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Abstract

We consider a Markovian multiserver queueing model with time dependent parame-
ters where waiting customers may abandon and subsequently retry. We provide simple
fluid and diffusion approximations to estimate the mean, variance, and density for both
the queue length and virtual waiting time processes arising in this model.

These approximations, which are generated by numerically integrating only 7 ordi-
nary differential equations, are justified by limit theorems where the arrival rate and
number of servers grow large. We compare our approximations to simulations, and
they perform extremely well.
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Figure 1: The multiserver queue with abandonment and retrials.

1 Introduction

In this paper we continue our ongoing examination of a multiserver queue with time varying
parameters where waiting customers may abandon and subsequently retry. The model we
consider is a relatively simple special case of the class of models considered in [4], which were
termed Markovian Service Networks.

Our model, depicted in Figure 1, consists of two nodes: a service node with n; servers,
and a retrial pool with an unlimited number of servers, where customers effectively serve
themselves. New customers arrive to the service node as a non-homogeneous Poisson process
of rate A\;. Customers arriving to find an idle server are taken into service with a duration
that has a memoryless distribution of rate p;. Customers that find all servers busy join a
queue, from which they are served in a FCFS manner. Each customer waiting in the queue
abandons at rate ;. An abandoning customer leaves the system with probability ¢, or joins
the retrial pool with probability 1 — ;. Each customer in the retrial pool leaves to enter
the service node at rate u?. Upon entry to the service node, these customers are treated the
same as new customers. Our focus is the two-dimensional, continuous time Markov chain
Q(t) = (Ql(t),QQ (t)) where Q)1(t) equals the number of customers residing in the service
node (waiting or being served) and Q2(t) equals the number of customers in the retrial pool.
We also consider the virtual waiting time W (t), which is the time that an infinitely patient
customer, arriving to the service node at time t, would have to wait before entering service.

This model, even with all parameters constant, is analytically intractable. We thus
consider fluid and diffusion approximations for both the queue length and virtual waiting
time processes. These approximations are justified by limit theorems where the arrival rate
and number of servers grow large. Both the model and asymptotic regime are motivated by
large telecommunication systems such as call centers, where abandonment and retrial occur



naturally, and where time variability of parameters, specifically the arrival rate, cannot
realistically be ignored. More discussion of this motivation is contained in [5].

Fluid and diffusion limits for the (two dimensional) queue length process arising in this
model were proved in [4]. In [5] we compared the fluid limit with simulation results, and
found that it provides an excellent approximation. Fluid and diffusion limits for the virtual
waiting time are proved in [7]. These results are described in [6], where a single numerical
example shows that the fluid approximation for the virtual waiting time is also excellent. In
this paper we extend the previous results in several directions. First, we provide additional
numerical examples for both the queue lengths and virtual waiting time, comparing the fluid
approximations to simulations. Next, we provide new numerical results for the diffusion
approximations. We also compare the simulated sample variance of the virtual waiting
time to the variance of its diffusion approximation. Using equations originally obtained
in [4], we calculate the covariance matrix of the queue length diffusion, and compare it to
simulations. Using a result from [7] that provides conditions under which the queue length
diffusion process is Gaussian, we also obtain a Gaussian approximation for the queue length
density at the service node. We are similarly able to obtain an Gaussian approximation for
the virtual waiting time density. These are also compared to simulations. In all of these
comparisons our approximations are exceptionally good.

The rest of this paper is organized as follows. In Section 2 we provide the equations for
the queue length process and in Section 3 we provide the same for the virtual waiting time
process. We also state in both sections the relevant limit theorems that inspire our fluid and
diffusion approximations. Section 4 contains numerical examples comparing our approxima-
tions with simulation results. Section 5 is an appendix that provides some background on
Markovian service networks.

