricted log-likelihood as a function of� alone

Therestricted likelihood(Harville, 1976) is often preferred to the likelihoodwhen defin-
ing an estimator for�. One way of writing the restricted likelihood is

LR(�; �
2jy) =

Z
L(�;�; �2jy) d�

which reduces to

LR(�; �
2jy) = �2��2�(N�p)=2

exp

�kc�1k2
�2�2

�
abs jR00j�1

MY
i=1

abs

� j�j
jR11(i)j

�

using (8) and the same change-of-variable technique used to obtain (6).
Converting to the log-restricted-likelihood

`R(�; �
2jy) =

� N � p

2
log(2��2)� kc�1k2

2�2
� log abs jR00j+

MX
i=1

log abs

� j�j
jR11(i)j

�

provides the conditional estimatec�2R (�) = kc�1k2=(N � p) for �2 from which we
obtain the profiled log-restricted-likelihood

`R(�jy) = `R(�;
c�2R(�))

= const � (N � p) log kc�1k � log abs jR00j+
MX
i=1

log abs

� j�j
jR11(i)j

�

2.4 Two levels of random effects

The likelihood for a model with two levels of random effects is defined as in (3) but
integrating over both levels of random effects

L(�;�1;�2; �
2jy) =

MY
i=1

Z MiY
j=1

�Z
p(yij jbij ; bi;�; �2) p(bij j�2; �2) dbij

�
p(bij�1; �2) dbi (11)
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As with the single level of random effects, we can simplify the integrals in (11) if we
augment theZij matrices with�2 and form orthogonal-triangular decompositions of
these augmented arrays. This allows us to evaluate the inner integrals. To evaluate the
outer integrals we iterate this process.

That is, we first form and decompose the arrays�
Zij Zi;j Xij yij
�2 0 0 0

�
= Q(ij)

�
R22(ij) R21(ij) R20(ij) c2(ij)
0 R11(ij) R10(ij) c1(ij)

�
i = 1; : : : ;M j = 1; : : : ;Mi

(12)

The matrixR22(ij) will be an upper-triangular matrix of dimensionq2 � q2. The other
arrays in the first row of the decomposition in (12) are used only if the conditional es-
timates of� or the Best Linear Unbiased Predictors (BLUPs) (seex3.5) forbij andbi
are required. The arrays in the second row of the decomposition:R11(ij), R10ij , and
c1(ij) each havenij rows.

To evaluate the outer integral in (11) we again form and decompose an augmented
array26664
R11(i1) R10(i1) c1(i1)

...
...

...
R11(iMi) R10(iMi) c1(iMi)

�1 0 0

37775 = Q(i)

�
R11(i) R10(i) c1(i)
0 R00(i) c0(i)

�
i = 1; : : : ;M

(13)

The final decomposition to produceR00, c0 andc�1 is the same as that in (7).
Using the matrices and vectors produced in (12), (13), and (7) and following the

same steps as for the single level of nesting we can express the profiled log-likelihood
for �1 and�2 as

`(�1;�2jy) = logL(b�(�1;�2);�1;�2;c�2(�1;�2)jy)
= const �N log kc�1k+

MX
i=1

log abs

� j�1j
jR11(i)j

�

+

MX
i=1

MiX
j=1

log abs

� j�2j
jR22(ij)j

�
Similarly, the profiled log-restricted-likelihood is

`R(�1;�2jy) = logLR(b�R(�1;�2);�1;�2;c�2R(�1;�2)jy)
= const � (N � p) log kc�1k � log abs jR00j

+

MX
i=1

log abs

� j�1j
jR11(i)j

�
+

MX
i=1

MiX
j=1

log abs

� j�2j
jR22(ij)j

�
To illustrate the decomposition in (12) and the first part of the calculation of the

likelihood, we consider the data from the first site within the first wafer in the IC man-
ufacturing example fromx1.3. As described inx2.6 we use0:84 as an initial value for
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�2. The decomposition is then2666666666664

Z11z }| {
1
1
1
1
1

�2 = 0:84

Z1;1z }| {
1 0:8
1 1:2
1 1:6
1 2:0
1 2:4
0 0

X11z }| {
1 0:8 0:82

1 1:2 1:22

1 1:6 1:62

1 2:0 2:02

1 2:4 2:42

0 0 0

y11z }| {
0:92
3:91
7:69
11:80
16:00
0

3777777777775
=

Q(11)

2666666666664

R22(11)z }| {
�2:389

0
0
0
0
0| {z }
0

R21(11)z }| {
�2:093 �3:349
0:087 �0:024
0:087 0:376
0:087 0:776
0:087 1:176

�0:767 �1:029| {z }
R11(11)

R20(11)z }| {
�2:093 �3:349 �6:029
0:087 �0:024 �0:528
0:087 0:376 0:592
0:087 0:776 2:032
0:087 1:176 3:792

�0:767 �1:029 �1:653| {z }
R10(11)

c211z }| {
�16:880
�1:343
2:437
6:547
10:747
�4:412| {z }
c1(11)

3777777777775
The direct contribution to the log-likelihood from this first site within the first wafer is

log abs

� j�2j
jR22(11)j

�
= log (0:84=2:389) = �1:045

Since this was a balanced experiment where each wafer has the same number of sites
and each site is measured at the same set of voltages, this contribution will be the same
for each of the second level groups. The total direct contribution will be

10X
i=1

67X
j=1

log (0:84=2:389) = �700:2

There will also be an indirect contribution from each site within each wafer according
to the way they together determinekc�1k for a given value of�2.

