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Abstract

A multilevel mixed-effects model has random effects at each of several nested
levels of grouping of the observed responses. We may use these, for example, when
modelling observations taken over time on students who are grouped into classes
that are grouped into schools that are grouped into districts. If each of the distri-
butions of the random effects is Gaussian and if the disturbance term at the lowest
level of grouping is also Gaussian it is straightforward to define a likelihood for
the fixed effects and the parameters defining the random effects distribution. We
show that by expressing the random effects distribution in terms of relative preci-
sion factors and using matrix decompositions, this likelihood can be profiled and
can be compactly expressed. The same decompositions provide rapid evaluation
of the profiled log-restricted-likelihood for REML estimation.

The conditional distribution of the random effects given the data can be derived
from the decomposed matrices. From this a compact and rapidly evaluated expres-
sion for the EM iterations can be derived. Reasonable starting estimates for the
relative precision factors can be derived from the design alone. These starting es-
timates, refined by a moderate number of EM iterations, provide excellent starting
values for a Newton-Raphson or quasi-Newton optimization of the log-likelihood
or the log-restricted-likelihood. The methods we describe extend easily to models
with non-spherical distributions for the within-group errors and to nonlinear mul-
tilevel models.

Key words and phraseanixed-effects models, EM algorithm, maximum likeli-
hood, restricted maximum likelihood

1 Introduction

We consider computational methods for Gaussian multilevel mixed-effects models as
described, for example, in Longford (1993) or Goldstein (1995). These models are used
with data where the individual observations are grouped at one or more hierarchical lev-
els. For example, we may wish to model observations on students who are grouped into
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classes that are grouped into schools that are grouped into school districts. If, at each
level in the grouping hierarchy, the experimental units that are observed constitute a
sample from the population about which we wish to make inferences, we model the ef-
fect of each unit at each level as a random effect. A model including random effects for
the individual units as well as overall fixed effects is called a mixed-effects model.

Our computational methods are suitable for maximum likelihood or maximum re-
stricted likelihood estimation of the parameters in linear mixed-effects models with Gaus-
sian distributions for the random effects at each level. These techniques can also form
the basis for parameter estimation methods for general linear mixed-effects models or
for nonlinear mixed-effects models.

1.1 Description of the model

For a single level of grouping, the linear mixed-effects model described by Laird and
Ware (1982) expresses the-dimensional response vectgy for theith unit as

Yy, =XiB+Zb;+e€, i=1,...,M Q)
b; ~N(0,%), € ~N(0,0°1)

whereg3 is thep-dimensional vector ofixed effectsb; is theq-dimensional vector of
random effectsX; (of sizen; x p) andZ; (of sizen; x ¢) are known fixed-effects
and random-effects regressor matrices, grid then;-dimensionaWithin-group error
vector with a spherical Gaussian distribution. The assumpfiaiie;) = oI can be
relaxed as shown ifb.1.

The random effects for thath unit, b;, are also assumed to have a Gaussian distri-
bution but with a general positive-definite variance-covariance matrix

In some of the multilevel modelling literature, notably in Goldstein (1995), the model
(1) is called a “two-level model” because there are two levels of random varidtjon:
ande;. In other references this model would be described as having one level of ran-
dom effects in the model. We will adopt the latter convention and count the “levels” in
a multilevel model as the number of levels of nested random effects.

In a multilevel model with two levels of random effects thg-dimensional vector
of responses for thgth level-2 unit nested within théh level-1 unit is written

leZXZj,@+Zl7]bz+Z”bl] +€i]' ZZI,,]\/[ ]:177]\/11 (2)
biNN(O,El), bij NN(O,EQ), Ci]’ NN(0,0'2I)
The regressor matriceX ;; (of sizen;; x p), Z; ; (of sizen;; x ¢1) andZ;; (of size
n;j X g2) correspond to the fixed effegsand the first- and second-level random effects
b; andbij.

Extensions to an arbitrary number of levels of random effects follow the same gen-
eral pattern. For example, with three levels of random effects the response kdhthe
level-3 unit within thejth level-2 unit within theth level-1 unit will be written

Yijr = XijkB + Zijkbi + Zijibij + Zijkbiji + €ijk
i=1,...,M j=1,....M; k=1,...,M,;
bi ~ N(O,El), bi]’ ~ N(O,Eg), bijk ~ N(O, 23), eijk ~ N(O,O’2I)



Note that the distinction between, say, b horizontal section of the regressor matrix
for the level-2 random effed;;, written Z;; ,, and thejkth horizontal section of the
regressor matrix for the level-1 random effégtwritten Z; 1, is the position of the
comma in the subscripts.

1.2 The variance-covariance of the random effects

In a model with@ nested levels of random effects, the variance-covariance matrices
¥,, ¢=1,...,Q of the random effects must be symmetric and at least positive semi-
definite. We consider only positive defini&, because any indefiniteness can be re-
moved by re-expressing the model in terms of a random-effects vector of lower dimen-
sion.

Within the set of positive-definit&, we may impose further constraints such as
requiring that®, be diagonal or that it be a multiple of the identity or that it have a
particular structure such as compound symmetry.

Whatever structure we assume 8y we will always expres&, as a function of
an unconstrained parameter veafigras described in Pinheiro and Bates (1996). By
doing this we can ensure that the optimization of the likelihood can be expressed as an
unconstrained optimization.

We extend the techniques of Pinheiro and Bates (1996) by expressing the conversion
from @, to X, is two stages. First, we write

¥, =0’D,

whereo? is the variance of the componentsef The matrixD, is thus a relative
or scaled variance-covariance matrix for the random effects. This re-expresign of
does not change the form of the model but, as shovii@ it does provide a more con-
venient expression of the likelihood or restricted likelihood for the model.

The next stage is to use a “square-root” factor of the relative precision m;ﬁx
Thisrelative precision factarA,, is any matrix such that

-1 _ !
D;'=ALA,

Such aA, always exists but does not have to be unique. We could, for example, use
the Cholesky factor (Thisted, 19888.3) ongl or the transpose of the inverse of the
Cholesky factor ofD,.

The parameter vectdl, definesA, through some unconstrained parameterization
from which D, andX, are subsequently defined. Especially in deriving the EM itera-
tions §3.4) we can work withA, directly so the parameterization used is not an issue.
When we do need to work in terms 8f, one of the parameterizations considered in
Pinheiro and Bates (1996) could be used to defingfrom ,,.

1.3 Anexample: variability in IC manufacturing

To illustrate the multilevel model described in this section and the methodology pre-
sented in the following sections, we present an example from integrated circuit (IC)
manufacturing.
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Figure 1. Current versus voltage curves for each of 67 sites within 10 wafers. Each
panel presents data for the wafer whose number is given above the panel. The panels
are ordered starting from the lower left by increasing maximum current intensity. There
are 67 lines, one for each site, on each panel.

