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Inspired by service systems such as telephone call centers, we develop limit theorems for
alarge class of stochastic service network models. They are a specia family of nonstationary
Markov processes where parameters like arrival and service rates, routing topologies for the
network, and the number of servers at a given node are al functions of time as well as the
current state of the system. Included in our modeling framework are networks of M /M /n:
queues with abandonment and retrials. The asymptotic limiting regime that we explore for
these networks has a natural interpretation of scaling up the number of servers in response
to a similar scaling up of the arrival rate for the customers. The individua service rates,
however, are not scaled. We employ the theory of strong approximations to obtain functional
strong laws of large numbers and functional central limit theorems for these networks. This
gives us a tractable set of network fluid and diffusion approximations. A common theme
for service network models with features like many servers, priorities, or abandonment is
“non-smooth” state dependence that has not been covered systematically by previous work.
We prove our central limit theorems in the presence of this non-smoothness by using a new
notion of derivative.

Keywords. strong approximations, fluid approximations, diffusion approximations, multi-
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1. Introduction and summary

Motivated by the need to design and analyze Markovian service networks, we
investigate fluid and diffusion limits for such systems. The main distinguishing feature
of (most, but not all of) the systems we consider in this paper is that service is
provided by a large supply of servers, and there is a corresponding large demand
for this service. It is these large quantities that motivate the asymptotic regime we
consider. Our methods allow us to consider networks with time dependent parameters,
state dependent routing, abandonment, and retrials.

To make the description of our models and results easier to follow, we first
consider a smple example (see figure 1). The M,;/M;/n, queue has a (time-
inhomogeneous) Poisson arrival process with rate \;, a service rate (per server) of j,
and n; servers, for al ¢ > 0. We can construct the sample paths for the My /M, /n;
gueue length process as the unique set of solutions to the functional equation

Q) = Q0) + A1< /O gy ds) — A, ( /o t ps - (Q(s) A ns)ds>, (1.2)

where A1(-) and A,(-) are given independent, standard (rate 1) Poisson processes, and
for al real x and y, = Ay = min(z, y).

Figure 1. The M /M, /n, queue.
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The asymptotic approach to the M, /M; /1 queue, as used in both Massey [15,16]
and Mandelbaum and Massey [11], was to create a family of associated M, /M;/1
gueues where the queue indexed by n > 0 has arrival rate n\; and service rate npu;.
We then determined the asymptotic behavior for the time evolution of this family of
gueues, when n — co.

For the M, /M, /n; queue, we also create a family of associated processes. The
key difference here is that, for the M,;/M;/n, queue indexed by 7, we want to have
both the arrival rate and number of servers grow large, i.e., scaled up by 7, but leave
the service rate unscaled.

We are then interested in the asymptotic behavior of the processes

Q0=+ 4s( | Y as) - o [ i (QU) A m)s) @2

t t
—0"(0) + Al( /O A ds> - A2< /0 s - (%Q”(s) Ans>ds> L3

as n — oo. Note that (1.3) shows that the scaling we want is equivaent to the
simultaneous scaling of \; and p; with multiplication by 7, provided that we also
divide Q" by n (when n, = 1, this distinction does not matter since the M, /M;/1
service rate indexed by 7 is th{Qg>o}, where 1{Q?>0} is the indicator function for

the event { Q] > 0}, which is the same as Ml Qn />0p)-

Equation (1.3) is a special case of equation (2.8), which is in turn a specia
case of equation (2.9). Equation (2.9) defines the processes of interest to us in the
genera service network setting. For systems with infinitessimal rates that are not state
dependent, the scaling used in (1.3) and (2.8) is the same as uniform acceleration,
as considered in Massey [15,16] and Mandelbaum and Massey [11] for the M, /M, /1
queue, as well as Massey and Whitt [18] for the general case of finite state, time-
inhomogeneous, continuous time Markov chains. In these articles a parameter ¢ is
used and limits are taken such that £ | 0. This parameterization can be reconciled with
the notation in this paper by setting ¢ = 1/5. We refer to the scaling in (1.3) and (2.8)
as uniform acceleration also, even though this involves a dlight abuse of terminology.