2.5 Three or more levels of random effects

For every level of random effects added to the hierarchical model we simply extend
the number of stages in the decompositions of the augmentedZ andX matrices. For
example, with three levels of random effects the decompositions begin with�

Zijk Zij;k Zi;jk Xijk yijk
�3 0 0 0 0

�
=

Q(ijk)

�
R33(ijk) R32(ijk) R31(ijk) R30(ijk) c3(ijk)
0 R22(ijk) R21(ijk) R20(ijk) c2(ijk)

� i = 1; : : : ;M
j = 1; : : : ;Mi

k = 1; : : : ;Mij
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to evaluate the integral associated with the third level of random effects. The next set
of decompositions are26664

R22(ij1) R21(ij1) R20(ij1) c2(ij1)
...

...
...

...
R22(ijMij ) R21(ijMij ) R20(ijMij ) c2(ijMij )

�2 0 0 0

37775 =

Q(ij)

�
R22(ij) R21(ij) R20(ij) c2(ij)
0 R11(ij) R10(ij) c1(ij)

� i = 1; : : : ;M
j = 1; : : : ;Mi

k = 1; : : : ;Mij

and from there we proceed as before with (13) and (7).
The profiled log-likelihood becomes

`(�1;�2;�3jy) = logL(b�(�1;�2;�3);�1;�2;�3;c�2(�1;�2;�3)jy)
= const �N log kc�1k+

MX
i=1

log abs

� j�1j
jR11(i)j

�

+
MX
i=1

MiX
j=1

log abs

� j�2j
jR22(ij)j

�
+

MX
i=1

MiX
j=1

MijX
k=1

log abs

� j�3j
jR33(ijk)j

�
and the profiled restricted log-likelihood becomes

`R(�1;�2;�3jy) = logLR(b�R(�1;�2;�3);�1;�2;�3;c�2R(�1;�2;�3)jy)
= const � (N � p) log kc�1k � log abs jR00j+

MX
i=1

log abs

� j�1j
jR11(i)j

�

+

MX
i=1

MiX
j=1

log abs

� j�2j
jR22(ij)j

�
+

MX
i=1

MiX
j=1

MijX
k=1

log abs

� j�3j
jR33(ijk)j

�

2.6 Starting values for the� parameters

Because we can express both the profiled log-likelihood and the profiled log-restricted-
likelihood as a function of the� parameters, we only need to formulate starting values
for � when performing iterative optimization. From (10) and from the discussion of the
example inx2.4, we can see that� influences the profiled log-likelihood indirectly by
changingkc�1k2 and directly through terms of the form

log abs

� j�j
jR11(i)j

�
= �1

2
log

� jZ 0
iZi +�

0
�j

j�0
�j

�

=
� log

���I + ���1
�0
Z 0
iZi�

�1
���

2
� 0

(14)
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The size of� relative to each of theZi; i = 1; : : : ;M affects the two types of terms
in opposite ways.

As� gets larger it pulls the conditional least-squares values ofbi closer to0 thus
increasing the residual sum-of-squares termkc�1k2. Conversely when� is very small
relative to theZi it has little effect on the conditional least-squares values forbi and
kc�1k2 will be smaller. However, small values of� produce large values of the terms
(14). For example, we showed earlier that�2 = 0:84 produces

log abs

� j�2j
jR22(11)j

�
= log (0:84=2:389) = �1:045

in the IC manufacturing example. Doing the same calculations with a very small value,
say�2 = 0:0084 would produce

log abs

� j�2j
jR22(11)j

�
= log (0:0084=2:361) = �5:584

For a large value, say�2 = 84, we would get

log abs

� j�2j
jR22(11)j

�
= log (84=84:030) = �0:0003542

In the limit as� becomes very large relative to theZi, the coefficientsbi in the
penalized regression model are forced to zero and the residual sum-of-squareskc�1k2
is the same as that from a regression of all the data on the fixed effects� only. The terms
in (14) approach� log jI j=2 = 0; which is their upper bound.

The net result is that extremely large values of� or extremely small values of�
tend to produce small values of the likelihood for most data sets. The optimal values
of � will usually correspond to a� that is comparable in size to theZi. We generate
a simple starting value�(0) as a diagonal matrix where each diagonal element is some
fractionf of root-mean-square length of the corresponding column of theZi matrices.
That is, lettingZi(k) denote thekth column ofZi; the initial value for thekth diagonal

element of� is f �
�PM

i=1 kZi(k)k2=M
�1=2

. Some limited experimentation with

this formulation indicated that fractionsf between 1/4 and 1/2 worked well. We use
f = 0:375.

In some patterned variance-covariance matrices, such as the compound symmetry
matrices, a general diagonal matrix cannot be represented. For those cases we use as
a starting estimate for� the parameter values that provide the patterned matrix that is
closest to the diagonal� calculated as described above.

This procedure generalizes easily to multiple levels of random effects. As an exam-
ple, we consider the two-level model for the IC manufacturing data ofx1.3. Because
the design is balanced (i.e. all wafers have the same number of sites and the intensity
of current measurements were made at the same voltages for every site), it suffices to
calculate the column norms for, say,Z11 andZ1. Therefore, the initial estimates for

12



the precision matrices are

�
(0)
1 = 0:375

�kZ1(1)k 0
0 kZ1(2)k

�
= 0:375

�p
335 0

0
p
964:8

�
=

�
6:86 0
0 11:65

�
�

(0)
2 = 0:375kZ11k = 0:375

p
5 = 0:84

3 Conditional estimates and EM iterations

In the last section we derived a compact representation of the profiled log-likelihood
or profiled log-restricted-likelihood for the single level or nested mixed-effects model.
This representationused the relative precision factors�q ; q = 1; : : : ; Q and orthogonal-
triangular decompositions of augmented data arrays. A general nonlinear optimization
algorithm, combined with the starting estimates for the�q derived in that section, could
be used to obtain the maximum likelihood estimates,b�, or the restricted maximum like-
lihood estimates,b�R, and, through (9),b�.