2 Queueing Sample Paths and Asymptotics

In order to motivate our sample path construction of the multiserver queue with abandon-
ment and retrials, we first present a brief description of the simpler M;/M;/n; queue. The
M,/ M,;/n; queue length process Q@ = { Q(t)| t > 0} is a continuous time Markov chain with
time varying instantaneous transition rates. It consists of an arrival process that is time-
inhomogeneous Poisson with rate function { A;| ¢ > 0}, a deterministic schedule of servers
{n¢] t >0} who each work for a service time that has an independent, memoryless distri-
bution determined by the rate function { pu;| ¢ > 0}. We assume that all these functions
are locally integrable. Since the number of servers can vary in time, we use the convention of
preemptive-resume service. When the number of servers suddenly drops below the number of
customers currently in service, then the dropped customers are placed in the infinite buffer
to resume service later.

The standard approach to constructing the sample path distribution for this M;/M;/n,
queueing process is to state that its transition probabilities, i.e.

pij(t) =P{ Q) =j| QO)=1i}, (2.1)



for all non-negative integers ¢ and j, are the unique solutions to the forward equations

d

%pi,O(t) = i (t) — Mepio(t) (2.2)
and if j > 1,
d oy .
JPa (1) = Apig1 (1) + pemin( + L no)pigaa (1) = A+ pemin(G, ne)) peg (0). (2.3)

where p; ;(0) = 1 if and only if i = j and p; ;(0) = 0 otherwise (for more details, see Wolff
9)).
The M;/M;/n; queueing process is the canonical example for a special family of CTMC’s
that we call Markovian service networks (see [4] for details). They can be defined precisely
by an alternative method to defining forward equations for their transition probabilities.
Instead, we use an implicit definition to construct their random sample paths directly. The
sample paths for the M;/M;/n; queueing process are the unique solution to the equation

Qt) = Q(0) + II° (/Ot )\sds> 1 (/Ot s - min(Q(s), ns)ds> , (2.4)

where I1° = { II*(t)| t >0} and II® = { H”(t)‘ t> 0} are two independent, standard
(mean rate 1), Poisson processes.

In the same spirit, the random sample paths of the queue length process for the multi-
server queue with abandonment and retrials Q(¢) = (Q1(t), Q2(t)) are uniquely determined
by the relations

Q) = Q)+ 115 ([ @aoias) - 1 ([ (Quts) = n) B0 - wds)  25)

e (/Ot )\sds> _ (/Ot (@i(s) - ns)+ﬁs¢)sds> — (/Ot (@1(5) A ns)ugds>

and
Qo(t) = () + Tl ([ (@u(s) =) 31 = w)is) = 115, ([ Qulonias),  (20)

where 7%, IT°, II¢, II?,, and IS, are five given mutually independent, standard Poisson
processes and A, 3, ut, % 1, n are locally integrable functions of time [4]. Here x Ay =
min(z,y) and T = max(z, 0) for all real z and y. Using the theory of strong approximations
for Poisson processes, we can use the random sample path construction of our queueing
processes to do an asymptotic sample path analysis and obtain our fluid and diffusion limit
theorems.

We are interested in the asymptotic regime where we scale up the number of servers
in response to a similar scaling up of the arrival rate by customers. More precisely, the
asymptotic regime is as follows. In a system with index 7, the only scaled parameters are:
the initial conditions Q7(0) = [nQ\”(0) + \/ﬁQEI)(Oﬂ + o(y/n) for constants Q!”(0) and
QEI)(O) (i = 1,2), the external arrival rate (i.e., the intensity of the Poisson arrival process),
which is now n);, and the number of servers, which is now nn,. (Actually, the latter should be
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the integer part of nn;, but to avoid trivial complications and simplify notation, we assume
it’s just nng.) The scaled queue length process Q7(t) = (Q7(t),Q5(t)) is then uniquely
determined by the relations

Qi) = QU+ 115, ([ Quoyas) — ity ([ (@1 =) B —wds) @)
e ([anas) = ([ (@1s) — ) Bavds) — ([ (QUs) A (an) ks
and