In an experiment conducted at the Microelectronics Division of Lucent Technolo-
gies to study different sources of variability in the manufacturing of analog MOS cir-
cuits, the intensity of current (in milli-Amperes) at 0.8, 1.2, 1.6, 2.0, and 2.4 \olts was
measured on §dmx0.6um n-channel devices. Measurements were made on 10 wafers,
each subdivided into 67 sites containing one device. The data are presented on Figure 1,
where each panel represents a different wafer and each curve on a panel represents a dif-
ferent site.

Two levels of nesting are present in these datafer andsite within wafer The
main objective of the experiment was to construct an empirical model for simulating
the behavior of similar circuits.

In Figure 1 it appears that current could be modelled as a quadratic function of volt-
age. Preliminary analyses indicate that random effects are needed to account for the
wafer-to-wafer variability of the intercept and the linear terms as well as for the site-
to-site variability of the intercept. The corresponding multilevel model for the intensi-
ties of current in thgth site within theith wafer is expressed, féor= 1,...,10 and



j=1,...,67,as
0.8 0.8

_yijl 1 _ 1 08 1 €ij,
Yijo 1 1.2 1.2%| [ 1 1.2 b 1 €ij,
Yijs | = |1 1.6 1.62| ||+ |1 1.6 |:bl,1:| + |1 [bijl] + e,
Yija 1 20 2.0? B | 1 20|20 1 T/ €ij,
Yijs 1 24 242 |~~~ 1 24| b 1 Y €ij,

- —_— 7 -~ ——
Yi; Xij Zij Z; €5
[b; 0 ¥ Y1,

_bij ~ (H ’ {212 2&;) b N O, e ~ N0

Inthisexample&) = 2, M =10, M; = 67,n;; =5,q1 = 2,¢2> = 1, 0, is of dimension
3, and@, is of dimension 1.

2 Expressing the likelihood

2.1 Single level of random effects

The likelihood function for model (1) can be written

M
L(ﬂ70702|y) = Hp(yz|ﬂ5070-2)

M
-1 / p(yilbi, B.0%) p(bil6, o) db;

H W
/ exp [525 (ly; — XiB — Zibi|)* + ;D' b;)]
(271'02)'1/2

db; (3)

The expressiofjy; — X ;8 — Z;b;||> + b, D~'b; in the exponent within the integral
has the form of a penalized residual sum-of-squares. Theltgrm X ;8 — Z;b;||? is
exactly the residual sum of squares for flieunit, and the additional term;D”bi,

can be viewed as a “penalty” that inhibits the size of the random-effects vgctdsing
arelative precision factaA we can write the penalty term in the form of a residual sum-
of-squares as

;D" 'b; = || Abi[* = [|0 — 08 — Ab;|?

This re-expression of the penalty is sometimes called a “pseudo-data” representation
because it is equivalent to augmenting the observations and the regressor matrices with
q new rows that look like additional observations. Writing

ool Bl e[
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the expression in the exponent becomes
ly; = XiB — Zibil* + b;D " 'b; = |ly; — X:3 — Z:bi||* + 1|0 — 03 — Ab;||?
= [|§; — X:B — Zibi|]?
Having made the exponent expression look like a residual sum-of-squares we can

employ standard numerical techniques for least squares problems. If we form the orthogonal-
triangular decomposition (Thisted, 1983,1)

5 _ Ry
Zi =Q { 0( )}

whereQ ;) is a(n; + q) x (n; + ¢) orthogonal matrix and?, , ;) is an upper-triangular
q X g matrix, then the properties of orthogonal matrices ensure that
2 ~ ~
= @y (3: - X8 - Zib)

= Jlex) = Rion B — Ruanbi|” + ||eoy — Roo 8]

where the; x p matrix R, o(;), then; x p matrix Ry ;), theg-vectore, ;) andn;-vector
co(;) are defined by

RlO(i):| ¥ [01(1')} I~
=Q;X; and =QY;
|:R00(i) (4) Cg(i) (i)

¥, — XiB — Z;b;

‘ 2

Furthermore, if¥ is positive definite, as we require, théais non-singular and hence
Ry, is also non-singular.

Another way of thinking of this decomposition is as the orthogonal-triangular (QR)
decomposition of an augmented matrix

Z; Xi y;| _ Ry Rioiy €
[A 0 0] = Q) [ 0 ROOEi; coii;] @)

where the reduction to triangular form is halted after the §igtlumns. (The peculiar

numbering scheme for the submatrices and subvectors is designed to allow easy exten-

sion to more than one level of random effects as seé@.4hands;2.5.)

The calculation of the decompositionin (4) is straightforward, efficient, and numer-
ically stable. Standard software such as Linpack (Dongarra, Bunch, Moler and Stew-
art, 1979) or LAPACK (Anderson, Bai, Bischoff, Demmel, Dongarra, DuCroz, Green-
baum, Hammarling, McKenney, Ostrouchov and Sorensen, 1994) can be used.

Returning to the integral in (3) we can now remove a constant factor and reduce it

to
/ exp 5 (ly; = Xif = Zibill” + 0D 'b)]
(27r02)q/2 '
— o [eot) = Roogn BII” / exp [57 (lers) = RiowB = Ruwbill®)]
P —202 (271'02)‘1/2 Z
(5)



Becausel?,; ;) is non-singular we can perform a change of variabléte= (c;(; —
Ryo(B — Ry1(;)bi) /o with the differentialdp; = o~ abs | Ry1(;)| db; and write the
integral as

/exp [5=% (llei) — Rio)B — Ruriybill?) ]

(2w0?) q/2 b

B 1 exp (—[l¢]1°/2)
N abs|R11(i)|/ (Qﬂ.)q/2 de; (6)

= abs |Ryy (5| !

Since, by constructio?,, (;) is upper-triangular, its determinant is simply the product
of its diagonal elements.
Substituting (6) into (5) into (3) provides the likelihood as

2 —202
(B? 7 |y g \/m

which is now in the form of a regression model for the fixed efféct&orming another
orthogonal-triangular decomposition

M exp (HCO() Roo( »BI° )
abs|R11(i)|_1

ROO(I) Co(1)

(7)

Qo {Roo Co }

: : e
Rooary  Coqn)

and noting thal//|D| = abs |A| reduces this to

L(B,0,0%y)
- 2 +|leo — RooB||? A
— (270?) M ex <||c ol J;(;Z 00| )Habs<|R|11| |> (8)

whereN = Ef‘il n; is the total number of observations.

