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Abstract

Optical devices are poised to form the core of the next generation of backbone and enterprise networks.  Optical routers, DWDM systems and cross-connects of unprecedented capacities are on the verge of large-scale commercial deployment.  This massive build-up of optical gear necessitates careful planning and provisioning of  the basic unit of transmission - the lightpaths.  This work presents a range of techniques for efficient and reliable optical network design – covering decentralized dedicated protection to shared path-based mesh restoration. These algorithms have been incorporated into SPIDER, an extensible software tool with a browser-based user interface, Java-based visualization and spreadsheet input/output capabilities.  We describe SPIDER and report on recent core networking applications using this tool which also illustrate the key trade-offs in optical network designs involving a variety of grades of protection and the balance between efficient use of the wavelengths and restoration times.

1 Introduction

Optical devices are poised to form the core of the next generation of backbone and enterprise networks.  Optical routers, DWDM systems and optical cross-connects of unprecedented capacities are on the verge of large-scale commercial deployment.  This massive build-up of optical gear necessitates careful planning and provisioning of  the basic unit of transmission - the optical lightpaths.  This report presents techniques for efficient and reliable design of optical networks through failure-resilient lightpath provisioning. We consider a range of routing options, their associated trade-offs for optimization of wavelengths, and lightpath protection against fiber and interface failures ranging from decentralized dedicated protection to shared path-based mesh restoration.  This evaluation calls for a novel network design software that not only employs the relevant optimization solvers, but also has the flexibility to solve for a variety of routing and protection mechanisms.  The relative merits of distinct core architectures and provisioning schemes can therefore be measured for any specific network.   Furthermore, new routing protocols can to be quickly evaluated in terms of their comparative efficiency and restoration properties.  SPIDER is a software tool that has been built at Bell Labs to help answer the said questions for design and provisioning of lightpaths in core optical networks.  In this article we review both SPIDER and the problems it solves in some detail.

In Section 2 we describe the basic optical design and routing problems from an algorithmic point of view.  This includes descriptions of routing and protection/restoration algorithms currently incorporated into SPIDER.   In Section 3 the software architecture of SPIDER is described.  This includes description of a browser-based user interface, Java-based visualization and spreadsheet input/output capabilities.   In Section 4 we give an examples of a SPIDER core optical designs for a US wide.  We complement this with output of various SPIDER runs to measure network and cost efficiency of various design schemes versus their restoration times.  We conclude with the implications of the said routing schemes for near real-time and proposed new lightpath provisioning protocols such as extended OSPF and ONN.

2 Bandwidth Efficiency versus Restoration Times 
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In this section we describe techniques for routing of lightpaths in core all-optical networks in which 100%, or any desired degree of, recovery is required for a single network link or node failure, see[1] for an overview of different restoration schemes (and proposals for new restoration protocols). Optimal design and routing for such networks, taking the cost of failure recovery into account, is a hard computational problem (see for example [2]). The effectiveness of a proposed routing mechanism is judged not only by the resulting efficiency in the use of available wavelengths but its complexity of provisioning and its speed of restoration in operational networks.  Each of our schemes described below best fits a given grade of protection, such as platinum for fastest (below 50 msec) to gold (50-100 msec) and silver (~1-10 sec) restoration (propagation delays excluded), and can be implemented by the majority of the emerging optical networking protocols such as MPS. For prior work on routing and design of networks using SONET or logical rings see [3,4], for DWDM and restoration see [5,6], for mesh network design, restoration optimization and wavelength assignment see [7,8,9] and or general background on optical networks see [7,10]. The following sections describe three possible network architectures, with their associated routing and protection mechanisms.