Q1) = Q30) + 11ty ([ (QUts) =) 51— wyds) — 115, ([ Qutsppias) . (29)

Now we state the strong law of large numbers limit theorem for the retrial model. We
make the following asymptotic assumptions for the initial conditions

1
lim ~Q7(0) = Q(0) as. (2.9)
where Q(?)(0) is a constant.
Theorem 2.1 We have - qu _Q® o 210
el

where the convergence is uniform on compact sets of t. Moreover, Q) = { QO (t) ‘ t> 0}

15 uniquely determined by Q(O)(O) and the autonomous differential equations

%QE“’ (1) = M+ 12QS (1) — i (@ (1) Ane) — B, (QP (1) — n)” (2.11)

and

SOV = 50— w0 (@70 —n) " - el (). (2.12)

This theorem states rigorously that Q7 ~ 1nQ® for large n and we call Q) the fluid
approximation for Q.

If two random variables X and Y have the same distribution then we denote this by
XLy 1f { X, | n >0} converges in distribution to Y, we denote this by lim, ., X, 4y,
The fluid approximation can be refined using the following functional central limit theorem,
as proved in [4]. We make the following assumptions for the initial conditions

lim, Vi(-Q7(0) = Q) £ Q(0). (2.13)

n—00

where Q(V)(0) is a constant.



Theorem 2.2 We have

lim f( <°>> LqQW. (2.14)

n—00

where Q) = { QW (1) r t> 0} 15 a diffusion process. This is a convergence in distribution
of the stochastic processes in an appropriate functional space [4].

Moreover, if the set of time points { t>0]| ng) (t) =ny } has measure zero for the mul-
tiserver queue with abandonment and retrial model, then { Q(l)(t)‘ t> O} 1s a Gaussian

process. The mean vector for Q) then solves the set of autonomous differential equations

iEp“(ﬂ=—Q¢mﬁQO+@g@%mngpP@ﬂ+ﬁEp9@ﬂ (2.15)
and p
EQVO] = B0~ )1 g0 ) E [V 0] - wE Q)] (2.16)
Finally, the covariance matriz for QM) solves the autonomous differential equations
%Var (0] =- (@1{@@ e u%l{ng(t)Sm}) Var [Q1"(1)] + 207 Cov [Q1" (), Q5" (1)]
A+ QP () =)+ (0 (1) An) + 12 (8), (2.17)
%Var Q)] = —203Var [Q5" ()] + 2611 = )15 )5, Cov [ Q1 (1), Q5 (1)]
61— ) QP (1) — )+ QY (1), (2.18)
and
d

—Cov [QV(1,0 (0] = A1l = )1 oy, Var [V )] + ipVar [ (1)]  (219)
_ <6t1{Q§0)(t)>nt} + “%1{Q§°)(t)§nt} + uf) Cov [le)(t), Qél)(t)]
B =) (@ () — )" — 12V (8).

This theorem states rigorously that Q7 ~ nQ® + ,/nQW for large 1 and we call QW) the
diffusion approzimation for Q". It should be pointed out that equations (2.17)-(2.19) are
corrected versions of the covariance equations for the multiserver queue with abandonment
and retrials given in [4] and [5]. The previous incorrect formulas do not affect the numerical
results of papers [5] and [6] since those computational results focused only on the utility of the
fluid approximation and not the diffusion approximation. To double check the validity of the
diffusion covariance equations used here, we derive in the appendix the general differential
equations of the diffusion covariance for the special case of a two-dimensional Markovian
service network.

Time-varying queues alternate among three phases. For a given time ¢, we define the
phases to be:



1. Underloaded or Q" (1) < ny,
2. Critically-loaded or Q\” (t) = ny,
3. Overloaded or Q" (t) > ny.

Similar phases and transitions are discussed in great detail for the M;/M;/1 queue in [3].