2.2 The profiled log-likelihood for 6

With the likelihood expressed as (8) we can derive explicit expressions for the optimal
values of3 ando? conditional on a value of. We assumeR, is non-singular, in
which case the optimal value ¢f satisfies

RooB3(6) = co 9)
Substituting this value in (8) and taking the logarithm provides the profiled log-likelihood
((6,0°ly) = log L(3(6),0,0°|y)

Nlog(2m0®)  |le_ 1|| < |A| >
= - + + E log abs
& | R3]




which is maximized with respect i? by 2 () = lle—1])?/N
We can now write the profiled log-likelihood as a functiorfodlone as

((8ly) = log L(B(6),8,5%(6)|y)

|A| > (10)

M
= const — Nlog||c_1]| + Zlog abs <|R
pa 10|

2.3 Restricted log-likelihood as a function o alone

Therestricted likelihoodHarville, 1976)is often preferred to the likelihood when defin-
ing an estimator fof. One way of writing the restricted likelihood is

Li(8,0ly) = / L(8,0,0%|y) dB

which reduces to

L (0 2| ) (2 2)(N*P)/2e ||C,1||2 abs|R |_1ﬁabs |A|
(2 = mo X ——
r\U,07|Y P\ 552 00 1 R

using (8) and the same change-of-variable technique used to obtain (6).
Converting to the log-restricted-likelihood

KR(B, 0-2|y) =

M
N-—p oy llell? ( |A| )
— —log(27o”) — — logabs |Rgo| + 5 log abs
2 & ) 202 gabs| Roo prt & | R11()l

provides the conditional estimazb/é2 (@) = |lc_1]]?/(N — p) for o> from which we
obtain the profiled log-restricted-likelihood

—

Lr(Oly) = Lr(0,0%(0))

M
A
= const — (N — p)log||e—1|| — logabs |Rgo| + E log abs ( R| | )
i=1 | 11(i)|

2.4 Two levels of random effects

The likelihood for a model with two levels of random effects is defined as in (3) but
integrating over both levels of random effects

L(B,01,02702|y) =

Mo, M
H/H [/p(yiﬂbij,bi,ﬁ,02)p(bij|92,ff2) dbij | p(bi|0:1,0°) db; (11)
i=1 j=1



As with the single level of random effects, we can simplify the integrals in (11) if we
augment theZ;; matrices withA, and form orthogonal-triangular decompositions of
these augmented arrays. This allows us to evaluate the inner integrals. To evaluate the
outer integrals we iterate this process.

That is, we first form and decompose the arrays

Zi; Zi; Xij W} Q [R22 i) By Booiy) €20
A, 0 0 0 Ruw Ruw awml  (12)
i=1,...,M j=1,...,M;

The matrix Ry, ;;) will be an upper-triangular matrix of dimensigg x g2. The other
arrays in the f|rst row of the decomposition in (12) are used only if the conditional es-
timates of3 or the Best Linear Unbiased Predictors (BLUPs) ($&6) forb;; andb;
are required. The arrays in the second row of the decompos#on;;), Rio:;, and
cy(ij) €ach have;; rows.

To evaluate the outer integral in (11) we again form and decompose an augmented
array

Rll(il) RlO(il) C1(i1)

Riiivy  Riogm)  Ciimn)
A 0 0
(13)
The final decomposition to produd®y,, ¢y andc_; is the same as thatin (7).
Using the matrices and vectors produced in (12), (13), and (7) and following the

same steps as for the single level of nesting we can express the profiled log-likelihood
for 6, and@, as

0(61,0:]y) = log L(B(6:1,65),6:,05,02(6:,6:)|y)

A
= ot Vgl +3 g ()
i=1 ¢

+ZZlogabs< 2 )

i=1 j=1 |R22(zg)|

Similarly, the profiled log-restricted-likelihood is

(r(61,02]y) = log Lr(By(81,62),01,0:,02x(61,62)|y)
= const — (N — p)log||c_1]|| — logabs | Rgo|

+Zlogabs<|Rnl| >+ZZlogabs< = >

i=1 j=1 |R22(zg)|

To illustrate the decomposition in (12) and the first part of the calculation of the
likelihood, we consider the data from the first site within the first wafer in the IC man-
ufacturing example fror§1.3. As described i§2.6 we usd).84 as an initial value for



A,. The decomposition is then

i Z11 Zia X11 Y |
——
1 1 08]1 0.8 0.82| 0.92
1 1 121 12 12%2| 3.91
1 1 161 1.6 1.6%| 769 | _
1 1 201 2.0 20| 11.80 | —
1 1 241 24 242 16.00
A,=084|0 0 1]0 O 0 0
] M Roao(11) Ra1(11) ) Rap(11) c211
P A ~ -~ A P A
—2.389 | —2.093 —3.349 | —2.093 —-3.349 —-6.029 | —16.880
0 0.087 —0.024 0.087 —0.024 —0.528 —1.343
Q 0 0.087 0.376 0.087 0.376 0.592 2.437
(1) 0 0.087 0.776 | 0.087 0.776  2.032 6.547
0 0.087 1.176 0.087 1.176 3.792 10.747
0 —-0.767 —-1.029 | —-0.767 -1.029 -—1.653 —4.412
N\ ~~ 7\ ~~ ~ ~
L 0 Ryi(11) Rio(11) ci(11)

The direct contribution to the log-likelihood from this first site within the first wafer is

A
log abs <i> =log (0.84/2.389) = —1.045
| Ra2(11)]

Since this was a balanced experiment where each wafer has the same number of sites
and each site is measured at the same set of voltages, this contribution will be the same
for each of the second level groups. The total direct contribution will be

10 67

D> log (0.84/2.389) = —700.2

i=1 j=1

There will also be an indirect contribution from each site within each wafer according
to the way they together determifje_ || for a given value ofA..

2.5 Three or more levels of random effects

For every level of random effects added to the hierarchical model we simply extend
the number of stages in the decompositions of the augmefitaidd X matrices. For
example, with three levels of random effects the decompositions begin with

Ziji  Zijk Zijk Xigk Y| _
As 0 0 0 0

i=1,... M
Q... {333(”’1@) Rasijry  Rsiijr)y  Rsoje)  C3(ijk) i=1,... M
(éik) 0 Rosijry  Rouijr)y  Roogijr)  C2(ijk) b — 1’ .’ ]V[Zij

10



to evaluate the integral associated with the third level of random effects. The next set
of decompositions are

Ros(ij1) Ro1(ij) Rooijn) Ca(ij1)

Roysgijay)  Rorjm)  Rao(ijnmi;)  C2(ijMiy)

A, 0 0 0
i1=1,....,.M
Q.. [F26) Baii) Boogi)  Caiij) =1, M,
W 0 Rugy Ruu) e 1. M

and from there we proceed as before with (13) and (7).
The profiled log-likelihood becomes

6(01702703|y) = IOgL(B(01,02,03) 01702,03, (01702703)|y)

A
:const—N10g||c_1||+Zlogabs( A )

|Ri13)
M M; ; Mij |
+;;logabs<|R22( )|>+ZZZIOgabs<|R33 |>

i=1 j=1 k=1

and the profiled restricted log-likelihood becomes

(r(01,0,03)y) =log LR(BR(BI: 02,03),0,,0,,03, g51%(91, 02,603)|y)

M
A
= const — (N — p)log||c_1]|| — logabs|Rgo| + Zlogabs < |A | )

= | Ryl
) M;;
+§:§élogabs +Zi210gabs |As |
— |R22 | |R33zk|
i=1 j=1 (i) i=1 j=1 k=1 (4

2.6 Starting values for the@ parameters

Because we can express both the profiled log-likelihood and the profiled log-restricted-
likelihood as a function of th@ parameters, we only need to formulate starting values
for @ when performing iterative optimization. From (10) and from the discussion of the
example in§2.4, we can see th&influences the profiled log-likelihood indirectly by
changing|c_1||* and directly through terms of the form

o abs( |A| )_ 110 <|Z;Zi+A’A|>
SN T 2 7 aa

~log|T+ (A7) Z;Z:a7"|
2 =0

(14)

11



The size ofA relative to each of theZ;,7 = 1,..., M affects the two types of terms
in opposite ways.