2.1 1+1 Dedicated Protection 

In this routing scheme, node pairs that have demand are connected with sufficient number of wavelengths on an active path and an identical number of protection wavelengths on a diversely routed protection path. The protection wavelengths are dedicated for each node pair, but the fibers carrying active or protection wavelengths for different node pairs may be shared, see Fig. 1. The scheme for recovery from link failure is easily seen to require 



· propagation delay and recognition of failure by each affected node pair (~10msec) 

· switching to the dedicated protection wavelength(s) (~20-40msec)

For each wavelength, therefore, the equipment used at end nodes perform an operation identical to Automatic Protection Switching (APS) available in the earlier SONET and SDH hardware technologies.  The speed of recovery is thus a few tens of milliseconds. The solution methodology consists of finding a disjoint pair of active and protection paths for each demand, aggregating these to obtain the total number of wavelengths on each fiber, and then costing the overall design.  Phase 1 can be carried out in at least two ways.  For example, each demand can be routed on its “shortest path” (e.g., by counting hops or distances, or use of an adaptive cost metric which keeps track of the “fill” of a fiber) and dedicated protection wavelengths are routed over the disjoint residual graph. Alternatively, all node pairs with their disjoint routes can be routed simultaneously using a cost-optimization approach. 

We give a heuristic routing algorithm to the 1+1 dedicated protection scheme. The key idea of this algorithm is define an iterative shadow cost for each network resources, then route each demand along its least cost and feasible path. 

1. Cost of (-channel: each (-channel requires a channel in a fiber. To optimize the fiber usage, the use of (-channel in some existing fibers is encouraged. This can be achieved with a (-channel cost of the form:


[image: image65.png]File Edit View Option Help

-10
Philadelphia

Network [Demands





where, 
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is the marginal cost of unit (-channel, 
[image: image3.wmf]ij

l

is the length of the link, 
[image: image4.wmf]ij

w

is the number of (-channels in use on link (i, j), W is the number of (-channels that can be carried by a fiber, 
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is the cost per unit length of fiber, and 
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 depends on whether wavelength converter existed. In the case of wavelength continuity (no converter at any node) when the wavelength ( is currently not available on link (i, j), 
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; and t is set empirically. The shape of
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, as a function of 
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, is shown in Figure 2. 
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2. Cost of port: each end of a (-channel requires a port on an OXC installed at the corresponding node. Each OXC may contain a finite number, say X, of ports. Similar to the (-channel cost, port cost can be given in the form:
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where, 
[image: image12.wmf]i

x

is the marginal cost of a port at node i, 
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is the number of ports in use at node i, X is the total number of ports in an OXC, 
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 is the cost per OXC, and t=2.2.

3. Cost of amplifier: assume that an amplifier is needed for each given length, say La, of fiber. The amplifier cost can be integrated into the (-channel cost if we redefine the unit distance cost 
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4. Cost of transmitters: since the number of transmitters needed only depends on the total number of demands rather than the routing algorithms, we ignore the cost of transmitters in the routing procedure.  However, it will be counted in the total network cost computation. 

Using the cost model given above, we can give the algorithm for dedicated protection as follows. 
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2.2  Shared Protection using Logical Rings
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In this architecture node pairs are grouped into logical DWDM rings each of which carries no more than the pre-defined number of wavelengths per fiber for active as well as protection wavelengths.  Active paths are defined for all node pairs on the same logical ring and protection wavelengths are reserved in the complementary routes on the ring for each node pair, as shown in Fig 3.  The number of protection wavelengths for each demand is thus the same as the number of active wavelengths used for carrying demands allocated to each ring.  However, non-overlapping demands on the same ring can share protection wavelengths.  For example, demands between nodes 1-3 and 3-2 can share protection wavelengths on the ring 1-3-2-5-6-1. The rings 1-4-7-2-5-6-1 and 1-3-2-5-6-1 can share fibers on links 2-5, 5-6, and 6-1.  Although in principle it is possible to share protection wavelengths across rings using optical cross-connects, we do not use such sharing due to the complexity of recovery when failures occur.

The scheme for recovery from failure is only somewhat more complex than dedicated protection described above.  Similar to dedicated protection, only the end nodes of each wavelength affected by the failure need to take care of the failure (~10msec).  Once a failure condition is recognized, the switch over to protection wavelengths is made.  In our logical ring design solution, each demand is mapped to a single ring.  Therefore, it will not be necessary to coordinate multiple rings for recovery.  The single ring auto-recovery takes ~50 milliseconds, allowing for ~40msec cross-connect remapping in the intermediate nodes. Optical cross-connects are needed for auto-recovery on each logical ring and for sharing of fibers.
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Using the same shadow cost as that in the previous section, the routing algorithm for logical rings is given as follows. 