It seems appropriate to comment here on two distinguishing features of the above
formulation that carry over to the genera results of this paper: many “unscaled”
servers, and time-dependent parameters. Our original motivating examples were call
centers, where service involves an interaction between either two people (the customer
and server), or a person and a machine (the person is the customer). In either case,
because a person is involved, it does not seem reasonable to scale the service rates
with n. Thus, in order to accommodate the arrivals, whose rate is proportional to 7,
the number of servers must be scaled with n. Time dependent arrival rates should
need no justification, since phenomena such as rush hours are quite common. Time
dependent service rates can be used to model phenomena such as server fatigue or
changes in the nature of services over the day. Finaly, a time dependent number of
servers arises with shift changes and in systems where the number of servers is varied
to accommodate changes in the arrival rate.
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Our “first-order” asymptotic result takes the form of a functional strong law of
large numbers (FSLLN), and yields a fluid approximation for the original process. For
the above M; /M, /n, example, the FSLLN states that

nlLrQo %Q"(O) = Q@) implies nIer;o %Q"(t) = Q) as, (1.4)

uniformly on compact sets in ¢, where Q© = {Q©(t) | ¢t > 0} is the unique process
that solves the integral equation

t
QO(t) = QO0) + /0 e — ps - (QO(s) A )] ds, (15)

for @l t > 0. The generd version of our FSLLN is theorem 2.2.

The above FSLLN can be refined with a functional central limit theorem (FCLT).
A fundamenta difficulty arises in attempting to apply prior results to obtain the FCLT,
even for the M, /M, /n; queue. The resolution of this difficulty for genera Markov-
ian service networks is the purpose of this paper. Before stating the FCLT for the
M, /M;/n; queue we first point out the essence of the difficulty.

Consider a sequence of real valued random variables { X,,, n > 1} that corre-
spond to partial sums of i.i.d. random variables (with finite means . and variances o2).
Letting Y,, = X,,/n and

_n X —np
Zn = 7(Yn —p) = “ovn (16)

then the strong law of large numbers and central limit theorem yield

limY,=pas ad lim Z, <2, (L.7)

n—oo n—0o0

where lim,,_ o, Z, 2 7 indicates convergence in distribution, and Z is a standard
(mean O, variance 1) norma random variable. Let f:R — R be differentiable in a
neighborhood of 4, then (cf. [21])

Tim )= fGhas, ad lim V() - f) L ez a8

What happens if f is continuous but not differentiable at ©? Continuity is sufficient
to ensure that lim,, . f(Y,) = f(u) as. If f'(u+) = limy, f'(z) and f'(u—) =
lim,,, f'(x) both exist, then a more careful treatment can be used to show that

Vi

lim
n—oo

F) = f) £ Fuzt — fu=)Z-,

where for al red z and y, z Vy = max(z,y), z¥ =2 Vv 0,ad 2z~ = (—z) V0.
Going back to the M, /M;/n, example, we cannot apply previous results, such as

Kurtz [9] to obtain an FCLT for its queue length because the function f;(x) = x A ng

is not differentiable with respect to = a = = n;. To circumvent this difficulty we

lim
n—oo
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introduce a new nation of derivative (in the context of a multivariate function), which
we call the scalable Lipschitz derivative. For example, if Af:(x;y) denotes the scalable
Lipschitz derivative of f; at « for any real y, then

/\ft(x; y) =Y 1{x<nt} - y_ ' ]-{x:nt} = y+ ' 1{x<nt} - y_ ' ]-{zgm}- (19)

Using this new notion of derivative we are able to obtain an FCLT for a wider class
of stochastic models. For the M, /M, /n; queue, the FCLT that arises from uniform
acceleration states that, if {Q7(0) | n > O} is a family of random variables (see
section 2 for the independence assumption), then

Jim 7| S - 00 £ o0 (110
implies
tim 7| 20 - qoi)| £ o), 1)

where Q© is defined in (1.5), QY = {QW(t) | t > 0} is the unique stochastic process
that solves the integral equation

t t
QW) =W — /0 1151 QO(s)<ny @O ()T ds + /0 151105y <ny @ (s) ™ ds

+Bl< /0 t As ds) —B2< /0 t Ls - (Q(o)(s)/\ns)ds>, (1.12)

and B1(:), Ba(:) are two independent, standard Brownian mations.

Although it seems clear that the FCLT for the M, /M, /n; queue could be proved
on an ad-hoc basis without the scalable Lipschitz derivative, this notion is the key
to proving the FCLT for more general systems, which is our theorem 2.3. We are
also able to obtain ordinary differential equations for the mean and covariance of the
diffusion limit arising in the FCLT. These are given in theorem 2.4.