As A gets larger it pulls the conditional least-squares valudg ofoser to0 thus
increasing the residual sum-of-squares téem; ||>. Conversely whem\ is very small
relative to theZ; it has little effect on the conditional least-squares valuedfand
|lc—1])* will be smaller. However, small values & produce large values of the terms
(14). For example, we showed earlier tlat = 0.84 produces

A
log abs <@> =log (0.84/2.389) = —1.045
| Raa(11)]

in the IC manufacturing example. Doing the same calculations with a very small value,
sayA, = 0.0084 would produce

A
log abs <@> = log (0.0084/2.361) = —5.584
|R22(11)|

For a large value, safA, = 84, we would get

A
log abs <£> = log (84/84.030) = —0.0003542
| Raz(11)]

In the limit asA becomes very large relative to tig, the coefficientd; in the
penalized regression model are forced to zero and the residual sum-of-sfuargs
is the same as that from a regression of all the data on the fixed g¥eatg. The terms
in (14) approach- log |I]/2 = 0, which is their upper bound.

The net result is that extremely large valuesdbr extremely small values aA
tend to produce small values of the likelihood for most data sets. The optimal values
of @ will usually correspond to @ that is comparable in size to tt#&;. We generate
a simple starting valua® as a diagonal matrix where each diagonal element is some
fraction f of root-mean-square length of the corresponding column oZthmatrices.
Thatis, lettingZ ; (k) denote théith column ofZ ;, the initial value for thekth diagonal

1/2
element ofA is f x (Zf\il ||Zi(k)||2/M) . Some limited experimentation with

this formulation indicated that fractionsbetween 1/4 and 1/2 worked well. We use
f=0.375.

In some patterned variance-covariance matrices, such as the compound symmetry
matrices, a general diagonal matrix cannot be represented. For those cases we use as
a starting estimate fd the parameter values that provide the patterned matrix that is
closest to the diagona@\ calculated as described above.

This procedure generalizes easily to multiple levels of random effects. As an exam-
ple, we consider the two-level model for the IC manufacturing dal. Because
the design is balanced (i.e. all wafers have the same number of sites and the intensity
of current measurements were made at the same voltages for every site), it suffices to
calculate the column norms for, s&;, andZ,. Therefore, the initial estimates for

12



the precision matrices are

Z () o V3330 6.86 0
A _ 375 |[1Z1 _o _
=03 v T 0 veeas| T | o 1163

AL =0.375]|Z11]| = 0.375v/5 = 0.84

3 Conditional estimates and EM iterations

In the last section we derived a compact representation of the profiled log-likelihood
or profiled log-restricted-likelihood for the single level or nested mixed-effects model.
This representation used the relative precision faaqysq = 1,. .. , @ and orthogonal-
triangular decompositions of augmented data arrays. A general nonlinear optimization
algorithm, combined with the starting estimates for&hgderived in that section, could
be used to obtain the maximum likelihood estimaesyr the restricted maximum like-
lihood estimatesf g, and, through (9)3.

Before considering details of the optimization we examine the general conditional
estimate@(e) and the conditional distribution of the random effep:(abi|yi, 3,0, 02)
more closely. We relate these conditional estimates of the fixed-effects and the condi-
tional expectations of the random effects to the parameter estimates in a penalized linear
least squares problem. This conditional distribution of the random effects can be used
to define EM iterations which are very helpful in refining starting estimates faAthe

3.1 Conditional distribution of the random effects

We can see from (5) that the conditional distribution of the random effects in a single-
level model is

p (bi|yi7ﬂ70702) xXp (biayi|167070-2)

-1 2
X exp (ﬁ |e1(s) — RiogiyB — Ra1i)bi| >
or, writing all the random effects togethertis= (b}, ... b)),

-1
p (19.8.0,0%) ocoxp (55 llew = Rob ~ o

where
R11(1) 0 T 0 RlO(i) Ci(1)
R, = 0 R1.1(2) 0 Rs = Rl?w) Cp = Cl.(Q)
0 0 - Rlll(M) Rl().(M) CI(IM)

13



It then follows that
bly ~ N (Ry" (s — RoB) 0’ Ry (R;")") (15)

We note tha’rl?,;1 is a block diagonal matrix with itsth diagonal block given by the
inverse of they x ¢ upper-triangular matrid,; ;).

From (8) we can see that the likelihood for the fixed eff@gtonditional orf and
o? has a similar form

—|leo — R00ﬂ||2>

L(Bly,0,0%) xexp (1022

The distribution of the conditional estimaﬁa) and the conditional distribution @f
are the same as the distribution of the estimatg ahd the conditional estimaté$3
in a linear regression model

c=Rb" +€ € ~N(0,0°1)
where

b* =
B8 0 Ry

or, equivalently, the penalized linear regression model

R R

y* — X*b* + C** C** ~ N(O,O’QI)

where
_yl_ _Zl 0 0 Xl_
0 A 0 0 0
Yo 0 Z2 0 X2
y* — 0 X* = 0 A 0 0 (17)
Ymr 0 0 0 Zy Xum
| 0 | 0 0 0 A 0

The conditional distribution of the random effects generalizes to multiple levels. For
example, in a model with two levels of random effects,

p(bi,bil,... 7biMi

yil)"' 7yiMi7ﬂ7970-2) o8

-1
exp [ﬁ (Hcl(i) ~ Ruyobi — Rupo B+

M;
> leais) — Ry bis — Rorgijybi — Rao(ipy 8|

j=1
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In a vector notation ob(i)’ = (b, ... ,bly.,b})" for the two-level model and writing

R22(i1) S 0 R21(i1)
RG)=| i :
0 o Rosunyy  Roigin)
0 0 0 Rll(i)
R20(i1) Ca(i1)
Rg(i) = : co(i) =] -
R20(iMi) Ca(iM;)
RlO(i) C1(4)

we obtain
by ~ N (R5'(0) (esi) - Ra(1)8),0°R;' () (R7'())' ) (18)

The equivalence of the distribution of the conditional estim&éﬁ) and the the
conditional distribution of the random effects to the distribution of the parameter esti-
mates in a penalized linear regression model extends to multiple levels of random ef-
fects. For two levels of random effects the penalized regression maglebsX *b* +

€** where(b*)' = (b(1)",b(2)',... ,b(M)’, 3)" and the substitutions
(Z;1 O 0 Zi, | [y ]
A 0 0 0 0
0 Zjp 0 Z;> Yo
|:Zi:| . 0 A 0 0 [yl} N 0
A : : : : : 0 :
0 0 0 Zin, Ziwu, Yin,
0 0 0 A, 0 0
0 0 0 0 A 0 |

are made in the form (17).