2.3 1+N Protection on Single Demand 

A computationally simple method for the shared-protection mesh network design can be obtained by considering shared-protection routing for single point-to-point demands. We first address the sharing only among multiple candidate paths between the source and destination for the single demand under consideration, see Figure 4.
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However, these single demand solutions can be subsequently combined to account for sharing across demands. The procedure can thus be used in designing a reliable network from start (greenfield scenario), and provides a fast and approximate solution to a special case of a more comprehensive mesh design to be discussed in the next subsection.  We refer to this algorithm as the 1+N  shared protection algorithm in our numerical results later.

Consider the restoration-adapted version of the standard multi-commodity flow problem:
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that seeks to minimize the total wavelength distance traversed in the network while protecting against single link/node failures. As explained earlier, we focus on a single source-destination pair s-t which is assumed multiply connected by N candidate paths, each path i with a given cost ci of carrying unit flow. The costs may be ordered as c1 (  c2  ( .... ( cN  . For single-path-failure reliability, it is easy to see that 
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, i.e. the set of candidate paths may be pruned in this manner without loss of optimality. We seek to route, at minimum cost, a total demand D between s and t along the paths such that service is not interrupted by single path failure. This problem has the following simple LP formulation directly derived from (1) above:
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 , the above LP is written as a classical knapsack problem for fixed D’.
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  (3)
It can be shown that (3) has the following simple solution: Let 
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A simple search over D’ : 
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 then produces the globally optimal xk independent of whether or not they are restricted to take integer values. The end result of this procedure is that the optimal set of chosen paths, for large demands, will satisfy 
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. This relation has the interesting interpretation that the optimal solution, independent of the demand, chooses to add new paths to route the demand only until the incremental additional cost of unit restoration capacity continues to decrease, beyond which it load balances among the previously chosen paths.  It is also possible to show that complete load balancing over all paths, i.e. the choice 
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 is never more than a factor of 2 in total cost from the optimal solution. Finally, all of the above conclusions can be generalized for the case of  reliability against multiple failures, individual capacity limits for each path, variable degrees of protection from full backup of affected demand to smaller percentage, as well as differing fixed installation costs for each path.
Motivated by the above-described tractability of the single demand routing problem, we propose the following heuristic solution to the more general shared mesh network design that accounts for sharing across demands.

This algorithm provides a limited form of sharing between demands, as well as between routes for a given demand, and produces a sub-optimal approximation to the fully shared mesh network design. However, it provides a simple solution to the routing and restoration problem that is easy to compute, update with new demands, and manage when failures occur. Note that only the demands that are affected by a particular failed link/node need to be rerouted, and further, the rerouting for the affected set demands is always the same, thus making fault-isolation unnecessary. When the demands are small and grooming/packing efficiency is important, it is possible to adapt the heuristic to pack more efficiently, by altering the choice of primary paths, without losing the desirable features of the result.

2.4 Optimal Shared Protection/Mesh Design Using Mixed Integer Linear Program

This architecture generalizes the shared-protection ring scheme described above without explicit partitioning into rings.  As before, active and restoration paths are constructed for all node pairs, but the restoration capacities, computed as the maximum number of wavelengths required on each link when a single failure occurs, are fully shared. This scheme optimizes the redundant (or spare) capacity requirements, but has increased restoration complexity compared to the ring method. Figure 5 shows a simple example in which protection path 2-3-1-8 for demand 2-8 on path 2-8, protection path 2-3-1-4 for demand 2-4 on path 2-7-4 and the active path 1-3-2 for demand 1-2 on path 1-3-2 all can share wavelengths on edges 2-3 and 3-1.