Before considering details of the optimization we examine the general conditional
estimatesb�(�) and the conditional distribution of the random effectsp

�
bijyi;�;�; �2

�
more closely. We relate these conditional estimates of the fixed-effects and the condi-
tional expectations of the random effects to the parameter estimates in a penalized linear
least squares problem. This conditional distribution of the random effects can be used
to define EM iterations which are very helpful in refining starting estimates for the�.

3.1 Conditional distribution of the random effects

We can see from (5) that the conditional distribution of the random effects in a single-
level model is

p
�
bijyi;�;�; �2

� / p
�
bi;yij�;�; �2

�
/ exp

� �1
2�2



c1(i) �R10(i)� �R11(i)bi


2�

or, writing all the random effects together asb0 =
�
b01; : : : ; b

0
M

�0
,

p
�
bjy;�;�; �2� / exp

� �1
2�2

kcb �Rbb�R��k2
�

where

Rb =

26664
R11(1) 0 � � � 0

0 R11(2) � � � 0

...
...

...
...

0 0 � � � R11(M)

37775 R� =

26664
R10(i)

R10(2)
...

R10(M)

37775 cb =

26664
c1(1)
c1(2)

...
c1(M)

37775
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It then follows that

bjy � N
�
R�1
b (cb �R��) ; �

2R�1
b

�
R�1
b

�0 �
(15)

We note thatR�1
b is a block diagonal matrix with itsith diagonal block given by the

inverse of theq � q upper-triangular matrixR11(i).
From (8) we can see that the likelihood for the fixed effects� conditional on� and

�2 has a similar form

L(�jy;�; �2) / exp

��kc0 �R00�k2
2�2

�
The distribution of the conditional estimateb�(�) and the conditional distribution ofb
are the same as the distribution of the estimate of� and the conditional estimatesbj�
in a linear regression model

c = Rb� + �� �� � N (0; �2I)

where

b� =

�
b

�

�
R =

�
Rb R�

0 R00

�
c =

�
cb
c0

�
(16)

or, equivalently, the penalized linear regression model

y� =X�b� + ��� ��� � N (0; �2I)

where

y� =

26666666664

y1
0

y2
0

...
yM
0

37777777775
X� =

26666666664

Z1 0 � � � 0 X1

� 0 � � � 0 0

0 Z2 � � � 0 X2

0 � � � � 0 0

...
...

...
...

...
0 0 0 ZM XM

0 0 0 � 0

37777777775
(17)

The conditional distribution of the randomeffects generalizes to multiple levels. For
example, in a model with two levels of random effects,

p
�
bi; bi1; : : : ; biMi

jyi1; : : : ;yiMi
;�;�; �2

� /
exp

� �1
2�2

�

c1(i) �R11(i)bi �R10(i)�


2+

MiX
j=1



c2(ij) �R22(ij)bij �R21(ij)bi �R20(ij)�


21A35
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In a vector notation ofb(i)0 =
�
b0i1; : : : ; b

0
iMi

; b0i
�0

for the two-level model and writing

Rb(i) =

26664
R22(i1) � � � 0 R21(i1)

...
...

...
...

0 � � � R22(iMi) R21(iMi)

0 0 0 R11(i)

37775

R�(i) =

26664
R20(i1)

...
R20(iMi)

R10(i)

37775 cb(i) =

26664
c2(i1)

...
c2(iMi)

c1(i)

37775
we obtain

b(i)jy � N
�
R�1
b (i) (cb(i)�R�(i)�) ; �

2R�1
b (i)

�
R�1
b (i)

�0 �
(18)

The equivalence of the distribution of the conditional estimatesb�(�) and the the
conditional distribution of the random effects to the distribution of the parameter esti-
mates in a penalized linear regression model extends to multiple levels of random ef-
fects. For two levels of random effects the penalized regression model isy� =X�b�+
��� where(b�)0 = (b(1)0; b(2)0; : : : ; b(M)0;�)0 and the substitutions

�
Zi

�

�
)

2666666666664

Zi1 0 � � � 0 Zi;1

�2 0 � � � 0 0

0 Zi2 � � � 0 Zi;2

0 �2 � � � 0 0

...
...

...
...

...
0 0 0 ZiMi

Zi;Mi

0 0 0 �2 0

0 0 0 0 �1

3777777777775
�
yi
0

�
)

2666666666664

yi1
0

yi2
0

...
yiMi

0

0

3777777777775
are made in the form (17).

3.2 Conditional distributions and restricted likelihood

The expressions (15) and (18) and their generalizations to more levels of random effects
allow the EM iterations on� for the likelihood criterion to be developed, as shown in
x3.4. Similar expressions are used to develop EM iterations for the restricted likeli-
hood criterion. As described in Laird and Ware (1982) the restricted likelihood can be
regarded as the likelihood associated with model (1) but incorporating� as a random
effect, sayb0, with an associated relative variance matrixD0 that tends to infinity. We
could, for example, setD0 = kI; k !1.

The conditional distribution of this extended random effects vector for the restricted
model is simply the distribution of the estimates ofb� in the corresponding regression
models (16) or (17). That is,

b�jy � N �R�1c; �2R�1(R�1)0
�
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for a single level of random effects. This scales in the obvious way to multiple levels.
For both the original model and the restricted model the conditional distribution of

the random effects corresponds to the distribution of the parameter estimates in a pe-
nalized linear regression model. The only difference is that in the original model it cor-
responds to the distribution of the estimates ofb conditional on� and in the restricted
model it corresponds to the marginal distribution of the estimates ofb.