We actually obtain a more refined FCLT which is motivated by the work of
Halfin and Whitt [4]. They identify an important asymptotic regime that corresponds
to parameter asymptotics of the form

AN =nXs +nls+0(yn) and  pl =nus + /nms +0(/1n). (113

The fluid limit is unchanged. The resulting refined diffusion limit for the My /M, /n;
gueue is
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t
QD) = QO(0) /0 151005y ny QOs) T dls
t

t
+ /0 :qul{Q(O)(s)gns}Q(l)(s)i ds + /0 [gs — Mg - (Q(O)(S) N ns)]ds

t t
+B1< /O As ds> Bz< /O LLs - (Q(O)(S)/\ns)d.s). (1.14)

Ifweset \; = A\, s =, ng =n, mg =0, and £, = —uf with A\ = un, and let
Q"(0) = nn, we recover the M /M /n specia case for the diffusion limit of [4].

The SLLN and the FCLT are proved in two steps. First, we prove a strong
approximation theorem, which in the context of the A /M;/n; queue states that, as
n— 00

Q"(t) =Q"(0) + /t ()\Q — - (EQ"(S) A n8>>ds + Bl</t Al ds)
0 n 0
t
— B2</ - <}Q"(s) A ns> ds) + O(logn) as, (1.15)
0 n

where B;(-) and B»(-) are as above and the convergence is uniform on compact ¢ sets.
The genera version of this result is theorem 2.1. The limit theorems then follow from
a more detailed asymptotic analysis of this approximation theorem.

Although we leave the precise specification of our model and assumptions to sec-
tion 2, we describe here two more examples that illustrate the breath of our framework.
One example (see section 7) is a single node with severa customer classes operating
under the preemptive priority discipline (figure 5), and the other (see section 5) is a
system with customer abandonment and retrials (figure 3). More complicated exam-
ples, such as a Jackson network (figure 2) and a network with state dependent routing
(figure 6) are treated in the body of the paper (sections 4 and 8, respectively). All
the network examples given in the paper have the features of time-varying rates and
multiserver nodes.

The priority system we consider has ¢ classes of customers and n; servers. Cus-
tomers of class i arrive as a Poisson process with rate \: and have service rate pé. (All
the arrival and service processes are constructed from mutualy independent Pois-
son processes.) Class i is given preemptive priority over any class j such that
i>3j, 1<i,j<c

The system with abandonment and retrials has a single “service’ node with n;
servers. New customers arrive to the service node in a Poisson process of rate ;.
Customers arriving to find an idle server are taken into service with rate ;). Customers
that find al servers busy join the queue, from which they are taken into service in a
FCFS manner. Each customer waiting in the queue abandons at rate ;. An abandoning
customer leaves the system with probability ), or joins the retrial pool with probability
1 —¢);. Each customer in the retrial pool leaves to enter the service node at rate 2.
Upon entry to the service node these customers are treated the same as new customers.
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Systems with an infinite number of servers, or where the number of servers grows
“fast enough” to be effectively infinite in the limit are also covered by our model and
results. Examples of such results in the literature are Iglehart [6] and Whitt [23].
Although al of the examples that we consider in this paper correspond to systems
with a large number of servers, this is not the only context in which our results are
applicable. In particular it should be noted that our results can be applied to some
closed gueueing networks with a large number of customers. For discussion of such
networks, we refer the reader to the references on finite population models found in
the bibliography of Mandelbaum and Pats [14].

There has been a great deal of work on state dependent queues, time dependent
gueues, and related asymptotics. We make no attempt to survey this literature, focusing
instead on four pieces of work related closely enough to ours to merit specific mention:
[9,13,14], and [19]. The reader interested in more references on state dependent queues
should consult [14] or [13]. References on time dependent queues are contained in
Mandelbaum and Massey [11], and Massey and Whitt [17]. Motivated by population,
epidemic, and chemical reaction models Kurtz [9] proves a FSLLN and a FCLT for
systems with “smooth” parameters. Our motivation is queueing systems that do not
satisfy the smoothness required in [9]. We also generalize [9] in the sense that we allow
time dependent rates, but thisis mostly anotational issue. In Mandelbaum and Pats [14]
limit theorems are proved for Markovian networks with state dependent rates. Systems
whose limits may hit a boundary of the state space are allowed in [14], so that the issue
of reflection must be dealt with. The limit processes that we obtain do not have the
singular local time terms typically associated with reflection. Intuitively, thisis because
our limit processes do not hit any boundaries. The issue of piecewise continuous
derivatives istreated in [13, theorem 4.3] for the one-dimensional case and is suggested
as a subject for future research in [14]. Newell [19] considers approximations for the
G:/G/n queue with large n. The approximations in [19] are of fluid and diffusion
type, and are motivated by the strong law of large numbers and the central limit
theorem, but no limit theorems are stated or proved in that work.