3.2 Conditional distributions and restricted likelihood

The expressions (15) and (18) and their generalizations to more levels of random effects
allow the EM iterations o for the likelihood criterion to be developed, as shown in
§3.4. Similar expressions are used to develop EM iterations for the restricted likeli-
hood criterion. As described in Laird and Ware (1982) the restricted likelihood can be
regarded as the likelihood associated with model (1) but incorporgtiagia random
effect, saybg, with an associated relative variance matfry that tends to infinity. We
could, for example, seéby = kI, k — oo.

The conditional distribution of this extended random effects vector for the restricted
model is simply the distribution of the estimatesbdfin the corresponding regression
models (16) or (17). That s,

b'ly~N (R 'e,c’ R"'(R™"))
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for a single level of random effects. This scales in the obvious way to multiple levels.

For both the original model and the restricted model the conditional distribution of
the random effects corresponds to the distribution of the parameter estimates in a pe-
nalized linear regression model. The only difference is that in the original model it cor-
responds to the distribution of the estimate$ abnditional on3 and in the restricted
model it corresponds to the marginal distribution of the estimatés of

3.3 Using matrix sparsity

We have expressed the conditional distributions of the random effects in terms of the
inverses of the upper triangular matridsand R,. These are large matrices but they
are also patterned and sparse. We can take advantage of the patterns when forming the
inverses and when doing further calculations.

For a single level of random effects we need only store

R11(1) R10(1) C1(1)
R11(2) R10(2) C1(2)
: : : (19)
Ry Riovy €
0

Ry Co

In calculatingR~* we can take advantage of the fact that the pattern of zeraBssn
repeated in

—1 -1 -1
Rll(l) 01 e 0 _Rlll(l)Rlo(l)ROOI
0 Rn(z) e 0 _R11(2)R10(2)R00
R =| A 5 (20)
-1 -1 -1
0 0 "' Rll(M) _Rll(M) Rio(ar) Rog
0 0 0 0 Ry

and perform the operations in place on an array stored as in (19). That is, there is no
need to expand the arrdy out to its full size when calculating its inverse. We also
note that each of the components suclil@as and R,y (;),i = 1,... , M that must be
inverted to form (20) is a relatively small, triangular, non-singular matrix whose inverse
is readily calculated.

One advantage of storing the intermediate results in this form is that the expressions
for the conditional estimate®(8) andb; () = E[b;|y] evaluated aB(6) have the form

ROOB(O) =y
Ry1(bi(8) = ¢1(i) — Rio(B(0) i=1,...,.M
Rys(ij)bij (0) = caij) — Roo(ijy B(0) — Roy(ijybi(0)  J=1--on Mi

OnceB(e) has been calculated, the evaluatioreqf;) — Rm(i)B(O),i =1,...,.M
can be performed as a single matrix multiplication. The structure corresponding to (19)
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for two levels of random effects has the form

Ry11) Ryi11) Ryo11) Ca(11)
Rosany) Rorn)y  Rooam) (1)
0 R11(1) R10(1) Ci(1)
Ry (01) Ry (21) Ryo(21) Ca(21) (21)
Roy vy Borvnmng)  Baoinng)  C2(M M)
Ry Ry C1(m)
i 0 0 Ry Co

Again, this form facilitates calculation of expressions suchag —

C2(if) — R21(i)5i(9) - R20(ij)B(9)-
The corresponding block iR™! is

R10(i)B(9) and

1 -1
RZZ(zl) 01 o 0 Rz2(z1)R21 ll)Rzlgl)
0 R22(z2) T 0 —R,, (12)R21(12) 11(1)
: : : : (22)
~1 -1 -1
0 0 RZZ(iMi) _Rzz(iM,-)Rm(iMi)Rn(i)
0 0 0 0 R

We can see that the pattern of (20) is repeated here. As before, the block does not need
to be expanded to its full size to calculate the components of the inverse—the condensed
array of the form (21) can be manipulated in place.

3.4 EM iterations

Optimization of the profiled log-likelihood or restricted log-likelihood is usually ac-
complished through EM iterations or through Newton-Raphson iterations (Laird and
Ware, 1982; Lindstrom and Bates, 1988; Longford, 1993). The EM iterations have the
advantage that the individual iterations are easy to compute and the initial iterations ap-
proach the optimum quite quickly. However, close to the optimum the EM iterations
often proceed very slowly. It can be difficult to decide if the EM iterations have con-
verged when they end up taking an exceedingly large number of very small steps toward
the optimum. Also, taking so many iterations is itself expensive even if each iteration
is relatively simple and fast.

The Newton-Raphson iterations, on the other hand, are individually more computa-
tionally intensive than the EM iterations and they can be quite unstable when far from
the optimum. However, close to the optimum they converge very quickly.

We therefore recommend a hybrid approach of forming a in@il as described in
section 2.6, performing a moderate number of EM iterations, then switching to Newton-
Raphson iterations. Essentially the EM iterations can be regarded as refining the starting
estimates before beginning the more general optimization routine.
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The EM iterations are based on regarding the random effects, such bsithe
1,...,M, as unobserved data. At iterationve use the current variance-covariance
parameter vectof®), to evaluate the distribution ®fy and derive the expectation of
the log-likelihood for a new value @ given this conditional distribution. Because we
are taking an expectation, this step is called the E step.

( 'I;r;e M step consists of maximizing this expectation with respeé to produce
Ut

We can perform the expectation and maximization steps with resp@airty be-
cause we have explicit forms for the profiled likelihood as a functich @it iterationt
we derived“™ from 8 fixing 8 = B(8") ando? = o2(8™). The EM algorithm
ensures that the log-likelihood will increase fréiy to 8. If we then adjus and
o2 to the optimal values givef\***) we can only increase the log-likelihood further.

For a single level of random effects we can see from (3) that the likelihood for the
“full data”—both the unobserveiland the observeg—depends oA only through D |
and quadratic forms itb; /o)’ D~'b; /. To obtain the expected value for a new value
of @ we use standard results on the distribution of quadratic forms plus the expressions
in (15) to derive

E[(b:/0) D5 bi/oly] = Elbi/oly] D5 ‘Elbi/oly] + tr (D~ Var(bi|y))
= 1aEiy)/o I + I (Br, ) ALLE
:‘EMWWﬂ

-1
(Rll(i))
where the 2-norm of a matrix, writtdA |2, is the square root of the sum of squares of
the entries in the matrix. In this expressif, ;) is evaluated using the data agd’
because it is a characteristic of the conditional distributionAutis evaluated at the
generald over which we will be optimizing the expected likelihood given the condi-

tional distribution so as to produg@t").
The sum of the contributions for the level-1 random effects can be expressed as

!
1

2

(Elbufyl /a7 |

(Ri)

Elbulyl /o

(RHMD_ )

ALl =lAALl3 (23)

=

whereU A, is an orthogonal-triangular decomposition of the stacked matrix on the
left side of (23). ThudJ; isaM(q; + 1) x ¢ matrix with orthonormal columns and
A, is aq; x ¢ upper-triangular, non-singular matrix.