This scheme requires careful pre-planning for an efficient implementation.  Each failure invokes an optimally recomputed reconfiguration map at each node with possible wavelength conversion to avoid collision on the same set of links during path restoration events.  The maps can be pre-computed using optimization.  The objective is to minimize the total number of wavelengths needed.  The resulting maps are stored in each optical cross-connect.  Path restoration is not conditional on isolation of fault: by using multiple alternative disjoint protection paths for each active path, the end nodes initiate recovery procedure once the signal loss is registered and disjointness of restoration routes ensure their availability when the single failure condition disables the normal route(s).  Once the end nodes encounter a failure condition on a path (~10msec), they communicate the restoration routes of the s to be restored to each intermediate OXC on alternative paths and the maps to be uploaded by each OXC (40-80msec).  These maps change, often only incrementally, when new demands are added. In case of topology changes, all active and backup routes may require updating, but topology changes surely affect other architectures too. To re-use and extend the notation introduced in the previous sections, let 

N
Set of all network nodes

E
Set of all network edges

K
Set of all node-pairs

P
Set of all paths for all node-pairs

D
Set of all node-pair demands
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Demand for node pair k
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Flow (in units of  ) assigned to path p
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Set of all paths for node pair k – assumed to be (node) edge disjoint
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Flow (in units of  ) assigned to path p when edge f is in failure mode

To ensure that bi-directional demands are routed the same way, we restrict 
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.  Furthermore, to reduce problem dimensionality, we include a path in P only if its end nodes have demand.  To ensure that restoration from failures does not require fault isolation, we assume paths in each
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 are disjoint for each commodity k.  Therefore, when an end node pair recognize a fault in (one of) their primary path(s), the node pair initiate restoration over the remaining paths, which due to their being disjoint from the failed path, must be operational in cases of single (link) failures.

To see how the mesh network should be designed and its demand routed using the above notation, consider the following problem [5]:
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These conditions ensure that 1. Demand for each node pair k is met, and 2. The link capacities are not exceeded.  Thus any allocation of flow 
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to path p that meets (1) and (2) is considered feasible.  To avoid solutions with meandering paths–those that are either unusually long or visit the same node more than once–the set of paths P need to be carefully generated.  Examples include paths that do not exceed pre-specified hop counts or distance limits between their end nodes.  Further, more careful path generation reduces the problem complexity as will be seen in the following discussion.  In general, K-disjoint paths that meet path qualifications are generated for each node pair with non-zero demand, for a sufficiently large K.The mesh network routing problem can be formulated according to a variety of criteria using the foregoing notation.  For example, it may be important to route as much of the demand on shortest possible routes.  In this case the natural criterion may be the sum of wavelengths times the distance each wavelength traverses.  Or it may be desired to spread the load as evenly as possible so that all the edges in the network carry more or less the same number of wavelengths.  For the latter criterion, the following formulation results:
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Constraint set (1) ensures that demands (in number of s) are met for each node-pair and (2) the link/DWDM capacities are not exceeded.  Constraint set (3) is there to even out the load on the network.  The same routing design problem, with the minimum sum of wavelength distances as the objective function is as follows:
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Constraint set (3) for P2 counts the number of wavelengths used on each edge for use within the objective function.  We will show computational results based on each of the above two criteria in Section 6.  

For the mesh network restoration problem, the same set of objective functions as P1 and P2 apply.  However, this time additional constraints are needed to ensure 100% protection against failure is also provided.  Let 
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denote the overflow assignment of wavelengths to path p when edge f is in fail condition.  Then, the assignment of normal routes 
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 for the minimized sum of wavelength*distance objective (as in P2)  is given by the solution of
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We refer to this formulation as the restoration problem.  Note that in this formulation for each failure condition a large number of reconfigurations may be necessary since the overflow variables are only constrained to meet demand and not exceed edge capacities.  To enforce reconfiguration only for routes that are affected by the failure condition, a slightly different set of constraints are needed.  This formulation is given below.
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Note that in formulation P4 of the restoration problem, we have also allowed a more general recovery percentage 
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 for each node-pair k than recovery of all paths disrupted by each link failure, 
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=1 or 100% recovery, which is what was done in P3.  However, this extension adds no complexity to the problem and substantially simplifies the execution of restoration.  The above formulation can be further enriched to allow for situation where fault localization is hard or are too time consuming to achieve.   However, these models give sufficient description to provide the necessary trade-offs between restoration efficiency and time, described in Section 4.