The rest of this paper is organized as follows. The model and main results are
presented in section 2. The some properties of scalable Lipschitz derivatives are
described in section 3. Some examples of Markovian service networks covered by our
theorems are presented in sections 4-8. In section 4 we consider Jackson networks with
many servers at each node. The system with abandonment and retrial discussed above
is treated in section 5. Thisis a specia case of a Jackson network with abandonment,
which is treated in section 6. Section 7 deals with the priority system described above,
and section 8 covers Jackson networks with state dependent routing. The proofs of our
main results are contained in sections 9 and 10. The strong approximation theorem and
the FSLLN are proved in section 9. The FCLT is proved in section 10. There are two
appendices. The first appendix (section 11) contains results on ordinary differential
equations that we need, including a version of Gronwall’s inequality and a uniqueness
result for our limit processes. The second appendix (section 12) contains proofs of
some of the basic properties of Lipschitz derivatives.
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2. Themodd and main results

The primitives for our model are { A;(:) | ¢« € I}, a collection of mutualy
independent, standard (rate 1) Poisson processes, indexed by a set I which is at most
countably infinite; a separable Banach space V with norm | - |; a collection of “jump”
vectors {v; € V | ¢ € I} such that

> il < o0; @2.1)
1€l
a random initial state vector Q(0) in V that is always assumed to be independent of

the collection of Poisson processes { A;() | ¢ € I}; and a collection of real-valued,
non-negative Lipschitz “rate” functions on V,

{au(i) [t =0, i eI}, (2.2)

that jointly satisfy
e, )] < Ber® (23)
for some 3;, alocally integrable function, and {® | i € I}, a summable sequence of
real numbers; here || - || is the Lipschitz norm for real-valued functions on V, namely
= s TOZIONy ) 24)

xyeV,xzy X =Y
It follows that for all x and y in V, we have

|FO) = fO)| < IfI1- Ix =yl (2.5
and so f is a Lipschitz function whenever || f|| < co. Moreover, for al x € V,
POl < I (24 1x1). (2.6)

For al of the examples that we consider in this paper, V = RY for some 1 <
N < oo and the number of elements in [ is finite. Thus, although we prove the
main results of the paper for a more general setting, any reader uncomfortable with
the trappings of Banach spaces can replace V with RV and still follow the examples
we present. In that case | - | is the standard Euclidean norm on RY.

In terms of the primitives, we represent our Markovian service network to be the
V-valued stochastic process Q = {Q(¢) | t > 0}, whose sample paths are uniquely
determined by Q(0) and the functiona equations

t
Q) =) + "4, ( [ et z')ds> v (27)
i€l
for al ¢ > 0 (for the M;/M,;/n; example, V=R, I ={1,2}, vi =1, v = —1,
ag(x,1) = A, au(z,2) = - (x Ang)). Unigueness of the solution to (2.7) is shown in
theorem 9.2. The specia uniform acceleration that is used for the rate functions of the
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M /M, /n; queue in (1.3) now generalizes to an asymptotic analysis of the processes
{Q"| n> 0} asn — oo, where

t
Q) = QO + 3 4, (n [ o (Eon(s), ) ds)vz-. (28)
i€l 0 l
Our goal is to characterize this asymptotic behavior as n T oo with a functional strong
law of large numbers and a central limit theorem, but we do this with a more general
type of asymptotic behavior for the rate functions.

The asymptotic analysis that we describe above was carried out by Kurtz [9]
for the special case of rate functions having no explicit time dependence and state
dependence that is continuously differentiable. In this paper, we extend his analysis
to the following genera class of processes:

t 1
() = Q"(0 A; al{ =Q"(s),7 |ds |v;, 2.9
C0=00+% (/0 (nQ()> )v 29)
where
la? )| < no®. (210)

In our extension, we alow the following:
1. The rate functions o/ (-,7) are functions of time as well as state.