As described ir§3.1, the conditional distribution di|y for the restricted model is
also multivariate normal with the same mean but with a different variance-covariance
matrix. For this case the non-zero blocks of the ferd%fll(l)Rw(l)Rgol intheR™!
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matrix shown in (20) must be incorporated in the calculatiodgf . The decomposi-
tion has the form

E[bily)' /o
-1 !
(Rll(l)) ,
- (R;11(1)R10(1)R601)
: =UriARr
Elbuly]'/o
—1
(Ril)
|~ (Ruian Raoany Ry ) |
With two levels of random effects, the matu, is calculated as in (23) and the ma-
trix A, is calculated from a decomposition of a matrix formed from the scaled estimates

of the random effects at that level and their estimated variances calculated according to
(22).

E[b11|y]’/7
(R2_21(11))
—(R’l Roion R} )'
22(11) Ft21(11) 11 (1)

: =UxA>
Efbarary lyl'/o
(R;21(MMM))

!
|~ (R2_21(MMM) R21(MMM)R1_11(M)) ]

Ingeneral A; is calculated by computing the expected values of the conditional dis-
tribution of the levelj random effects and scaling them byo. The non-zero blocks
in R;l are calculated and transposed. All those blocks corresponding to thejlevel-
random effects are stacked, along with the scaled expected random effects. The result-
ing matrix ofg; columns is decomposed to give the upper-triangular matfixWhen
computingA g; for iterations based on the restricted likelihood, the maRjx' is re-
placed byR™'.

OnceA; (or Ag,) is available, the maximization problem to deternﬂﬁ‘é“) re-
duces to

max {Mlog|Dy"| - tr(A} DT A1)} (24)
1

If D, can be a general positive-definite matrix, the maximizer of (24) proqu‘e%:
A A; where

_ !
Al = A) (25)
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Since only the factoA; and not the correspondirjis needed in the calculation of
the next iteration, the iteration loop is complete. For two levels of random effects, the
optimization problem becomes

M
) -1 _ 1 -1
n}){:x{(zz; Ml> log | D3| — tr(ALD; AQ)}
with a solution, for general positive-definil@, of

(A1)

\ ZzAi1 M;
This scales in the obvious way.

The only change required to perform EM iterations for the restricted likelihood cri-
terionis to replacel ; by Ag; in (25) or (26) or their extended versions for more levels.

In the IC manufacturing example §f.3, starting with the initial estimate‘sgo) and
Aéo) given in§2.6, we obtain after 20 EM iterations

!

Al = (26)

[2.498 0

(20) _
A= 11007 0.681]

AP0 = 0.477

The maximum likelihood estimates for this example are

2.501 0

1001 06s1] 22T 04T

A -

indicating that the EM algorithm quickly placed the estimate8 iof the neighborhood
of the MLEs.

3.5 General optimization and obtaining BLUPs

After refining the starting estimates f@with a moderate number of EM iterations, the
parameter® are usually close to their optimal values. A general unconstrained opti-
mization algorithm such as Newton-Raphson or a quasi-Newton algorithm can then be
used to produce the final parameter estim@teEhe maximum likelihood estimates for

3 can be evaluated frolR, andcy atd and (7). Furthermore, the matrichs, ;) and

Ry,(;) and the vectors, ;) can be used Witﬁt to solve forE[b;|y] at the parameter es-
timates. These are called the Best Linear Unbiased Predictors or BLUPs for the random
effects.

When performing the optimization it is often helpful if the gradient of the objective
function and possibly the Hessian of the objective function can be evaluated. It may
be possible to use techniques similar to those in Golub and Pereyra (1973) or Kaufman
(1975) and in Bates (1983) to derive an expression for the gradient using the penalized
linear regression representation of the model. This will be difficult to generalize to sev-
eral levels of nested random effects. Because the profiled log-likelihood or profiled log-
restricted-likelihood can be evaluated efficiently for different value®, ofe prefer to
use numerical values of the gradient and Hessian calculated through finite differences.

20



4 Computational considerations

4.1 Organizing the decompositions

Although several different matrices are being calculated and decomposed in the process
of evaluating the profiled log-likelihood f@, most of these matrices do not need to be
stored unIesB or the BLUPs for théb; are to be calculated. In fact, the total amount of
storage required for the calculation is essentially the same as that required to represent
the original data.

The decompositions can be performed “in place” with a slightly augmented version
of the original data array or they can be performed by copying horizontal slices of the
original data array to temporary storage, augmenting them, decomposing the result, then
copying back the pieces that are to be used later.

To demonstrate these techniques we begin with the data for a model with a single
level of random effects, organized as

Z; X1 y
Zy Xy Yy

For a given value of we evaluateA then, for each of thé/ horizontal slices in the
array, form and decompose

|:Zi X; yi:|:Q' |:R11(i) Ry e
A 0 (@) 0 ROO(i) Co(i)

exactly as in (4). The determinant &, ;) is calculated as the product of its diago-
nal elements and stored. After that nondyf; (;), R1(s), Or ¢y (;) are required for the
evaluation of the log-likelihood. They are only needed if the BLUPbais to be cal-
culated as the solution By, ;) E[bi|y] = ¢1(;) — Rm(i)B. After the decomposition,
the matrix Ry ;) and the vectoe,;, can be copied back into the storage previously
occupied byX; andy,;. When we have finished doing this for= 1,..., M the last
p + 1 columns of the original data array will be in exactly the form needed to evaluate
the decomposition (7). This provides; andRg,. All the information to evaluate the
profiled log-likelihood or the profiled log-restricted-likelihood is then available.

The operations of copying slices of the original data array to temporary storage then
copying some of the results back into the data array can be avoided, if desired. Begin-
ning with an augmented form of the data array as

Z X, Y
Zy Xy Ymr
A 0 0
we can decompose the augmented array foMltie case in place and evaluates | Ry () |-

The rows containind?, ; (ar), Rio(ar), @nde; (ar) can then be overwritten witA in the
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Z columns and zeroes in th¥ andy columns. This results in the augmented arrays
for the (M — 1)’st case being available to be decomposed. We continue in this fashion
working from the)/'th case up to the first case. The arrays needed to calculate the de-
composition (7) are then in place in the last 1 columns but beginning at row+ 1,

not at the first row.