To guarantee the results of Theorem 2.2, the fluid model for the service node is free
to alternate between phases of underloading and overloading. We only require during
these transitions that it does not “linger” too long in the critically loaded phase so that
{ t| Q" (t) =ny } is a set of measure zero. As we show in our numerical examples in Sec-
tion 4, even though our examples satisfy the measure zero hypothesis for the times of critical
loading, this lingering behavior does affect the quality of our approximations.

3 Virtual Waiting Time for the Service Node

In this section we consider asymptotics for the virtual waiting time process. To do that we
need a few additional assumptions which are not very restrictive.

Assumption 3.1 In the interval [0, 00):
1. The function n; is continuously differentiable;
2. The function y} is continuous;
3. The functions p? and 3; are bounded on compact intervals.

Assumption 3.2 is introduced below when the required notation is in place.

Suppose that we are interested in the waiting time of a virtual customer arriving to the
service node at a fized time 7 > 0. Since we have a system with abandonment, a convenient
way to approach this problem is to consider the system that is obtained from the original
one by the following modifications:

1. There are no new exogenous arrivals into the system after time 7.
2. Any customer departing any station ¢, after time 7, leaves the entire system.

In particular, the service node has no new arrivals (exogenous or retrial) after time 7. It
only processes the remaining customers that are there at time 7. Theorems 2.1 and 2.2 still
apply to the modified system; the only difference is that certain terms in the equations,
corresponding to the arrivals after time 7, should be “zeroed out”. The following results
follow directly from these two theorems (and their proofs in [4]).

Denote the arrival and departure processes for the service node by

AT ={At)] t>0} and AT={ATt)| t>0}

respectively. By convention, let the arrival process include the customers in the service node
at time 0, so A"(0) = Q7(0), A"(0) = 0, and A"(¢t) — A"(¢t) = Q7(¢t), t > 0. We then obtain
the following fluid limit result.



Theorem 3.1 As a joint process we have

1,4 .
lim —(Q", A", A") = (Q©, A® Ay a5, (3.1)

n—00 77

and this convergence is uniform on compact sets of t. The fluid limit QEU) (t) satisfies equation
(2.11) for t < 7. Fort > 7, we have the following properties:

1. The future evolution of ng) (t) is governed by the differential equation
d - - - +
2OV (1) =~ (V) Ane) = 5(Q7 (1) =) (3.2)

2. There are no future arrivals, so that A®(t) = A0 (7).

3. The deterministic process A© is a continuously differentiable non-decreasing function
in [0, 00).

We also obtain the following diffusion limit.

Theorem 3.2 The following convergence in distribution holds:

1 ~ 1 1 A
nle VI(=QT — QO = A7 — A© Z A7 _ A0y 4 (QW, AW AW, (3.3)
o Ui n n

~

Moreover, if the set of time points { t>0]| Q%O) (t) =ny } has measure zero, { le)(t) ‘ t> 0}

is a Gaussian process and fort > T, Var[le)(t)] solves the differential equation

d A R
a’ @rm] = -2 <5t1{c?§°)(t)>m} + “%1{Q§°)(t)<nt}> Var [Q17(1)] (3.4)

+5; (QEU) (t) — nt)+ + up (Q%O) (t) A nt).
It follows from the definitions and the above theorem that
QP () = AN () — AL () . (3.5)
Now, let us define the potential service initiation process D7 for the service node by
D"(t) = A"(t) +nny, t > 0.

Note that if Q7(t) < nn, then A"(t) < D"(t); so the potential service can be “ahead” of
arrivals. It follows that )

lim —D"(-) = DO(-) as.,

n—00 /]7
where the convergence is uniform on compact sets of ¢+ and D©(t) = A©(¢) + n,,t > 0.
Since n; is continuously differentiable by assumption and we know that A(®)(#) is continu-

ously differentiable, D(®)(¢) is also continuously differentiable and we denote its derivative by



d®(t). Now we make an important but not very restrictive (in the majority of applications)
additional assumption.