2. The rate functions, which are indexed by the parameter ), are such that for each
i € I, oj(:,7) has the following asymptotic expansion as 7 — oo:

(i) = 1o, 3) + nal (i) +o(y7). (2.11)

3. The rate functions, as a function of the state space V, have a more genera type
of differentiability that include functions on the real line that are everywhere left
and right differentiable.

The first condition is a minor extension of Kurtz but the latter two conditions are
significant new extensions. The last condition is the most significant in that a new
nonsmooth differential calculus must be developed to deal with these continuous but
piecewise differentiable rate functions. These new conditions allow us to apply the
limit theorems to a wider class of Markov processes that arise in the study of queueing
networks with large numbers of servers.

Within the framework of strong approximations, we first approximate the sample-
path representation (2.9) of the family {Q" | n > 0} by the following theorem, which
is proved in section 9.

Theorem 2.1 (Strong approximation). If (2.1) and (2.10) hold, then as n — oo we
have
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t 1
Q=00+ [ a1 1))
0

+) B, ( /0 t ol (%Q"(s), 2) ds)Vi + O(logn) as. (2.12)

i€l
where the convergence is uniform on compact sets in ¢.
From this strong approximation, we deduce aFSLLN (theorem 2.2), followed by a
FCLT (theorem 2.3). The limit theorems enable sample-path (2.17) and distributional

approximations (2.30), which support computations and confidence intervals. The
proof of the following functional strong law of large numbers is presented in section 9.

Theorem 2.2 (FSLLN). Assume that (2.1) and (2.10) hold. Moreover, assume that
t
lim /

foralt > 0. If {Q7(0) | n > O} isany family of random initia state vectors in V,
then

n(. ;
04557,2) _ a(so)(-,i) ds = 0, (2.13)

= Q@) as. implies lim = Q) as, (2.14)

1—00

lim

1—00

0 Q)
n n

where the convergence is uniform on compact sets in ¢, and Q© is the unique deter-
ministic process {Q(¢) | ¢ > 0} that solves the integral equation

t
QO®) = Q) + / a®(QO(s))ds, t=o0. (2.15)
0
Here o!?, given by
a9 => " aP@ i, xeV, (2.16)
el

is a Lipschitz mapping of V into itself and its Lipschitz norm \|a§°)\| is a locally
integrable function of t.

We call Q© the fluid approximation associated with the family {Q"(t) | t > 0}. It
gives rise to first-order “macroscopic” fluid approximations of the form

Q'(t,w) =nQ(t) + o(n) as, t=>0. (217)

In the development of a functiona central limit theorem for our stochastic net-
work, which refines the above fluid approximation, it is necessary to differentiate
aﬁo)(-) over the Banach space V. There are specific examples of queueing systems
that we analyze, like the M, /M, /n; queue, where the corresponding a§°> is piecewise
differentiable but not everywhere differentiable. This poses a problem that is not easily



A. Mandelbaum et al. / Strong approximations 159

ignored since these derivatives are evaluated at values for the fluid model Q©(t). So
even if a§°>(-) has no derivative at only a finite number of points, the fluid process
could spend al of its time at these points.

We resolve this issue by introducing a new type of differentiability. If f(:) is a
mapping from V; into V,, we extend the Banach space norms | - |3 and | - |2 on Vq
and V5, respectively, to define the following norm on f:

fO) —f(Y)l2

IFll = -
xyevixzy XY

V [f(0)|2, (2.18)

and say that f is Lipschitz on V3 whenever ||f|| < co. If O is an open subset of V;
and x € O, we say that f islocally Lipschitz at x if
fly) —f(z
flo= sp =@k 0, < o (2.19)
y,2€0, y#2 ly — 2|1

Now we define f to have a scalable Lipschitz derivative at x € V; if there exists
another mapping from V7 into V5, denoted Af(X; -), such that

lim [f(x +y) — f(x) = Af(x;y)|2

lim Vi =0, (2.20)
where the function Af(x; -) is Lipschitz on V1 so that
[Af(x; )| < e, (2.21)
and for al rea scalars with A > 0,
(X y) = AF(X; Ay). (2.22)

Since al bounded linear mappings between V1 and V;, possess these last two properties,
we see that differentiability isaspecial case of scalable Lipschitz differentiability. Non-
smooth differentiation in the context of generalizing directiona derivatives has been
defined before, see Clarke [1] and Rockafellar [22] for details. Our definition (2.20)
can be viewed as the analogue to the multivariate definition of differentiability or
constructing the Jacobian.

