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Abstract

We consider a formal diffusion limit for a control problem of a multi-type multi-server queue-
ing system, in the regime proposed by Halfin and Whitt, in the form of a control problem where
the dynamics are driven by a Brownian motion. In one dimension, a pathwise minimum is
obtained and is characterized as the solution to a SDE. The pathwise solution to a special
multi-dimensional problem (corresponding to a multi-type system) follows.

1 Introduction

Brownian control problems (BCPs) were proposed by Harrison [8] as formal diffusion limits for
queueing network control problems, to provide a basis for identifying and analyzing “good” or
nearly optimal control policies. Since then, several authors have studied methods for providing
optimal solutions to the BCPs, as well as suboptimal policies for the queueing networks which
asymptotically achieve these optima (see [13] and references therein). The formal limit is obtained
under the so called heavy traffic scaling (which we refer to here as the classical heavy traffic scaling),
in which time is speeded up by a factor of N, and queue lengths are normalized by a factor of v/N.
In the classical heavy trafic regime, a multi-server model with a fixed number of servers gives rise
to a diffusion limit identical to that obtained for a single server with accelerated service. In systems
where the number of servers is large (e.g., in models for call centers [5]), it is reasonable to consider
an alternative heavy traffic asymptotic regime, namely the one that was proposed by Halfin and
Whitt [6]. Under this regime, the number of servers is scaled up by a factor of N, the number of
customers in queue and the number of idle servers are scaled down by a factor of v/N, and time
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is not scaled (for recent results on these diffusion limits under fixed policies, see [10], [11], [12]).
Typically, the diffusion limits obtained under the classical heavy traffic scaling give rise to reflected
diffusions, while the scaling of Halfin and Whitt gives rise to diffusions with nonlinear (but piecewise
linear) drift. In the current work we consider a BCP obtained as a formal limit under the scaling
of Halfin and Whitt. Rather than formulating a general framework, we consider in this short paper
only the most simple example of a queueing network service control problem, as depicted in Figure
1. A related work is [9], where the HJB equation for the Brownian control problem under study is
proved to have a unique solution. Another control problem in the Halfin-Whitt regime is studied
in [1], although the objective function there is different.

Before analyzing the control problem referred to above, we formulate a BCP in dimension one,
for which we show that a pathwise solution exists. This solution is otherwise characterized as
the solution to a SDE. We point out the analogy with the classical BCP [7], where the pathwise
minimum agrees with the solution to the Skorohod equation.

In many cases, it has been shown that BCPs (in the classical setting) which correspond to
networks with several customer classes or service stations, and are therefore multi-dimensional,
have a reduction to a one dimensional problem, and as a result, a cost such as the weighted average
queue length possesses a pathwise minimum. The BCPs discussed in the current paper turn out
to be more complicated in that pathwise minimal solutions do not exist even in very simple two-
dimensional problems. Consider a network consisting of two classes of customers 1 and 2, served by
a pool of statistically identical servers, where class ¢ customers are served at rate y; and the number
of class 7 customers in the system at time ¢ is Q;(t), ¢« = 1,2. The quantity which corresponds in
the BCP to the weighted average queue length Q°(t) = Y, ¢;Q;(t) does not in general have a
pathwise minimum, and in particular, minimizing different (monotone) functionals of Q¢(¢) may
give rise to different optimizing policies. However, in the special case where iy = ps (but ¢ # c2),
we show that the quantity corresponding to in the BCP to Q°(¢) does have a pathwise minimum.
This is done by showing that the dimensionality of the problem can be reduced, and by using the
one-dimensional solution. Our argument applies to an arbitrary number of classes, but we consider
only two classes, to keep the notation simple. In the model that we consider, we also allow for
customer abandonments from the queues. Heuristically, the solution to the BCP suggests priority
to the class ¢ for which ¢; is greater. However, as is known in the classical scaling (e.g., [3]), an
actual asymptotically optimal policy for the queueing network may have to be more involved than
what is reflected by solutions to the limit problem.

Although the BCPs in the context considered here may fail to have the especially convenient
form of solution that the classical ones have, they still provide an obvious simplification of the
underlying queueing network control problems, and may help identifying asymptotically optimal
policies for particular costs. We pursue this direction in the paper [2].

In Section 2 we formally derive a BCP for a two-dimensional network. In Section 3 we consider
pathwise minimum results for a coressponding one-dimensional problem. Finally, in Section 4 we
identify a two-dimensional BCP that has a pathwise minimum, by showing that it can be reduced
to a one dimensional problem.