3 Software Architecture for SPIDER 

As we have seen, there are a variety of design, routing and protection schemes for optical core networks.  It is likely that in the near future hybrids or even new schemes will be invented and implemented by both Lucent and other manufacturers.   Since SPIDER aims to accurately model current and future routing, protection schemes and protocols, its software needs to be highly flexible and modular.  This calls for separation of application, I/O, visualization and computational engines.  To this end the SPIDER application has been built of 5 parts:

· Text-based (comma-separated-value) front end for network and data Input/Output.

· Graphical (Java) front end for visualization and graphical I/O.

· CGI-scripted web interface in Perl for client/server architecture.

· Back-end glue in Perl.

· Back-end algorithm processing in C where heavy-duty optimization processing is implemented.

3.1 Evolution

At first the algorithmic problems were solved using C and in some instances 3rd part software such as MINOS and CPLEX [11] were utilized.  Following test runs and verification of designs, implementation of Java front end, to allow for graphical entry and visualization of the network, was initiated.  The original front end was implemented as a standalone java-1 application.  We were less than thrilled with the challenges of implementing a graphical interface on the java-1 base, and eventually learned that this front end was not well matched to the needs of the intended users of the application.

What the users wanted was to be able to collect their network definition in a spreadsheet using the Microsoft Excel application and then feed the spreadsheet data to SPIDER.  We had also realized that delivering the application as something to install on a PC would leave us with configuration management problems.  Our preference was to keep the application on a central server and provide access to it via web browsers.  We have been reasonably pleased with the result of that decision, but have found there are still challenges in the variety of web browsers in use.  We had read elsewhere (e.g. [14]) of dangers of an application getting too close to the proprietary formats of Excel.  To avoid this problem, we opted for a particularly simple format that Microsoft calls “CSV”, comma-separated-values.  We believe this format will likely remain usable without pain for us as Microsoft potentially makes changes to Excel in future releases.

The next problem to solve was how to interact with the user to transfer their spreadsheet data over to our application on its central server.  Since we didn’t have a lot of prior experience implementing web based applications, and this didn’t look like it should be a rare aspect of such applications, we didn’t want to re-invent the wheel.  We looked for standards and found RFC1867 [15].   Without too much more searching, we located an inexpensive commercial product that implemented that standard in a Java Applet [16].  The vendor made a free evaluation period for their software available to us.  Unfortunately, we ran into problems during the evaluation.  Source code for the product was not available to us, so we turned to the prospective supplier for help.  They were nicely responsive to e-mail, but were unable to nail down the cause of our difficulties.  The suspicion is that there were troubles from variations in Java implementations from PC to PC.  Even when the “browser” is “the same” (e.g. Microsoft Internet Explorer), there’s still more versions of that browser and of the underlying Java implementation then we wanted to have to worry about.  The experience leaves us questioning the viability of the hoped for market in Applets [16], at least for the case of Applets sold as “black boxes” without access to the source code.   Fortunately, we found an Open Source implementation of RFC1867 in the Perl module “CGI.pm" [17] and enough documentation to be able to figure out how to make it work [18].  The CGI.pm implementation of RFC1867 didn’t do quite everything that was provided by the Infomentum product, but it was good enough and seemed much more stable in our testing.  Later, we decided that the application needed visual display of its results and returned to Java for that display.  This time we used Sun’s Java-2 plugin within the browser.  The libraries in Java 2 for graphical display generation were much more satisfactory and we are hoping the users will be able to handle the “automatic” installation of the plugin to their browser.

3.2 Security

There are obvious concerns to worry about in making an application available on the web.  Deploying it on a web server inside the Lucent firewall would block access from the world at large, but still makes our application be accessible to more then 100,000 Lucent associates and potential users.  Since we were unprepared to vouch for everyone with computer access within Lucent, we needed a way to contain the application.  Our standard web server in the Math center runs on a computer allows a user-ID of “nobody”.  That would not do for all of our applications (such as Cplex [11] as its license only allows it to run on a computer here with a specific licensed name).  Therefore, we needed a web server that could have access to the 3rd party software.  Our solution was to set up a new user-id “SPIDER”, and an Apache web server on a PC running Linux in our lab.  Since the web server is strictly for our application, it can run with the “SPIDER” user-ID.  We then need make sure that the SPIDER user-ID is only able to access things we do not need to protect from the vast Lucent-internal user community.  This met our objective of not having to worry about administering user accounts, but we recognize that the system is possibly more “open” than our users might want it to be.