We sometimes write this new derivative as

Nix(y) = A(xy) (2.23)

to emphasize that we should fix x and view the derivative as a function of .
We can now state the functional central limit theorem, whaose proof is postponed
to section 10.

Theorem 2.3 (FCLT). Assume that (2.1) and (2.10) hold. Moreover, assume that

g 2

el

ds < oo (2.29)




160 A. Mandelbaum et al. / Strong approximations

and
nlLrQO;/O n{# — aff’)(.,i)] — oW, 3)|ds = 0. (2.25)
It follows that ¥, given by (2.16), and o{?, given by
o) =Y aPx i), xeV, (2.26)

el

are both Lipschitz mappings of V into itself, and their Lipschitz norms are locally
integrable functions of ¢,

Moreover, if we assume that a§°>() has a scaable Lipschitz derivative
Aa®(QO(t); -) and we have a family of random initial state vectors {Q7(0) | n > 0}
in V, then for al random vectors Q@(0) and QM (0) in V, it follows that

tim 7| T - g0 £ qio @2n)
implies
A VT [Q - “”(t)] £ Q). (228)

the convergence being weak-convergence in Dy|[0, co), the space of V-valued functions
that are right-continuous with left-limits, equipped with the Skorohod .J; topology.

Finally, the limit Q) = {Q®(¢) | t > 0} is the unique stochastic process that
solves the stochastic integral equation

QW) =Q®(0) + / t [Na@(QO(s); QW(s)) + P (QO(s))]ds

+) B ( / ©(QO(s),4)d ) t>0, (2.29)

el

where the { B; | i € I} are a family of mutually independent, standard Brownian
motions.

We call QW the diffusion approximation associated with the family {Q"(t) |
t > 0}. It quantifies deviations from the fluid approximations, and it gives rise to
second-order “mesoscopic” diffusion approximations of the form

Q"(t) £ nQO() + QW (t) + o(y/7) (2.30)

asn — oo for dl ¢t > 0, with the approximation being in distribution.

Although we state (and prove) theorems 2.1-2.3 for the setting of (2.9), al but
one of the examples are presented in the more restrictive context of (2.8). Thisis done
mainly to reduce the notational burden. The full generdity of (2.9) is employed for
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the system with abandonment and retrials in section 5. It should be clear from these
results how to extend the other examples to the setting of (2.9).

Now consider the case of V being either a finite dimensional vector space or a
Banach space that can be embedded into its own dual space (like a Hilbert space),
so that we can define the notion of a transpose, denoted by a superscript “T" ( for
V = RY, this corresponds to the standard transpose of a matrix). One consequence of
the diffusion limit is an associated set of differential equations that become useful in
the computation of its mean and covariance matrix. The proof is given at the end of
section 10.

Theorem 2.4. If conditions (2.1), (2.10), (2.24), and (2.25) dl hold, then the mean
vector and covariance matrix for Q(t) solve the following set of differential equa-
tions:

2E[Q()] = E[Aa® Q")) + o’ (@) (231)
and
%Cov [QW), QW(#)] = {cov[QM (), Aaf® (QO(); QP (1)) ] }
+3 " a?(QO@), i)V - v; (2.32)
for amost al ¢, where “
cov[QW(), QW] = E[QW®) - QW) - E[QW®]" - E[QW®)]  (239)
and for all operators A onV,
{A} =A+AT. (2.34)

Moreover, if Aal?(QO(r); -) is alinear operator for most all ¢, then E[QM ()] is the
unique solution for (2.31) and Cov[QW(¢), QM (¢)] is the unique solution for (2.32).
Finally, for al s < ¢, Cov[QW(s), QW(¢)] solves the same set of differential equations
in ¢ as does E[QM(#)], but with a different set of initial conditions.

3. Calculusfor scalable Lipschitz derivatives

Certain basic properties of the scalable Lipschitz derivative are useful in doing
calculations for the diffusion limits of our service network processes. All of the theo-
rems in this section are proved in section 12. The first theorem states general properties
for these functions.