2 Formal derivation of a Brownian control problem

The configuration of the queueing system under study is depicted in Figure 1. The arrival rate
to queue ¢ is \;, ¢ = 1,2. Abandonments from queue i occur at rate #; per customer per unit
time. There are N statistically identical servers, and service to class i is performed at rate p;. A
controller dynamically schedules the services.

Let Qjo, Qi1 denote the number of class-i customers waiting in the queue, and, respectively,
being served. The total number of customers of class 7 in the system is then Q; = Q;o + @i1- To
ease the exposition, we consider a Markovian network (Poisson arrivals and exponential services),
although more general networks give rise to the same BCP. The state of the system will be given
by the collection of the four variables @);;, « = 1,2, j = 0,1. Note that if we assumed the policy is
a non-idling one, we would have a three dimensional problem, e.g. with variables Q19 + Q11, Q20
and Qa1, since then Q19 = ((Q10 + Q11) + Q21 — N)*. However, at least in the prelimit problem, it
makes sense to allow for idling policies. Let A; denotes the arrival process of class ¢ customers, and
S; the potential number of service completions in class ¢ up to time ¢ by a single server, namely, a
Poisson process of rate p;. Similarly, R;(¢) denotes a process used to count abandonments and is a
Poisson process of rate 6;. A;, S; and R;, i = 1,2 are independent.

Following Bell and Williams [3] and Williams [13], the control policy will be associated with a
process T = (T1,T5), where T;(t) denotes the accumulated time devoted to class ¢ up to time ¢,
summed over all servers. Note that T;(¢) is also the integral up to time ¢ of the number of servers
serving class ¢ customers. The composition S;(7;(¢)), i = 1,2 which gives the number of class-i
customers served by one server up to time T;(t), is equal in law to the number of class-i customers
that are atually served up to time ¢. In the same spirit, if U;(¢) denotes the waiting time before
service, accumulated up to time ¢, summed over all class ¢ customers, then it is equal to the integral
up to time ¢ of the queue length Qjo, and R;(U;(t)) then gives the number of abandonments from
queue ¢ until time .

The constraints that the processes above must satisfy are as follows. For ¢ = 1,2 and 7 = 0,1
and ¢ > 0, Q;;(t) > 0. Moreover, Q11(t) + Q21(¢t) < N, ¢t > 0. Finally, the two components of T’
are nondecreasing processes.

We introduce two more quantities. Although they do not carry additional information, it will
be convenient to use them to express the constraints. The total number of class ¢ customers in
the system at time ¢ will be denoted by Qi(t) = >=; Qij(t). I(t) denotes the idle time until time

¢, summed over all servers. The time derivatives of T', U and I satisty T; = Qi1, U; = Qio and
The equations satisfied by the above quantities are
Qi(t) = Qi(0) + Ay(t) — Si(T3(¢)) — Ri(Us(2))
Ui(t) = [y Qi(s)ds —Ti(t) (1)

I(t) = Nt—Ti(t) - Ta(t).
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Figure 1: A queueing model

The constraints discussed before are now fully described by:
T;,U;, I are nondecreasing. (2)
Note, in particular, that @; > 0 follows from (1) and (2).

We adopt the notation of [3, 13] for the renormalized processes: X and X correspond to fluid
and, respectively, diffusion scaling. The superscript N will be used to denote the parameters
and variables corresponding to the Nth system. The parameters undergo the following scaling:
AV/N — N, 0N — 0; and pl¥ — p;, but for simplicity we shall consider only the case where
AlN = N, HZN = 6; and ,uzN = ;. Due to this simplification, the heavy traffic assumption
AV /(Nud) + MY /(Npd) — 1 as N — oo takes the form

AA
222 (3)
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The initial conditions will correspond to the steady state fluid approximation solutions, namely,
QZN (0) = %N . The following equations define the scaled processes involved.

(TN(t) = N~'TN()
UN(@t) = N7UN@)
AN(@t) = N2(AN(t) — Nt
SN@t) = N~'Y2(SN(Nt) — Npugt)
RN(t) = N~'2(RN(Nt) - N6;t)
UN@t) = N Y2UN(@)

Nty = N-V2IN(¢)

Q) = N2QN®) - QN 0)



Letting

- A A
T*(t) = (—1t, —2t>,
B 2
and introducing the processes

V) = NVAT)-TNE), =12,

XN = AN - SN(TY (@) - RY (UM (1),
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we obtain the following equations for the normalized quantities
QN1 = XN+ YN () - 60N (),
UM = QN (s)ds + VN (1),
Ny = Y)Y ().