3.3 Lessons Learned

The old adage about “Plan to throw one away” is very true.  When learning a new language with the complexity of Java, you may be well advised to plan to throw more than one away. Time spent digging up standards and available libraries instead of re-inventing the wheel is time well spent. Black box third party software is trickier to live with then Open Source libraries.  We still have our fingers crossed about how well Java will work out for us in the field.  A maze of twisty virtual machines, all different.

The project needs to have control of its environment.  The Linux base for our front-end was invaluable to us. We were able to tweak the web server configuration and update the Perl libraries with new modules from CPAN as we needed them, without having to push for time from people outside of our project to make those updates for us.  “We’d like to try this new library” is not a need that typically gets high priority attention from over-burdened system administrators.  The down side is that it means our project must continue to pay attention to system administration of Linux into the future.  Keeping a Linux box up to date with security updates is non-trivial work.

In retrospect, we should have realized we needed to set up more than one instance of our application.  Now that we have real users, it is impractical to make and test changes without interfering with the users.  Productization could begin by modifying all the hard-coded paths is enough hassle that we wish we had planned for that in the first place.

4 Examples of Networks Designed and Numerical Results 

An idealized NSF backbone network was assumed to consist of 10 nodes and 17 fiber optics links as shown in Figure 6.


The topology and load data for a SPIDER study are shown in Tables 1 and 2.
Node
Node
Distance
Spare s
Node
Node
Distance
Spare s

Seattle
Chicago
1200
0
Dallas
Kansas
300
0

Seattle
Stockton
800
0
Dallas
DC
800
0

Stockton
Chicago
1400
0
Dallas
Atlanta
600
0

Stockton
Cheyenne
600
0
Chicago
Kansas
300
0

Stockton
DC
2000
0
Kansas
DC
600
0

Stockton
Rialto
300
0
Chicago
Philadelphia
800
0

Rialto
Dallas
800
0
Philadelphia
DC
150
0

Cheyenne
Kansas
400
0
DC
Atlanta
800
0

Table 1.  Fiber network topology, with distances and spare capacity on each link.


Seattle
Stockton
Rialto
Cheyenne
Chicago
Kansas
Dallas
Philadelphia
DC
Atlanta

Seattle

20
20
10
10
10
10
20
20
15

Stockton


20
10
10
10
10
20
20
15

Rialto



10
10
10
10
20
20
15

Cheyenne




5
5
5
10
10
10

Chicago





10
10
20
20
20

Kansas






5
10
10
10

Dallas







10
20
10

Philadelphia








20
20

DC









20

Atlanta











Table 2.  Nodes pair (projected) demands in units of OC192.  Demand is assumed symmetric (the lower triangular portion is not shown).


To illustrate SPIDER, this network was designed under five different protection plan alternatives, ranging from no protection shortest path routing (base) to a complete mesh with shared-protection.  The results are tabulated in Table 3.  The following costs were assumed for this comparative study: 80 -- Number of bi-directional lambdas per fiber-pair; $100K -- Cost of OXC without any port/plugins; 256 -- Size of OXC (Maximum number of lambda-pair terminations); $5K -- Cost of OTU/Wavelength Converter per lambda-pair termination; $1.5K -- Cost of general purpose 10G fiber-pair per km (including amplifiers); $100K -- Cost of a pair of DWDM multiplexers; $50K -- Cost of regenerators per fiber-pair; 600km -- Regeneration distance.