Assumption 3.2. The function D (of t) is continuously differentiable with strictly positive
derivative, and
lim DO (t) > AQ (1) (3.6)

t—o0

According to our definitions, both A”(-) and A()(-) are constant in the interval |7, c0).
Also, it is convenient to adopt the convention that all the processes we consider are
defined in the interval [T, 00), with

T =ny/d(0) .

We make this extension by assuming that nothing is happening in the interval [—7,0) (no
arrivals or departures) except the number of servers is increasing linearly from 0 to nng (for
the unscaled process with index 7).

We then can rewrite (3.1) and (3.3) as follows (with all the functions being now defined
for t > —T):

1 - ~
lim —(Q", A", D") = (Q, A©®), D®) (3.7)
n—00 77
and
lim A(1Q7 = QO, 247 — 40 Lpn_ poy L @qm 40 poy, (3.9)
n=oo ¥ Ty 1 i
where
DM = A (3.9)

Note that processes A®) DO AM DO are continuous and DO (—T) = DM (=T) = 0.

Our conventions together with the Assumption 3.2 make the following processes well
defined and finite with probability 1 for all sufficiently large 7. Let us define, for all ¢ > —T,
the first attainment processes

S™(t) =inf{s > =T : D"(s) > A"(t)}

. SO@) =inf{s > -T: DO(s) > AO(1)}. (3.10)
Similarly, define the attainment waiting time processes to be
Wh(t)y = S"(t) —t
and
WO @) =85O() -t . (3.11)

Denote by W (r) the virtual waiting time at 7, i.e. the time a “test” customer (in the
original non-modified system) arriving to the service node at time 7 would have to wait until
its service starts, assuming this customer does not abandon while waiting. Then the relation
between the virtual waiting time W”(T) and the attainment waiting time W"(7) is simply

Wn(r) =wn(r)*" . (3.12)
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Indeed, note that W (r) (and W (7)) may be negative. All this means is that Q7(r) < nn.,
and therefore in this case W"(r) = 0. If W"(r) is non-negative, then its value is exactly
equal to the virtual waiting time.

It follows directly from the Theorem and Corollary in [8] that (3.7), (3.8), and Assumption
3.2, imply the following convergences.

Theorem 3.3 We have

1., 1 1 .
lim (-Q", —A", —D" W) = (Q©, A DO W) 45, (3.13)
nmeotn T

lim \/ﬁ(lQn —qO Ly — 40 Lpn _ po) gy _ypoy L gm, 40 po )y (3.14)
=00 ¥y n n

where

AW (1) — DO(SO (1)
V(S0 (1))

wW(t) = and SO (t) =inf{s > —T: DO(s) > A (1)}.

Since the processes AM, DM QW WO are continuous with probability 1, we automati-
cally obtain the convergence of finite dimensional distributions.

In particular, consider the non-trivial case S(©(7) > 7 (which is equivalent to QY (1) >
n,). Moreover, assume that in [0, 7], the set of points { t| QY (t) = nt} has measure zero.
Then we obtain

lim W(r) = WO(r) as.

—00

and

YD (g0 (+
Jim AOVT(r) = IW0(0)) £ W0 (r) = SR

where Q" (5 (7)) is Gaussian with mean and variance computed as follows. Solving equa-
tion (3.2) for )\ )() in the interval [1,00), we obtain

d - A
A0 = =R + (B~ pihne, £ > 7
We can find SO (7) from

SO(r)y =min{t > 7 | OV (t) = n,} .

—E[Q" ()] = ~BEQV ()] t>T. (3.15)

and
—Var[Q{" (1)] = —28,Var[Q{" (1)] + B(Q (£) — ne) + ping t > 7. (3.16)
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This yields the closed form formulas

Q%O) (t) = ng) (T) exp (— /Tt ﬂsds> + /Tt(ﬁs — p)ngexp (— /st ﬂ,dr) ds, (3.17)

m
—
&
—_

—
—
—~
~+~
N
=
I

E[Q{"(7)] exp (— / t 6sds> , (3.18)
and

Var [Q1(8O(r)] = Var [@{"(r)] exp (- / e 26sds> (3.19)

S(O)(T)

(s
+ ((ng)(s) —ng)fBs — uins) exp <— /SS ( )Q@dr) ds.