3.3 Using matrix sparsity

We have expressed the conditional distributions of the random effects in terms of the
inverses of the upper triangular matricesR andRb. These are large matrices but they
are also patterned and sparse. We can take advantage of the patterns when forming the
inverses and when doing further calculations.

For a single level of random effects we need only store2666664
R11(1) R10(1) c1(1)
R11(2) R10(2) c1(2)

...
...

...
R11(M) R10(M) c1(M)

0 R00 c0

3777775 (19)

In calculatingR�1 we can take advantage of the fact that the pattern of zeroes inR is
repeated in

R�1 =

26666664
R�1

11(1) 0 � � � 0 �R�1
11(1)R10(1)R

�1
00

0 R�1
11(2) � � � 0 �R�1

11(2)R10(2)R
�1
00

...
...

...
...

...
0 0 � � � R�1

11(M) �R�1
11(M)R10(M)R

�1
00

0 0 0 0 R�1
00

37777775 (20)

and perform the operations in place on an array stored as in (19). That is, there is no
need to expand the arrayR out to its full size when calculating its inverse. We also
note that each of the components such asR00 andR11(i); i = 1; : : : ;M that must be
inverted to form (20) is a relatively small, triangular, non-singular matrix whose inverse
is readily calculated.

One advantage of storing the intermediate results in this form is that the expressions
for the conditional estimatesb�(�) andbbi(�) = E[bijy] evaluated atb�(�) have the form

R00
b�(�) = c0

R11(i)
bbi(�) = c1(i) �R10(i)

b�(�)
R22(ij)

bbij(�) = c2(ij) �R20(ij)
b�(�)�R21(ij)

bbi(�)
: : :

i = 1; : : : ;M

j = 1; : : : ;Mi

: : :

Onceb�(�) has been calculated, the evaluation ofc1(i) � R10(i)
b�(�); i = 1; : : : ;M

can be performed as a single matrix multiplication. The structure corresponding to (19)
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for two levels of random effects has the form2666666666666664

R22(11) R21(11) R20(11) c2(11)
...

...
...

...
R22(1M1) R21(1M1) R20(1M1) c2(1M1)

0 R11(1) R10(1) c1(1)
R22(21) R21(21) R20(21) c2(21)

...
...

...
...

R22(MMM ) R21(MMM ) R20(MMM ) c2(MMM )

0 R11(M) R10(M) c1(M)

0 0 R00 c0

3777777777777775
(21)

Again, this form facilitates calculation of expressions such asc1(i) �R10(i)
b�(�) and

c2(ij) �R21(i)
bbi(�)�R20(ij)

b�(�).
The corresponding block inR�1 is26666664

R�1
22(i1) 0 � � � 0 �R�1

22(i1)R21(i1)R
�1
i1(1)

0 R�1
22(i2) � � � 0 �R�1

22(12)R21(12)R
�1
11(1)

...
...

...
...

...
0 0 � � � R�1

22(iMi)
�R�1

22(iMi)
R21(iMi)R

�1
11(i)

0 0 0 0 R�1
11(i)

37777775 (22)

We can see that the pattern of (20) is repeated here. As before, the block does not need
to be expanded to its full size to calculate the components of the inverse—the condensed
array of the form (21) can be manipulated in place.

3.4 EM iterations

Optimization of the profiled log-likelihood or restricted log-likelihood is usually ac-
complished through EM iterations or through Newton-Raphson iterations (Laird and
Ware, 1982; Lindstrom and Bates, 1988; Longford, 1993). The EM iterations have the
advantage that the individual iterations are easy to compute and the initial iterations ap-
proach the optimum quite quickly. However, close to the optimum the EM iterations
often proceed very slowly. It can be difficult to decide if the EM iterations have con-
verged when they end up taking an exceedingly large number of very small steps toward
the optimum. Also, taking so many iterations is itself expensive even if each iteration
is relatively simple and fast.

The Newton-Raphson iterations, on the other hand, are individually more computa-
tionally intensive than the EM iterations and they can be quite unstable when far from
the optimum. However, close to the optimum they converge very quickly.

We therefore recommend a hybrid approach of forming a initial�(0) as described in
section 2.6, performing a moderate number of EM iterations, then switching to Newton-
Raphson iterations. Essentially the EM iterations can be regardedas refining the starting
estimates before beginning the more general optimization routine.
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The EM iterations are based on regarding the random effects, such as thebi; i =
1; : : : ;M , as unobserved data. At iterationt we use the current variance-covariance
parameter vector,�(t), to evaluate the distribution ofbjy and derive the expectation of
the log-likelihood for a new value of� given this conditional distribution. Because we
are taking an expectation, this step is called the E step.

The M step consists of maximizing this expectation with respect to� to produce
�(t+1).

We can perform the expectation and maximization steps with respect to� only be-
cause we have explicit forms for the profiled likelihood as a function of�. At iterationt
we derive�(t+1) from �(t) fixing � = b�(�(t)) and�2 = c�2(�(t)). The EM algorithm
ensures that the log-likelihood will increase from�(t) to�(t+1). If we then adjust� and
�2 to the optimal values given�(t+1) we can only increase the log-likelihood further.

For a single level of random effects we can see from (3) that the likelihood for the
“full data”—both the unobservedb and the observedy—depends on� only throughjDj
and quadratic forms in(bi=�)0D

�1bi=�. To obtain the expected value for a new value
of � we use standard results on the distribution of quadratic forms plus the expressions
in (15) to derive

E[(bi=�)
0D�1

1 bi=�jy] = E[bi=�jy]0D�1
1 E[bi=�jy] + tr

�
D�1Var(bijy)

�
= k�1E[bijy]=�k2 + k

�
R�1

11(i)

�0
�

0
1k22

=







"
E[bijy]0=��
R�1

11(i)

�0 #�0
1







2

2

where the 2-norm of a matrix, writtenkAk2, is the square root of the sum of squares of
the entries in the matrix. In this expressionR11(i) is evaluated using the data and�(t)

because it is a characteristic of the conditional distribution but�1 is evaluated at the
general� over which we will be optimizing the expected likelihood given the condi-
tional distribution so as to produce�(t+1).