Our experiments assumed the presence of optical cross-connects at each node, which are almost certainly required for robustness and flexibility in the core of all-optical networks. Under this assumption, mesh restoration-based shared protection architectures seem to be the most cost-effective and efficient. From the standpoint of recovery time, dedicated protection solutions, for the immediate future, have an advantage over the alternative designs, with the shared-protection ring-based designs closely behind.   Mesh restoration, however, is likely to be the architecture of choice in future due to its flexibility and faster provisioning.  We also observed that the solutions differ substantially in their efficiency of use of the wavelength resource (-efficiency), which is the total number of wavelengths (or *km) used to route demands divided by the total number of wavelengths (or *km) needed for both routing and 100% protection against single failures (row 5 in Table 3).  Thus, we observe a reverse relationship between efficiency and cost ratio (row 12 in Table 3) on the one hand and recovery speed on the other, which leads to natural differentiation of lightpath services, based on the required grade of protection.


No Protection
1+1 Protection
1+N Protection
Shared Protection Ring
Shared Protection Mesh

Equipment/Cost
# Units
Cost
# Units
Cost
# Units
Cost
# Units
Cost
# Units
Cost

Bi-dir s
1215
NA
3,081
NA
3,117
NA
2739
NA
1967
NA

Bi-dir *km
688k
NA
1,837K
NA
1,799K
NA
1,687K
NA
1,270K
NA

-efficiency
100%
~40%
~40%
~40%
~60%

Optical X Connects
20
2,000K
34
3,400K
34
3,400K
30
3,000K
25
2,500K

Bi-directional OTUs
3,640
18,200K
7,372
36,860K
7444
37,220K
6,688
3,3440K
5,144
25,720K

DWDM mux pairs
23
2,300K
43
4,300K
45
4,500K
39
3,900K
27
2,700K

Bi-dir fiber km
14,200
21,300K
26,450
39,675K
27400
41,100K
24,450
36,675K
16,700
25,050K

Regenerators
10
500K
19
950K
20
1,000K
18
900K
12
600K

Total costs
NA
44,300K
NA
85,185K
NA
87,220K
NA
77,915K
NA
56,570K

Cost Ratio
1
1.9
1.9
1.7
1.2

Operation complexity
None
Easy
Moderate
Moderate
Complex

Real time provisioning
Simple
Impractical
Easy
Easy
Easy

Restoration time (including end-to-end propagation delays)
NA
~10-100ms
~50-100ms
~50-100ms
~50-200ms

Table 3. Comparison of five distinct designs using SPIDER

5 Conclusions

SPIDER is a software tool for network design cost optimization and comparative routing and protection performance evaluation of (nearly) all-optical core networks.  It currently includes novel and very efficient implementations of path-based restoration algorithms for single physical layer network failures.  The modularized Java-based visualization, the browser-based GUI and the library of routing and network design engines in C/C++ provide a flexible platform to evaluate and compare different designs and capacity expansions, and make informed decisions for specific networks.  The flexible linkage between the routing/design engines and the visualization modules makes it possible to add new routing engines easily and as needed.  As an example, we expect to add Lucent's centralized (SoftWave) and decentralized (ONN) routing schemes to SPIDER in the near future.  The above example also illustrates the kind of trade-offs that exist for routing and protection in next generation all-optical networks.  As the degree of protection sharing increases from a purely 1+1 dedicated, the efficiency of the network increases and the overall network cost decreases, but intelligent near-real time provisioning of lightpaths will be needed to take advantage of this added efficiency.  The increase in restoration time is moderate and well within the accepted thresholds in optical networking.  Of course, for any specific lightpath and grade of protection, the appropriate protection will be utilized.  These are near-real time issues that link SPIDER to lightpath provisioning systems such as SoftWave with significant implications for emerging applications such as bandwidth trading.
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Figure 2. Function of -channel cost � EMBED Equation.3  ���based on utilization � EMBED Equation.3  ���and iteration parameter t
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Figure 5. Active and restoration paths and wavelengths for demands between nodes 1-2 (1-3-2 and 1-6-5-2), 2-4 (2-7-4 and 2-3-1-4) and 2-8 (2-8 and 2-3-1-8)
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Generate candidate ring list: for each demand in the demand list, generate k shortest cycles (rings) passing through the two end nodes of the demand. A modified version of either A*Prune algorithm [11] or Suurballe-Tarjan algorithm [12] can be used to generate such k rings. All the generated rings are listed by their increasing length.