T

Finally, noting that d(® (S(U) (7’)) = N5 (1) s (ry When SO(7) > 7, we obtain

_ Var [Q(l) (S(O) (7'))]

Var [W(l) (7')] 5
(nsw)(T)Ms(O)(T)) :

(3.20)

Remark. In this section we derived fluid and diffusion approximations of the marginal
distribution of the attainment waiting time, which uniquely determines those for the virtual
waiting time at the service node for at a given time 7 > 0. However, it is shown in [7] that
similar asymptotics hold for the attainment waiting time as a random process defined for
7 € [0,00). (See also [6] for the formal statement of the results.)

4 Numerical Examples

Several examples indicating the accuracy of the fluid approximation for the queue length
process were considered in [5]. The first examples had constant arrival rate, and exhibited
the approach to equilibrium. The next examples had a quadratic arrival rate, and the final
examples involved a “spike” in the arrival rate. In all cases the fluid approximation was
excellent. In [6] the accuracy of the fluid approximation for the virtual waiting time was
checked for one of the examples from [5] with quadratic arrival rate. Although not as accurate
as the fluid approximation for the queue length in the same example, the approximation for
the virtual waiting time was nonetheless excellent.

Here we examine the performance of the fluid and diffusion approximations for both
queue length and virtual waiting time in some new examples. Details of how the simulations
are carried out are contained in [5]. Here we merely point out that we use 5,000 independent
replications in each of our experiments. By contrast, all the fluid and diffusion approxima-
tions used here come from numerically integrating 7 ordinary differential equations.

Our numerical examples cover the case of time-varying behavior only for the external
arrival rate ;. The type of time varying behavior used is that of a periodic square wave,
oscillating between two values (starting with the smaller value) and the duration of each
value is 2 time units for a total time interval of 20 time units. The 20/100 case will have
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A; oscillating between the values of 20 and 100 and the £0/80 case will have \; oscillating
between the values of 40 and 80. For both cases, we set uf = 1, p? = 0.2, Q7(0) = Q1(0) =0,
n, = 50, B, = 2, and ¢, = 0.5 for all ¢ > 0 and n > 0.

The graphs are ordered by pairing the 20/100 case first (the top graph) followed by the
40/80 case (the bottom graph) for the following numerical plots:

1. Empirical averages of Q1(t) and Q2(t) versus their fluid approximations (Figure 2).

2. Empirical covariance matrix of Q(¢) and @Qy(t) versus the covariance matrix of their
joint diffusion approximation (Figure 3).

3. Empirical density of Q;(¢) versus its Gaussian approximation (Figure 4).
4. Empirical average of the virtual waiting time versus its fluid approximation (Figure 5).

5. Empirical variance of the virtual waiting time versus the variance of its diffusion ap-
proximation (Figure 6).

6. Empirical density of the virtual waiting time versus its Gaussian approximation (Figure
7).

We see that all our approximations for the queue length processes are very good for both
cases 20/100 and 40/80. However, on Figures 5 and 6, describing the waiting time at the
service node, readers can easily notice the following two features:

(a) For the underloaded time intervals the approximation formulas for both the mean and
variance of the waiting time Wj(t) are equal to 0. The simulation results for the
20/100 case do agree with this approximation. In the 40/80 case however, the mean
and variance, although small indeed, clearly stay away from 0.

(b) At the time points when the service node enters an overloaded interval, there is a
strange “spike” in the theoretical variance of the waiting time.