The sum of the contributions for the level-1 random effects can be expressed as














266666664

E[b1jy]0=��
R�1

11(1)

�0
...

E[bM jy]0=��
R�1

11(M)

�0

377777775
�

0
1
















2

2

= kA1�
0
1k22 (23)

whereU 1A1 is an orthogonal-triangular decomposition of the stacked matrix on the
left side of (23). ThusU 1 is aM(q1 + 1) � q1 matrix with orthonormal columns and
A1 is aq1 � q1 upper-triangular, non-singular matrix.

As described inx3.1, the conditional distribution ofbjy for the restricted model is
also multivariate normal with the same mean but with a different variance-covariance
matrix. For this case the non-zero blocks of the form�R�1

11(1)R10(1)R
�1
00 in theR�1

18



matrix shown in (20) must be incorporated in the calculation ofAR1. The decomposi-
tion has the form 266666666666664

E[b1jy]0=��
R�1

11(1)

�0
�
�
R�1

11(1)R10(1)R
�1
00

�0
...

E[bM jy]0=��
R�1

11(M)

�0
� �R11(M)R10(M)R

�1
00

�0

377777777777775
= UR1AR1

With two levels of random effects, the matrixA1 is calculated as in (23) and the ma-
trix A2 is calculated from a decomposition of a matrix formed from the scaled estimates
of the random effects at that level and their estimated variances calculated according to
(22). 2666666666666664

E[b11jy]0=��
R�1

22(11)

�0
�
�
R�1

22(11)R21(11)R
�1
11(1)

�0
...

E[bMMM
jy]0=��

R�1
22(MMM )

�0
�
�
R�1

22(MMM )R21(MMM )R
�1
11(M)

�0

3777777777777775
= U 2A2

In general,Aj is calculated by computing the expected values of the conditional dis-
tribution of the levelj random effects and scaling them by1=�. The non-zero blocks
in R�1

b are calculated and transposed. All those blocks corresponding to the level-j
random effects are stacked, along with the scaled expected random effects. The result-
ing matrix ofqj columns is decomposed to give the upper-triangular matrixAj . When
computingARj for iterations based on the restricted likelihood, the matrixR�1

b is re-
placed byR�1.

OnceA1 (orAR1) is available, the maximization problem to determine�
(t+1)
1 re-

duces to

max
�1

�
M log jD�1

1 j � tr(A0
1D

�1
1 A1)

	
(24)

If D1 can be a general positive-definite matrix, the maximizer of (24) producesD�1
1 =

�
0
1�1 where

�
(t+1)
1 =

�
A�1

1

�0
p
M

(25)
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Since only the factor�1 and not the corresponding� is needed in the calculation of
the next iteration, the iteration loop is complete. For two levels of random effects, the
optimization problem becomes

max
�2

( 
MX
i=1

Mi

!
log jD�1

2 j � tr(A0
2D

�1
2 A2)

)
with a solution, for general positive-definiteD2 of

�
(t+1)
2 =

�
A�1

2

�0qPM
i=1Mi

(26)

This scales in the obvious way.
The only change required to perform EM iterations for the restricted likelihood cri-

terion is to replaceAj byARj in (25) or (26) or their extended versions for more levels.

In the IC manufacturing example ofx1.3, starting with the initial estimates�(0)
1 and

�
(0)
2 given inx2.6, we obtain after 20 EM iterations

�
(20)
1 =

�
2:498 0
1:097 0:681

�
�

(20)
2 = 0:477

The maximum likelihood estimates for this example are

b�1 =

�
2:501 0
1:091 0:681

� b�2 = 0:477

indicating that the EM algorithm quickly placed the estimates of� in the neighborhood
of the MLEs.

3.5 General optimization and obtaining BLUPs

After refining the starting estimates for� with a moderate number of EM iterations, the
parameters� are usually close to their optimal values. A general unconstrained opti-
mization algorithm such as Newton-Raphson or a quasi-Newton algorithm can then be
used to produce the final parameter estimatesb�. The maximum likelihood estimates for
� can be evaluated fromR00 andc0 atb� and (7). Furthermore, the matricesR11(i) and

R10(i) and the vectorsc1(i) can be used withb� to solve forE[bijy] at the parameter es-
timates. These are called the Best Linear Unbiased Predictors or BLUPs for the random
effects.

When performing the optimization it is often helpful if the gradient of the objective
function and possibly the Hessian of the objective function can be evaluated. It may
be possible to use techniques similar to those in Golub and Pereyra (1973) or Kaufman
(1975) and in Bates (1983) to derive an expression for the gradient using the penalized
linear regression representation of the model. This will be difficult to generalize to sev-
eral levels of nested random effects. Because the profiled log-likelihood or profiled log-
restricted-likelihood can be evaluated efficiently for different values of�, we prefer to
use numerical values of the gradient and Hessian calculated through finite differences.

20



4 Computational considerations

4.1 Organizing the decompositions

Although several different matrices are being calculated and decomposed in the process
of evaluating the profiled log-likelihood for�, most of these matrices do not need to be
stored unlessb� or the BLUPs for thebi are to be calculated. In fact, the total amount of
storage required for the calculation is essentially the same as that required to represent
the original data.