List candidate path pairs for each demand: for each ring in the ring list, generate two path-pairs along the ring if both end nodes of the demand are on the ring. At most 2R such path-pairs for each demand can be generated, where R is the total number of rings in the ring list. 


Compute/update marginal cost for each candidate path-pair:  the  marginal cost of a candidate path-pair p is the sum of shadow cost of all resources required by p, and can be defined as:


� EMBED Equation.3  ���


Order the demand list: the demand list can be in random order.


One round routing: do the following steps for each demand in the demand list:


Remove the route assigned to the demand if it has any, and free all the resources acquired by the demand. 


Update marginal cost for all candidate path-pairs affected by the removed routes.


Route the demand along its least cost path-pair. This includes find the least cost path-pair and claim all necessary resources along the path-pair. 


Update marginal cost for all candidate path-pairs affected by the removed routes.


Fine tuning loop routing:  repeat the procedure of one round routing until a converged routing is reached.  A routing is considered to be converged if the total network cost given by the current round routing is the same as that given by the previous round routing.








Generate candidate ring list. Same as that in dedicated protection algorithm given in section 2.1.


List candidate paths for each demand: for each ring in the ring list, generate two paths along the ring if both end nodes of the demand are on the ring. At most 2R such paths for each demand can be generated, where R is the total number of rings in the ring list.  


Compute/update marginal cost for each candidate path:  the marginal cost of a candidate path � EMBED Equation.3  ���retrieved from ring r is defined as: 


� EMBED Equation.3  ���


Here � EMBED Equation.3  ���is 1 if � EMBED Equation.3  ��� is the first path to invoke a new protection channel, and is 0 otherwise. 


Order the demand list: the demand list is preferred in the decreasing order of the length of its shortest rings, so that the demand which invokes a larger ring is routed first.


One round routing: do the following steps for each demand in the demand list:


Let d be the demand to be routed. 


If d has already been assigned a route p, remove route p and free all the resources acquired by p.  Assume p is originally protected by the ring protection channel r. Remove r if there are no other working channels to be protected by r. 


Update marginal cost for all candidate paths affected by the removed routes.


Route the demand along its least cost ring-path. This includes find the least cost ring-path and claim all necessary resources along the ring-path. 


Update marginal cost for all candidate ring-path affected by the routing procedure (4).


Fine tuning loop routing: Same as that in dedicated protection algorithm given in section 2.1.  


Both dedicated protection and logical ring protection algorithms can also have variant versions, such as shortest path routing or wavelength continuity routing. The shortest path routing version routes all demands along their shortest paths. The wavelength continuity case can be handled by selecting appropriate � EMBED Equation.3  ��� in the cost model. 
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Figure 4. Short active (solid) paths and longer restoration (dotted) path for demand between nodes 1 &2. The fractions in red denote demand  carried by respective path.
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Figure 3.  Protection wavelengths for demands between 1&3 and 3&2 on ring 1-3-2-5-6-1 can be shared, as can the fibers on links 2-5, 5-6 and 6-1 for the two rings 1-4-7-2-5-6-1 and 1-3-2-5-6-1, as shown
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� EMBED Equation.3  ���








Solve the routing problem for each demand sequentially using a precomputed set of paths.


Pick the lowest cost K-1 paths as primary paths for each demand.


Cumulate the primary flows on each link to determine its primary capacity.


To compute total link capacities, fail one link/node at a time and determine the maximum net flow on surviving links when affected flows are routed on their respective Kth paths.








Figure 7. Screen dump of network visualization in SPIDER shows how each lightpath is routed (blue) together with its protection (possibly shared) lightpath (green).








Figure 6. A idealized NSF backbone network designed for 5-20 OC192 circuits between all node-pairs.  The variable link thickness is proportional to the number of s /fibers through it as shown by putting the cursor on the Seatle-Chicago link (in red).
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� EMBED Equation.3  ���Cost of new fiber





� EMBED Equation.3  ���:


 Weight function











Figure 1. Diversely routed protection wavelengths (dotted lines) for demands between node pairs 1&2, 2&4 and 3&8 using active wavelengths (solid lines) are shown.  These wavelengths (active or protection) can share fiber, e.g., on links 1-3 & 2-3.
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