Both features are due to the same simple fact that our approximations for each time ¢ have
a different form depending on whether ¢ is underloaded or overloaded. The approximations
for the underloaded ¢ implicitly assume that the probability of non-zero waiting time is
negligible; and the approximations for the overloaded ¢ assume that this probability is close
to 1. These assumptions are indeed asymptotically correct, as the system scale (the number
of servers and the input rate) increases to infinity. However, for a system of a fixed size, the
closer the system is at time ¢ to the critically loaded phase (when Q{”(¢) is equal to n,), the
worse those assumptions are.

Therefore, the feature (a) is explained by the fact that in the 40/80 case, Q" (t) remains
“too close” to ny = 50, while in the 20/100 case it does not. This rule of thumb is supported
by the fact that equations (2.15)-(2.19) are not the general set of differential equations for the
mean and covariance of the diffusion process. We only obtain these autonomous differential
equations when the condition ng) (t) = ny holds for a set of time points that have measure
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Figure 2: Numerical example: Empirical averages of Q1(t) and Qs(t) versus their fluid
approximations for the 20/100 and 40/80 square wave cases.
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Figure 3: Numerical example: Empirical covariance matrix of (1(¢) and (Q,(t) versus the
same from its diffusion approximation for the 20/100 and 40/80 square wave cases.
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Figure 4: Numerical example: Empirical density of Q(¢) at times ¢t = 5,6, 7 versus the same
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from its diffusion approximation for the 20/100 and 40/80 square wave cases.
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Figure 5: Numerical example: Empirical average of the virtual waiting time versus its fluid
approximation for the 20/100 and 40/80 square wave cases.
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Figure 6: Numerical example: Empirical variance of the virtual waiting time versus the same
from its diffusion approximation for the 20/100 and 40/80 square wave cases.
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Figure 7: Numerical example: Empirical density of the virtual waiting time versus the same
from its diffusion approximation for the 20/100 and 40/80 square wave cases.
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zero. For example, if this condition does not hold, then equations (2.15) and (2.16) are really
of the form

d (1) 1 (1) /)y —
ZE@VO] = (1100 cmy + AL g0 eny JE QO] (4.1)
1 (1) 2 (1)
_(’utl{ng)(t)<nt} + ﬂtl{QEO)(t)znt})E |:Q1 (t)+] + MtE [QZ (t):l

and

TEO] = 801 - 0 (E Q0 1000~ E[RVOT Ligpn)
it [Q1 (1) (42)

and the equations for the covariance matrix have a similar form. Therefore, when QEO)
“lingers” to close to n, we see that the autonomous differential equations may not be cap-
turing the true mean and covariance behavior of the diffusion approximation. The behavior
described in (b) can also be explained by the “breakdown” of the approximation assumptions
for time points in the vicinity of the critically loaded phase. The spike in the variance would
indeed be observed if the scale of the system were larger.

5 Appendix: Markovian Service Networks

Our model is a special case of a Markovian service network (see [4]). Given a finite dimen-
sional vector space V that contains our state space, a finite index set I, transition vectors
v;, rate functions ay(-;4) that are Lipschitz functions of V and locally integrable functions
of time, we can uniquely define the Markov process { Q(¢)| ¢ > 0} by the equation

Q) = Q)+ X1 ([ (@) 0)ds) e (1)

where the II; are an i.i.d. family of standard Poisson processes. Given n > 0 we can now
define Q7 to be a scaled version of this process where

¢ 1
Q"(t) = Q"(0) + S 11, (/0 nas(EQ”(s); i)ds) vi. (5.2)

il
In [4], we proved the following functional strong law of large numbers limit theorem.

Theorem 5.1 If lim, o ;Q"(0) = Q”(0) holds a.s., then

1
lim —Q" = Q) as. (5.3)

n— 00 /r]

where the convergence is uniform on compact sets of t, Q) = { Q™ (1) ‘ t> 0} 15 uniquely

determined by Q©(0) and the autonomous differential equation

—QV(1) = e (Q"(1)) (54)



with
a(x) = Zat(x;i)vi. (5.5)

for allx € V.