The decompositions can be performed “in place” with a slightly augmented version
of the original data array or they can be performed by copying horizontal slices of the
original data array to temporarystorage, augmenting them, decomposing the result, then
copying back the pieces that are to be used later.

To demonstrate these techniques we begin with the data for a model with a single
level of random effects, organized as264Z1 X1 y1

...
...

...
ZM XM yM

375
For a given value of� we evaluate� then, for each of theM horizontal slices in the
array, form and decompose�

Zi Xi yi
� 0 0

�
= Q(i)

�
R11(i) R10(i) c1(i)
0 R00(i) c0(i)

�
exactly as in (4). The determinant ofR11(i) is calculated as the product of its diago-
nal elements and stored. After that none ofR11(i),R10(i), orc1(i) are required for the
evaluation of the log-likelihood. They are only needed if the BLUP forbi is to be cal-
culated as the solution toR11(i)E[bijy] = c1(i) �R10(i)

b�. After the decomposition,
the matrixR00(i) and the vectorc0(i) can be copied back into the storage previously
occupied byXi andyi. When we have finished doing this fori = 1; : : : ;M the last
p+ 1 columns of the original data array will be in exactly the form needed to evaluate
the decomposition (7). This providesc�1 andR00. All the information to evaluate the
profiled log-likelihood or the profiled log-restricted-likelihood is then available.

The operations of copying slices of the original data array to temporary storage then
copying some of the results back into the data array can be avoided, if desired. Begin-
ning with an augmented form of the data array as26664

Z1 X1 y1
...

...
...

ZM XM yM
� 0 0

37775
we can decompose the augmentedarray for theM th case in place and evaluateabs jR11(M)j.
The rows containingR11(M),R10(M), andc1(M) can then be overwritten with� in the
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Z columns and zeroes in theX andy columns. This results in the augmented arrays
for the(M � 1)’st case being available to be decomposed. We continue in this fashion
working from theM ’th case up to the first case. The arrays needed to calculate the de-
composition (7) are then in place in the lastp+1 columns but beginning at rowq+ 1,
not at the first row.

In our experience the cost of copying the arrays to temporary storage before de-
composing and copying some results back after decomposing is negligible compared
to the cost of decomposing the arrays. Thus we prefer to work on copies. Furthermore,
even though the “in place” calculation does not require copying the data it may at times
take longer than the “copying” calculation. This is because the memory references are
widely scattered in the memory space when decomposing a horizontal slice of a matrix
with a very large number of rows. When working with extremely large data sets that
cannot fit into the available physical memory of the computer such access patterns will
degrade the performance of virtual memory systems. In the approach based on copying
the widely scattered memory locations are only used twice; once as the source for the
copying and once as the destination of the copying. When actually doing the decompo-
sition on the copy, the memory references are more localized.

With two levels of random effects we begin with the data array in the form2666666664

Z11 Z1;1 X11 y11
...

...
...

...
Z1M1 Z1;M1 X1M1 y1M1

Z21 Z2;1 X21 y21
...

...
...

...
ZMMM

ZM;MM
XMMM

yMMM

3777777775
and decompose the augmented matrices from each horizontal slice corresponding to the
level-2 random effects while accumulatingabs jR22(ij)j; i = 1; : : : ;M; j = 1; : : : ;Mi.
The matricesZi;j , Xij , and the vectoryij are overwritten byR11(ij), R10(ij), and
c1(ij) produced in this decomposition. The modified data array is then in the form needed
to perform the decompositions for the level-1 random effects (ignoring the firstq2 columns).

4.2 Pre-decomposition of the original data array

When the number of observations per lowest-level group is large compared to the num-
ber of random effects for the group, some time can be saved by decomposing the original
data arrays and saving only the triangular parts of the decomposition. This technique
is similar to the “two-stage orthogonal factorization” described by Golub and Pereyra
(1973).

With one level of random effects the initial decomposition is similar to the reduc-
tions in (4) and (7). First we decompose

�
Zi Xi yi

�
= S(i)

�
T 11(i) T 10(i) d1(i)
0 T 00(i) d0(i)

�
i = 1; : : : ;M
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then we accumulate and decompose all theT 00(i) matrices andc0(i) vectors as264 T 00(1) d0(1)
...

...
T 00(M) d0(M)

375 = S0

24T 00 d0
0 d�1
0 0

35 (27)

whered�1 is a scalar. The decomposition (27) is the one occasion where we carry out
the orthogonal-triangular decomposition completely to reduce the matrix to triangular
form.

The information in 2666664
T 11(1) T 10(1) d1(1)

...
...

...
T 11(M) T 10(M) d1(M)

0 T 00 d0
0 0 d�1

3777775
can now be used in place of the original data arrays. The number of rows in each group
is reduced toq except for theM ’th group where we include the rows withT 00, d0, and
d�1. These rows must be included in the overall data array but could be included with
any of the groups. We include them with the last group for convenience and to emulate
the pattern in (19).

With two levels of random effects the initial decompositions are of the form�
Zij Zi;j Xij yij

�
= S(ij)

�
T 22(ij) T 21(ij) T 20(ij) d2(ij)
0 T 11(ij) T 10(ij) d1(ij)

�
i = 1; : : : ;M
j = 1; : : : ;Mi

followed by264 T 11(i1) T 10(i1) d1(i1)
...

...
...

T 11(iMi) T 10(iMi) d1(iMi)

375 = S(i)

�
T 11(i) T 10(i) d1(i)
0 T 00(i) d0(i)

�
i = 1; : : : ;M

and finally (27). The information required for later calculations is stored in the same
form as that in (21) with aR matrix replaced by the correspondingT matrix and ac
vector replaced by the correspondingd vector.