In our experience the cost of copying the arrays to temporary storage before de-
composing and copying some results back after decomposing is negligible compared
to the cost of decomposing the arrays. Thus we prefer to work on copies. Furthermore,
even though the “in place” calculation does not require copying the data it may at times
take longer than the “copying” calculation. This is because the memory references are
widely scattered in the memory space when decomposing a horizontal slice of a matrix
with a very large number of rows. When working with extremely large data sets that
cannot fit into the available physical memory of the computer such access patterns will
degrade the performance of virtual memory systems. In the approach based on copying
the widely scattered memory locations are only used twice; once as the source for the
copying and once as the destination of the copying. When actually doing the decompo-
sition on the copy, the memory references are more localized.

With two levels of random effects we begin with the data array in the form

VAR VAR X1 Yu

Zivy, i, Xamn Y,
Zn Zs X Yo

\Zvne  Lmmye XMMy Yrvg

and decompose the augmented matrices from each horizontal slice corresponding to the
level-2 random effects while accumulatisigs | Ry (i), = 1,..., M,j = 1,..., M;.

The matricesZ; ;, X ;;, and the vectoy,; are overwritten byR;;(;;), Rio(ij), and

cy(ij) producedin this decomposition. The modified data array is thenin the form needed
to perform the decompositions for the level-1 random effects (ignoring theficsiumns).

4.2 Pre-decomposition of the original data array

When the number of observations per lowest-level group is large compared to the num-
ber of random effects for the group, some time can be saved by decomposing the original
data arrays and saving only the triangular parts of the decomposition. This technique
is similar to the “two-stage orthogonal factorization” described by Golub and Pereyra
(2973).

With one level of random effects the initial decomposition is similar to the reduc-
tions in (4) and (7). First we decompose

' . . . Tll(i) TlO(i) dl(i) ) =
[ZZ X yz] _S(l) 0 Too(i) dO(i) Pehe
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then we accumulate and decompose allffiyg ;) matrices and,;, vectors as

Too1y  dop) Too do
. . = SO 0 d—l (27)
0 0

Toonry  do(ar

whered_, is a scalar. The decomposition (27) is the one occasion where we carry out
the orthogonal-triangular decomposition completely to reduce the matrix to triangular
form.

The information in

Ty Tioay diqy

Ty Tioy Ay
0 Ty dy
0 0 d .

can now be used in place of the original data arrays. The number of rows in each group
is reduced t@ except for thell'th group where we include the rows witfy, dy, and
d_1. These rows must be included in the overall data array but could be included with
any of the groups. We include them with the last group for convenience and to emulate
the pattern in (19).

With two levels of random effects the initial decompositions are of the form

. . L _ o T2 Tagy Toouy) dagij 1=1,....M
[sz Zz,] Xz] yz]] = S(ZJ) |: 0 Tll(ij) TlO(ij) dl(ij) ,] =1,...,M;

followed by

AT T1o0i1) diin) Tow Tiow di
. . . _ o  |Tuu 100 1(i _
: : : = S(l) |: 0 Too(i) do(i):| 1 = 1,...,M
Tiiivy Troenn)  Gaing)

and finally (27). The information required for later calculations is stored in the same
form as that in (21) with @ matrix replaced by the correspondiffgmatrix and ac
vector replaced by the correspondihgector.

Generalization to more than two levels of random effects follows this type of pat-
tern. The similarity between the decompositions needed for the evaluation of the log-
likelihood or restricted log-likelihood and those needed for the pre-decomposition step
can be exploited when writing software. In our code we use a single function or method
for the decomposition step with an additional argument for the matrikat should be
appended as a new set of rows before decomposing. When doing the pre-decompaosition
the number of rows to be appended is set to zero. Because the information to be stored
for calculation ofB and the BLUPs for the random effects or for the pre-decomposition
is of a similar shape, we use the same function for both storage operations.
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4.3 Parallelization

An important consideration in computational methods for modern computer systems is
determining which parts of the calculation can be performed in parallel. The structure
of the methods we have described divides neatly into separately evaluated pieces.

Within each level of random effects, the reductions and other computations related
to the different groups are distinct. Thus they can be performed in parallel. Because all
results from a given level of random effects must be available before proceeding to the
next level, the extent of possible parallelization is clearly defined.

5 Conclusions and extensions to other models

Computational methods for maximum likelihood or restricted maximum likelihood es-
timation of the parameters in a linear multilevel mixed-effects model are greatly en-
hanced by expressing the variance-covariance matrix of the random effects at each level
in terms of a square root of the inverse of the relative variance matrix. These are the ma-
trices that we have written a&,,¢ =1,... ,Q.

Using this formulation and taking matrix decompositions, the profiled log-likelihood
or profiled restricted log-likelihood can be compactly expressed and calculated. These
expressions also give an indication of suitable starting values for the variance-covariance
parameters.

The calculation of conditional estimates of the fixed effects or BLUPs for the ran-
dom effects is also expressed compactly using matrix decomposition techniques. Us-
ing these expressions an EM algorithm for parameter estimation can be readily derived.
The combination of starting estimates calculated from the original design matrices and a
moderate number of EM iterations usually puts the parameter values very close to the fi-
nal parameter estimates. The optimization can be finished with a few Newton-Raphson
iterations in a suitable parameterization. Again, we can take advantage of the profiling
of the log-likelihood over the values of the fixed-effects parameters.

The computational methods described in the previous sections can also be applied
to extensions of the basic Gaussian linear multilevel mod&l ofwo such extensions
will be considered in this section: Gaussian linear multilevel modelswathspherical
distributions for the within-group errors and Gaussiamlinearmultilevel models.

5.1 General linear multilevel model

The basic Gaussian linear multilevel model assumes that the within-groupe&reoes
distributed as\’ (0, 021) . In many applications, especially when longitudinal or spa-
tial data are collected, it is reasonable to allow for correlation among the within-group
errors. The assumption of equal variances for the within-group errors also is frequently
violated in practice. A more general formulation of the Gaussian multilevel model al-
lows non-spherical Gaussian distributions for the within-group error.

In the single-level linear mixed-effects model (1), the general formulation of the
model allowse; ~ N (0, a2Ai) , Where the scaled variance-covariance mairjxde-
pends on only through its dimensions and is generally parametrized by a small, fixed
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set of parameterp. We assume that thA;, ¢ = 1,...,M are positive definite.

This formulation allows both heteroscedastic (e.g. variance increasing with a power of
the expected response) and correlated (e.g. autoregressive-moving average structures)
within-group errors. For the general linear two-level model (2) we lagve: A/ (0, 02Ai]~)

and this is similarly extended for more levels of nesting.