For the diffusion limit, we first need to define the tensor product of vectors x and y in V
to be

1Yt T1Y2 - TilYn
TaYr X2Yz2 - T2Y
x@y=| ., | o (5.6)
InY1 TplY2 -+ Tpln
where x = [z1,%9,...,2,] and ¥ = [y1,Y2,...,Ys]. Vectors are rank one tensors and the

above array is a rank two tensor. The vector space of rank two tensors is the finite linear
sum of all products x ® y. We can use the tensor product to define the covariance matriz of
two random vectors X = [X, Xo, ..., X and Y = [V],Y5,...,Y,] to be

Cov[X, Y] = E[X ® Y] — E[X] ® E[Y], (5.7)

where we define Cov[X] = Cov[X, X].

If A and B are defined to be square matrices that map V into itself, then we define AR B
to be the Kronecker product of A and B (see Horn and Johnson [1]). The object A ® B is
a linear transformation on the family of rank two tensors into themselves where

Xy (xA)® (yB) (5.8)

which we will denote as (x ® y) o (A ® B). If we view x ® y as a matrix C, then in terms
of matrix multiplication we have

(x®y)o (A®B)=(xA)® (yB) = ATCB, (5.9)

where AT is the matrix transpose of A.
Now we state the general functional central limit theorem.

Theorem 5.2 Iflim, \/ﬁ(%Q”(O)—Q(O)(O)) = QW (0) holds, where QM (0) is a constant,
then

n— 00

lim /7 (%Q” - Q<0>> LqQW. (5.10)

where Q) = { QW (t) ‘ t>0 } is a diffusion process and this is a convergence in distribution
of the stochastic processes in an appropriate functional space [4].

Moreover, if a;(+) is differentiable at Q™ (t) for almost all t, then QW) is a Gaussian
process and its mean vector and covariance matrix are the unique solutions to the autonomous
differential equations

—E[QV(1)] =E[QM(1)] Dav, (QV (1)), (5.11)
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and

d
= Cov QY (1)] = Cov [QV(1)] o (P (QV (1)) @ T+T® Dev, (Q (1)) + e ((Q([’)(;t)l))Q)
where Doy (Q(O) (t)) is the Jacobian of a(-) when differentiated at Q©(t) and |
a(x) =) au(x;9)v; @ v, (5.13)
iel
for all x € V. Finally, for all s <t
%COV [QW(5), QW (1)] = Cov [QW(s), QM (1) o (T® Dex, (Q (1)) . (5.14)

Proof of Theorem 2.2: The formulas follow from the general theorems for Markovian
service networks. Here we write out these general equations for the two-dimensional case.
Viewing QM) as a two-dimensional row vector, we have

d

ZEQVM] =E[QV(M] A, (5.15)
and
%COV [QW(1)] = Cov [QW(1)] A, + Al Cov [QV(1)] + By, (5.16)
where
bl | Ver[@P®]  Cov @), @ (1)] ]
Cov [Q( )(t)] = [ Cov [QlL( )7 g1 ( )] Var [le)(t)] J ) (5.17)
A=l e . (5.18)

Note that A, is not necessarily a symmetric matrix but B; always is. Writing these differ-
ential equations out explicitly gives us

CE[Q()] = ae Q)] +arE [ (1) (5.19)
%E @ (1)] = aPE[QV ()] +aPE QL (1] (5.20)
and finally
%Var (VM) = 20i'Var [Q1"(1)] + 207" Cov [Q1" (1), QY (1)] + 1" (5.21)
%Var (1] = 20Var [Q8"(1)] + 20;2Cov [Q1" (1), QS (1)] + b7 (5.22)
©Cov [0V, Q0] = afVar [0 ()] + a7 Var [0 ¢ >]

+(a;" + a??)Cov [Q1V (1), QS ()] + b2, (5.23)

Finally, to tailor this central limit theorem to the retrial model, observe that functions like
f(z) =2z Anand g(x) = (xr — n)* are differentiable everywhere, except when x = n. g
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