Generalization to more than two levels of random effects follows this type of pat-
tern. The similarity between the decompositions needed for the evaluation of the log-
likelihood or restricted log-likelihood and those needed for the pre-decomposition step
can be exploited when writing software. In our code we use a single function or method
for the decomposition step with an additional argument for the matrix� that should be
appended as a new set of rows before decomposing. When doing the pre-decomposition
the number of rows to be appended is set to zero. Because the information to be stored
for calculation ofb� and the BLUPs for the random effects or for the pre-decomposition
is of a similar shape, we use the same function for both storage operations.
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4.3 Parallelization

An important consideration in computational methods for modern computer systems is
determining which parts of the calculation can be performed in parallel. The structure
of the methods we have described divides neatly into separately evaluated pieces.

Within each level of random effects, the reductions and other computations related
to the different groups are distinct. Thus they can be performed in parallel. Because all
results from a given level of random effects must be available before proceeding to the
next level, the extent of possible parallelization is clearly defined.

5 Conclusions and extensions to other models

Computational methods for maximum likelihood or restricted maximum likelihood es-
timation of the parameters in a linear multilevel mixed-effects model are greatly en-
hanced by expressing the variance-covariancematrix of the random effects at each level
in terms of a square root of the inverse of the relative variance matrix. These are the ma-
trices that we have written as�q ; q = 1; : : : ; Q.

Using this formulationand taking matrix decompositions, the profiled log-likelihood
or profiled restricted log-likelihood can be compactly expressed and calculated. These
expressions also give an indication of suitable starting values for the variance-covariance
parameters.

The calculation of conditional estimates of the fixed effects or BLUPs for the ran-
dom effects is also expressed compactly using matrix decomposition techniques. Us-
ing these expressions an EM algorithm for parameter estimation can be readily derived.
The combination of starting estimates calculated from the original design matrices and a
moderate number of EM iterations usually puts the parameter values very close to the fi-
nal parameter estimates. The optimization can be finished with a few Newton-Raphson
iterations in a suitable parameterization. Again, we can take advantage of the profiling
of the log-likelihood over the values of the fixed-effects parameters.

The computational methods described in the previous sections can also be applied
to extensions of the basic Gaussian linear multilevel model ofx1. Two such extensions
will be considered in this section: Gaussian linear multilevel models withnon-spherical
distributions for the within-group errors and Gaussiannonlinearmultilevel models.

5.1 General linear multilevel model

The basic Gaussian linear multilevel model assumes that the within-group errors�i are
distributed asN �0; �2I� : In many applications, especially when longitudinal or spa-
tial data are collected, it is reasonable to allow for correlation among the within-group
errors. The assumption of equal variances for the within-group errors also is frequently
violated in practice. A more general formulation of the Gaussian multilevel model al-
lows non-spherical Gaussian distributions for the within-group error.

In the single-level linear mixed-effects model (1), the general formulation of the
model allows�i � N �0; �2�i

�
; where the scaled variance-covariance matrix�i de-

pends oni only through its dimensions and is generally parametrized by a small, fixed
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set of parameters�. We assume that the�i; i = 1; : : : ;M are positive definite.
This formulation allows both heteroscedastic (e.g. variance increasing with a power of
the expected response) and correlated (e.g. autoregressive-moving average structures)
within-grouperrors. For the general linear two-level model (2) we have�ij � N �0; �2�ij

�
and this is similarly extended for more levels of nesting.

Let�1=2
i denote a square-root factor of�i (that is,�i =

�
�
1=2
i

�0
�
1=2
i ) and define

y?i =
�
�
�1=2
i

�0
yi X?

i =
�
�
�1=2
i

�0
Xi Z?

i =
�
�
�1=2
i

�0
Zi �?i =

�
�
�1=2
i

�0
�i

It then follows from elementary properties of the multivariate normal distribution that

y?i =X?
i� +Z?

i bi + �?i ; i = 1; : : : ;M (28)

bi � N (0;�); �?i � N (0; �2I)

That is,y?i follows the basic single-level linear mixed-effects (1). The Jacobian of the

linear transformationyi ! y?i is 1= abs
����1=2

��� and by (10) and (28)

`(�;�jy) = const �N log kc?�1k+
MX
i=1

log abs

 
j�j

jR?
11(i)j

!
�

MX
i=1

log abs j�1=2
i j

= ` (�jy?)�
MX
i=1

log abs j�1=2
i j

wherec?�1 andR?
11(i) are the equivalent ofc�1 andR11(i) for model (28). The re-

stricted log-likelihood is given by

`R (�;�jy) = `R (�jy?)�
MX
i=1

log abs j�1=2
i j

Similarly, the log-likelihood for the general linear two-level model is

` (�;�jy) = ` (�jy?)�
MX
i=1

MiX
j=1

log abs j�1=2
ij j

with an equivalent expression for the restricted log-likelihood. This extends to an arbi-
trary number of levels in the obvious way.

The computational methods described inx4 can, for the most part, be easily ex-
tended to the general linear multilevel model by replacingy;X; andZ with y?;X?;
andZ?: For example, given an initial value�(0) for the within-group covariance struc-
ture parameters, initial values for� can be obtained using the methodology ofx2.6 (e.g.h
�

(0)
i
kk

= 0:375
qPM

i=1 kZ?
i (k)k2=M in the single-level case).

25



The derivation ofb� and the BLUPs for the general linear multilevel model is done as
in x3.5, with the obvious substitutions. Pre-decompositions of the data, as described in
x4.2, are not meaningful for the general linear multilevel model, as a new decomposition
would have to be obtained for each new value of� in the optimization process. The
results on the distributions ofb�(�) andbjy in x3.1 extend in the obvious way to the
general linear multilevel model.