Let A!/? denote a square-root factorAf (thatis,A; = (AE/Q) A}/?)and define

Yt = (A'_1/2)Iyi Xt = (A—1/2) X, z' = (A.‘m)lzi - (A.—1/2)/6i

(2 (2 (3

It then follows from elementary properties of the multivariate normal distribution that
yi=X;B+Zbi+e€, i=1,....M (28)
b ~N(0,%), € ~N(0,5°I)

That is,y; follows the basic single-level linear mixed-effects (1). The Jacobian of the
linear transformationy; — y* is 1/ abs ‘AW‘ and by (10) and (28)

M M
A A
(0, ply) = const — Nlog ||c*, || + Zlogabs <|B|',* | |> _ Zlogabs |Az1/z|
i=1 11(4) i=1

M
((8ly*) — > logabs|A}?|

i=1

wherec* andRH(z) are the equivalent of_; and Ry, ;) for model (28). The re-
stricted log-likelihood is given by

M
(r (8, ply) = (r (Bly*) — > logabs A}’

i=1

Similarly, the log-likelihood for the general linear two-level model is

£(0,ply) =L (Oly*) 2:2:10gabs|A1/2

i=1 j=1

with an equivalent expression for the restricted log-likelihood. This extends to an arbi-
trary number of levels in the obvious way.

The computational methods describedg#hcan, for the most part, be easily ex-
tended to the general linear multilevel model by replagjnX , and Z with y*, X*,
andZ*. For example, given an initial valyg® for the within-group covariance struc-
ture parameters, initial values f@rcan be obtained using the methodology®i (e.qg.

[A(O)]kk = 0375/, 12} (k) [ /M in the single-level case).
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The derivation oﬁ and the BLUPs for the general linear multilevel model is done as
in §3.5, with the obvious substitutions. Pre-decompositions of the data, as described in
§4.2, are not meaningful for the generallinear multilevel model, as a new decomposition
would have to be obtained for each new valugdh the optimization process. The
results on the distributions qﬁ(a) andb|y in §3.1 extend in the obvious way to the
general linear multilevel model.

Finally, the EM algorithm described 8.4 has to be modified for the general lin-
ear multilevel model. For a given value pf= p*), the methodology 0§3.4 can be
applied to the corresponding “observations” to obtain updated estimag8, 3",
ando2(). Assuming these fixed, updated estimateg @ire obtained by maximizing

¢ (p|y, 0“),,8(”,02“)) . This alternating optimization scheme is an example of the

ECME algorithm proposed by Liu and Rubin (1994) and shares with the EM algorithm
the property of monotone convergence.

5.2 Nonlinear multilevel model

A one-level nonlinear mixed effects model is similar in form to the linear mixed effects
models (1) except that the expressi&ng + Z;b;, which is linear in both the fixed
effects3 and the random effects;, is replaced by a nonlinear expressiff(3, b;)
where the components ¢f;(3, b;) are given by{ f;(8,b:)}; = f(¢;;,zi;). Here

f is a nonlinear model function and the subject-specific model parameter for gadup
the jth observation is

¢;j = Aij3 + Bi;b;

The matricesA;; and B;; are of appropriate dimension and depend on the group and
possibly on the values of some covariates atjtheobservation. This model is a slight
generalization of that described in Lindstrom and Bates (1990) or Davidian and Gilti-
nan (1995) in thatd;; andB;; can depend op. This generalization allows the incor-
poration of “time-varying” covariates with the fixed effects or the random effects in the
model.

A nonlinear model with two levels of random effects can be written

where{ f,: (8, b;, bij)}k = f(@iji> Tijr) and, ;. = Ay B + B jib; + Bij 1 bij.
The reason for the somewhat awkward notation is, as before, to allow “time-varying”
covariates to be used with the fixed effects or the random effects. Often in practice the
matricesA;;x, B; jix, andB;; ; are identity matrices or subsets of the columns of an
identity matrix.
Extensions to more than two levels of random effects follow the obvious patterns.
Becausef can be nonlinear in the fixed or random effects, the integrals required to
express the log-likelihood do not have the succinct representations of those in the linear
case. Also the conditional estimates of the fixed effects and the conditional expectations
of the random effects do not have the analytical solutions they do in the case of the linear
model.
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As shown in§2 parameter estimation for the Gaussian linear mixed-effects model
can be re-expressed as a penalized least-squares problem. Itis natural also to re-phrase
Gaussian nonlinear mixed-effects models as penalized nonlinear least squares problems
approached through linear approximation to the nonlinear model.

For a purely fixed-effects nonlinear regression model a common iterative parameter
estimation method is the Gauss-Newton method (Bates and Watts,§P98Bwherein
the nonlinear modef (3) is replaced by a first-order Taylor series approximation about
current estimate8®) as

df

~ £k 4 I _g®
£0)~ 1Y) + 3] B8

The parameter incremedit®) = B+ — 3 for thekth iteration is calculated as the
least squares solution of

_ 4

— Bk (k)
= 5 BB e

B=p"

y— £(B%)

A similar iterative scheme can be used to determine the conditional estiB(fﬂ)es
and the conditional modes of the distribution of the random effects given a value of
6 in a nonlinear mixed effects models. Some care must be taken when incorporating
the penalty terms such @sb; into the nonlinear problem because the penalty termis a
linear function ofb;, not a linear function of the incremebll(t’““) - bgk). Two possible
formulations of the penalized nonlinear least squares problem are

[yi - fi(ﬂ((’“k)), bﬁk))] _ [X} (B%FD — gy 4 {Z] (bgk“) — bg’“)) i=1,...,M

—Ab 0 A
or
- (k) ptk) . 3(k) bk . 1 .
y, — £i(B7,0;7) + XY + Z:b | _ | X Bl 4 Z; D (29)
0 0 A
where
Xi:d—f, and Zi:d—j;
48 b,

We prefer the second formulation (29) as the calculation of the increment more closely
follows the form of the solution of the penalized least-squares problemin the linear case.
This is essentially the form of the increment used in Lindstrom and Bates (1990) al-
though this form allows generalization to a multiple levels of random effects.

Once updated values of the fixed-effects parameleand the conditional modes
of the random effects are available, the derivative matdeandZ; are re-evaluated
and the variance-covariance parameteese updated by several EM iterations. Only
the EM iterations are used at this point becauseXh@nd Z; matrices are going to be
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recalculated the next tim@ and the conditional modes of the random effects are up-
dated. It is not worthwhile determining the exact optif@dbr the approximate prob-

lem that will subsequently be modified. Once the process of updatiagdd sepa-
rately stabilizes, they can be optimized jointly with higher order approximations to the
log-likelihood for the nonlinear mixed-effects model as described in Pinheiro and Bates
(1995). The Laplacian approximation would be a good choice of a higher-order approx-
imation.

The fact that the profiled log-likelihood or profiled log-restricted-likelihood for a
linear mixed-effects model can be quickly evaluated and also that EM iterations are very
fast makes the early optimization fand@ for a nonlinear mixed-effects model faster
and more stable. Also, the current formulation of the linear mixed-effects model allows
extension of nonlinear mixed-effects models to multiple nested levels of random effects
which was not previously available.

5.3 Implementation

The computational methods for multilevel Gaussian mixed-effects models, general lin-
ear mixed-effects models and nonlinear nested mixed-effects models described in this
paper are implemented in version 3.0 of MIeME library for S, S-PLUS, andR. Doc-
umentation and source code for this library is available at

http://franz.stat.wisc.edu/pub/NLME/
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