Note that by assumption XZN (0) = 0. Since we would like the limit control problem to correspond
to the family of queueing network control problems for which the fluid asymptotics of T is given
by T*, we impose the assumption that T — T*. The processes AN SN o TN and, respectively,
Rfv UlN then formally converge to Brownian motions with mean zero and variances A;, \; and,
respectively, 0.

We can now state the BCP for the system. The costs that we consider are somewhat arbitrary in
view of the fact that we will only be interested here with pathwise solutions. Let X; be independent
Brownian motions with variances 2);, 2 = 1,2. One is required to minimize either

Jim t7He1Q1(2) + c2Q2(1)),

or

E/ T(e1Q1(t) + c2Q2(t))dt

using a control process (Y1, Y, Uy, Us) such that the processes (Q, U, I) satisfy
[ Qi(t) = Xi(t) + pYi(t) — O:Ui(1),
Ui(t) = [y Qi(s)ds +Y;(t),

I(t) = Yi(t) +Ya(t).

U; and I are nondecreasing.

3 On a one dimensional control problem

In [7] a one dimensional BCP is defined which corresponds to the classical heavy traffic scaling, and
it is shown that it has a unique pathwise minimum. The minimum is otherwise given as the solution



to the one dimensional Skorohod equation. We consider here a control problem that is analogous
to it in both respects: It has a unique pathwise minimizer; and its solution can be characterized as
the unique solution to a certain differential equation. The equation for the minimum is

dQ(t) = dX (t) + pQ~ (t)dt — Q™ dt,

Q(0) = X(0),

where we denote z7 = max(0,z) and 2= = max(0,—z), and where X is the driving Brownian
motion.

The one dimensional BCP is to minimize (pathwise) the cost ¢1Q1 4 co@2 using controls Y and

U such that
Q(t) = X(t) +pY () -0U(),

[iQ(s)ds = U(t)—Y(t)

Y,U are non-decreasing,

Proposition 1 Let X € C be given and consider the relations (5). Assume 6 # p. Then there is
a unique solution (Q*,Y*,U*, I*) to (5) in C, for which Y* and U* are minimal in the following
sense: For any solution (Q,Y,U,I) to (5) one has

Ut) >U*(t) t=>0, (6)

and

Y(t)>Y*(t) ¢>0. (7)

Moreover, Q* is given by the unique solution q to

o) = X0+ [ 4 (5)ds =0 [ a*(5)ds, ®)

and U* and Y* are given by
t
Ut(t) = [ (@) ds )

v = [ (@) ds (10)

Remarks: (a) In case that # = u there are multiple solutions.

(b) Minimality or maximality of @* also holds, depending on the relation between 6 and . In case
that @ < u, one has

Q(t) = Q*(t), t=0,

and in case 6 > p,



holds. This follows from the proof.

(c) Equation (8) was obtained by Halfin and Whitt [6] in the case # = 0 as the weak limit of a
queueing system undergoing the above scaling. Garnett, Mandelbaum and Reiman generalized the
result of [6] to accommodate abandonment.

(d) Equations (9) and (10) merely express the fact that under the optimal policy, the cummulative
idle time and the cummulative waiting time are minimal. They also indicate that under the optimal
policy, when @ > 0 one has dY =0 and when @ < 0 one has dU = 0. This, in fact, together with
(5) characterizes the solution (Q*,Y™,U*) (see Proposition 2).

(e) In fact, a statement stronger than (6) holds (for & < p): U — U* is non-decreasing. On the
other hand, as can be shown by some simple examples, Y — Y™* is not necessarily non-decreasing.