Finally, the EM algorithm described inx3.4 has to be modified for the general lin-
ear multilevel model. For a given value of� = �(t); the methodology ofx3.4 can be
applied to the correspondingy? “observations” to obtain updated estimates�(t); �(t);
and�2(t): Assuming these fixed, updated estimates of� are obtained by maximizing

`
�
�jy;�(t);�(t); �2(t)

�
: This alternating optimization scheme is an example of the

ECME algorithm proposed by Liu and Rubin (1994) and shares with the EM algorithm
the property of monotone convergence.

5.2 Nonlinear multilevel model

A one-level nonlinear mixed effects model is similar in form to the linear mixed effects
models (1) except that the expressionXi� + Zibi, which is linear in both the fixed
effects� and the random effectsbi, is replaced by a nonlinear expressionf i(�; bi)
where the components off i(�; bi) are given byff i(�; bi)gj = f(�ij ;xij). Here
f is a nonlinear model function and the subject-specific model parameter for groupi at
thejth observation is

�ij = Aij� +Bijbi :

The matricesAij andBij are of appropriate dimension and depend on the group and
possibly on the values of some covariates at thejth observation. This model is a slight
generalization of that described in Lindstrom and Bates (1990) or Davidian and Gilti-
nan (1995) in thatAij andBij can depend onj. This generalization allows the incor-
poration of “time-varying” covariates with the fixed effects or the random effects in the
model.

A nonlinear model with two levels of random effects can be written

yij = f ij(�; bi; bij) + �ij i = 1; : : : ;M j = 1; : : : ;Mi

where
�
f ij(�; bi; bij)

	
k
= f(�ijk ;xijk) and�ijk = Aijk� +Bi;jkbi +Bij;kbij .

The reason for the somewhat awkward notation is, as before, to allow “time-varying”
covariates to be used with the fixed effects or the random effects. Often in practice the
matricesAijk , Bi;jk , andBij;k are identity matrices or subsets of the columns of an
identity matrix.

Extensions to more than two levels of random effects follow the obvious patterns.
Becausef can be nonlinear in the fixed or random effects, the integrals required to

express the log-likelihood do not have the succinct representations of those in the linear
case. Also the conditional estimates of the fixed effects and the conditional expectations
of the random effects do not have the analytical solutions they do in the case of the linear
model.
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As shown inx2 parameter estimation for the Gaussian linear mixed-effects model
can be re-expressed as a penalized least-squares problem. It is natural also to re-phrase
Gaussian nonlinear mixed-effects models as penalized nonlinear least squares problems
approached through linear approximation to the nonlinear model.

For a purely fixed-effects nonlinear regression model a common iterative parameter
estimation method is the Gauss-Newton method (Bates and Watts, 1988,x2.2) wherein
the nonlinear modelf(�) is replaced by a first-order Taylor series approximation about
current estimates�(k) as

f (�) � f (�(k)) +
df

d�0

����
�=�(k)

(� � �(k))

The parameter increment�(k) = �(k+1)��(k) for thekth iteration is calculated as the
least squares solution of

y � f(�(k)) = df

d�0

����
�=�(k)

(� � �(k)) + �(k)

A similar iterative scheme can be used to determine the conditional estimatesb�(�)
and the conditional modes of the distribution of the random effects given a value of
� in a nonlinear mixed effects models. Some care must be taken when incorporating
the penalty terms such as�bi into the nonlinear problem because the penalty term is a
linear function ofbi, not a linear function of the incrementb(k+1)i �b(k)i . Two possible
formulations of the penalized nonlinear least squares problem are"
yi � f i(�(k); b(k)i )

��b(k)i

#
=

�
Xi

0

�
(�(k+1) � �(k)) +

�
Zi

�

��
b
(k+1)
i � b(k)i

�
i = 1; : : : ;M

or �
yi � f i(�(k); b(k)i ) +Xi�

(k) +Zib
(k)
i

0

�
=

�
Xi

0

�
�(k+1) +

�
Zi

�

�
b
(k+1)
i (29)

where

Xi =
df

d�0 and Zi =
df

db0i

We prefer the second formulation (29) as the calculation of the increment more closely
follows the form of the solution of the penalized least-squares problem in the linear case.
This is essentially the form of the increment used in Lindstrom and Bates (1990) al-
though this form allows generalization to a multiple levels of random effects.

Once updated values of the fixed-effects parameters� and the conditional modes
of the random effects are available, the derivative matricesXi andZi are re-evaluated
and the variance-covariance parameters� are updated by several EM iterations. Only
the EM iterations are used at this point because theXi andZi matrices are going to be
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recalculated the next time� and the conditional modes of the random effects are up-
dated. It is not worthwhile determining the exact optimal� for the approximate prob-
lem that will subsequently be modified. Once the process of updating� and� sepa-
rately stabilizes, they can be optimized jointly with higher order approximations to the
log-likelihood for the nonlinear mixed-effects model as described in Pinheiro and Bates
(1995). The Laplacian approximation would be a good choice of a higher-order approx-
imation.

The fact that the profiled log-likelihood or profiled log-restricted-likelihood for a
linear mixed-effects model can be quickly evaluated and also that EM iterations are very
fast makes the early optimization of� and� for a nonlinear mixed-effects model faster
and more stable. Also, the current formulation of the linear mixed-effects model allows
extension of nonlinear mixed-effects models to multiple nested levels of random effects
which was not previously available.

5.3 Implementation

The computational methods for multilevel Gaussian mixed-effects models, general lin-
ear mixed-effects models and nonlinear nested mixed-effects models described in this
paper are implemented in version 3.0 of theNLME library forS, S-PLUS, andR. Doc-
umentation and source code for this library is available at

http://franz.stat.wisc.edu/pub/NLME/
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