Proof: Since z~ is Lipschitz in z it is classical that (8) has a unique solution. Therefore the
functions Q*,Y™*,U* and I* are well defined. The relations between Y*, U* and Q* expressed in
(9) and (10) are immediate consequences of (5) and (8). We will first treat the case 6 < p. It will
be shown that

Q) = Q°(t), t=0, (11)
and (6) and (7) hold for an arbitrary solution (Q,Y,U, I) to (5). We claim that

n(t) =U(t) — /Ot Q" (s)ds is non-decreasing. (12)

Indeed, (5) imposes that both U(¢) and Y (t) = U(¢) — fot (Q(s)ds are non-decreasing. Hence for
0 < s <t one has

t t t
U(t) — U(s) — / Qr(0)d) = / Losodn + / Lo<odn
S S S
t t
= /1Q>0dY+/ 1Q§0dU (13)
S S
> 0,

where the last line follows by monotonicity of the integrators and non-negativity of the integrands.
Since s < t are arbitrary, (12) holds. From the second line in (5), we have that

n:U—/'Qws:Y—/'Q*ds.
0 0
Now, from the first line in (5) we have

t t
Q(t) = X(t) + M/O Q (s)ds — 9/0 Q" (s)ds + (u— O)n(t). (14)

The solution to this equation is monotone in 7 in the following sense: If 77 —7 is nondecreasing with
n(0) = 7(0) and if @ [Q] denotes the solution corresponding to n [respectively, 7] then @ > @ (see
[4]). Since n > 0 and Q* corresponds to n = 0, (11) follows.

Next, since Q > Q*, we have that QT > (Q*)". We therefore obtain from (9) that

U= [ Qs> [(@)tas =,



and (6) follows. Now (7) follows from the first line in (5), (6) and (11). This completes the proof
in the case 6 <

In case that 0 > p one can transform the problem as follows: Replace ) by —@Q and X by —X;
interchange Y with U and p with . The proposition is then valid for the transformed problem,
and therefore asserts about the original problem that (6) and (7) are valid, and that (11) is valid
with an inverted inequality. ]

We next show that the solution to the control problem can be characterized as follows.

Proposition 2 The solution (Q*,Y™*,U*) of Proposition 1 uniquely solves (5) and

Ji LosodY =0,
(15)
Ji Lo<odU =0,

given that 0 # 1 and X € C.

Proof: It follows from Proposition 1 that (Q*,Y™*,U*) solves (5) and (15). Let (Q,Y,U) satisfy
both (5) and (15). Then it follows from (13) that for ¢t > s, n(t) —n(s) = — f; 1g—odY and also that
n(t)—n(s) > 0. Therefore n = 0 and @) must satisfy equation (8). As discussed before, this equation
has a unique solution, hence Q) = Q*. Having 6 # u, U and Y are now uniquely determined by the
first two lines of (5) as U= (p—0) 1 Q- X +p ;@) and Y = (u—0)"H(Q - X +0 [, Q). L

4 Reduction of the control problem to one dimension

We show that under special assumptions on the parameters it is possible to reduce the dimension-
ality of the problem, and obtain pathwise minimum for Q¢ = ¢; Q1 + c2(Q2. We assume

p=py = p2 > 0=0; =0,

Assume without loss that ¢; > ¢p. Consider the processes Q = Q1 + Q2, X = X; + X, and
U =U, + Uy. Write i

Q°(t) = (c1 — 2)Q1(t) + 2Q(?).
Pathwise minimality for Q¢ will be obtained by a control that achieves simultaneously pathwise
minimality for Q; and for Q. From the statement of the BCP (4) it follows that the following
relations must be satisfied

Q) = X(t)+ul(t) - 00(),

h

) = [iQ(s)ds+I(t), (16)

U, I are nondecreasing.



Proposition 1 (see also remark (b)) shows that a minimal pathwise Q exists, under the constraints
specified in (16). It is given as the unique solution to

Q0 =X +p [ G s =0 [ Q@ ()ds, (17)

while U and I are given by

0 = [(@etas, 1= [ @) s (18)

Note that the set of constraints specified in (16) is a subset of that in (4). Hence, if we can find
Ui, Us, Y1, Yo satisfying (4), and at the same time Uy + Uy = U, Y, + Y, = I, where U and I are
as in (18), then (17) will also serve as a pathwise minimal ) for (4). The choice that we make is
to let Uy(t) = 0. With this, U; and Uy = U and I automatically are nondecreasing. Hence the
constraints of (4) are all satisfied, and Q of (17) is minimal for (4). To see that Q; is minimal as
well, note that by (4), @1 is given by

Qi) =X~ p [ " 01()ds +1(t).

where 7(t) = (4 — 0) [y Ui(s)ds > 0 for all #. By monotonicity of the solution to the equation in
the last display with respect to n, ()1 is minimized by n = 0. This is achieved by U; = 0. As a
result, ()1 is minimal, and since also ) is minimal, so is Q°.
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