Theorem 3.1. Scalable Lipschitz differentiability has the following properties:

1. If the function f:V; — V5, is scalable Lipschitz differentiable at x, then the
resulting Lipschitz derivative function Afy:V; — V5 is unique.
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2. 1ff:V1 — Vs and g: Vo — V3 are both scalable Lipschitz differentiable at f(x),
then gof:V; — V3 is scalable Lipschitz differentiable at x, with

NG o F)x(y) = (AGrx o AB)(Y)- (3.1)

3. Iff:V; — Vyislocaly Lipschitz, as defined in section 2, in an open neighborhood
O C V1 of x € V; and has a scalable Lipschitz derivative at x, then

IO < It (32)

lo-
The next theorem is useful in the identification of scalable Lipschitz differentiable
functions that act on finite dimensional vector spaces.

Theorem 3.2. The following results hold:

1 If f:R*” — R™ is differentiable at x € R™ with Jacobian matrix Df(x), then it
is scalable Lipschitz differentiable there and its scalable Lipschitz derivative is
matrix multiplication by the Jacobian matrix so that

Nx(y) =y - Df(x) (33
for al y € R™, viewing y as a row vector.

2. If f:R™ — R™ islocally Lipschitz at x € R™ and has al its radial derivatives at
X, then f has a scalable Lipschitz derivative at x.

One simple consequence of the second statement of this theorem isthat if f:R — R
has left and right derivatives everywhere, then it is everywhere scalable Lipschitz
differentiable and

Nfoly) = f'lat)yt = fla—)y™, (34)

for al rea x and y.

For all x andy in R™, let x Ay be the R™-vector whose ith component equals
x; A y; and define x vy in a similar fashion. We can then define x™ = x v 0 and
X~ = (-=x) V0. Now let f,g:V — R™ and define ltx~qx) to be the projection
operator on R™ such that for any unit basis vector g; for i = 1,...,m we have

| _ fe if fi(x) > 6i(),
GlI0>000 = (g i [i(X) < gi(x).

where f(x) = (f1(X), ..., fm(X)) and g(x) = (g1(X), ..., gm(X)). The projection oper-
ators lespy<gpoy @d lgrp=giy @€ defined similarly. We use these operators in the
following theorem which gives us a non-smooth calculus for computing these scalable
Lipschitz derivatives.

(3.5)

Theorem 3.3. The following operations preserve scalable Lipschitz differentiabil-
ity:
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1 Iff:V;, —» Vyand g:Vy — V, are both scalable Lipschitz differentiable at X,
then f 4 g is scalable Lipschitz differentiable at x, where

A(f + g)x(y) = Afx(y) + Agk(y). (3.6)

2. If f:V—>Rand g:V — R are both scalable Lipschitz differentiable at x, then
fg is scalable Lipschitz differentiable at x, where

N(fgx(Y) = fNgx(Y) + 9N x(Y)- (3.7

31 f:V — R™ and g:V — R™ are both scaable Lipschitz differentiable
a x, then f v gand f Ag ae both scalable Lipschitz differentiable at x,
where

AV O)x(Y) = AMxWgr0>9003 T AW 1100 <900}
+ (Af(Y) V AGx(Y) =g (3.8)

and

A A 9)x(y) = AW r0<go0r + AW (£ 0>a00}
+ (Af(Y) A AGY)) 5 00=g003 - (3.9

Note that if f:R™ — R, then we have |f(X)| = f(X) V O+ (—f(x)) V0, and so
A FIx) = AW >0 + [AKO| L roo=0r — AxY) L r0<0 - (3.10)

4. Classical Jackson networks

We now consider the classical Jackson network but with the additional features
of time varying rates and number of servers (see figure 2). We extend Kendall notation
and call it the (M;/M;/n;)N network, where N denotes the number of nodes. We
construct the (M; /M, /n:)™ network by first defining the following set of parameters:

wod (@) An))

Figure 2. The Jackson network.
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Ai = externa arrival rate to node : at time ¢,
ui = service rate for node i at time ¢,
'/ — service routing probability to node i from node ; at time ¢,
¢! = service departure probability from node i at time ¢,
ni = number of servers for node i at time ¢.

All these rate functions are assumed to be locally integrable functions of ¢ and we
require that

N
S+ of =1 (4.2)
j=1

foralt>0andi=1,..., N
We then set V = R¥ and define

S ([ @ it )e

j=1

+ (A?( /0 Aéds) - A?( /0 (Qi() Anz)uquzds))q

where A%, Ab, and Aj; fori,j=1,..., N are mutually independent standard Poisson
processes. For al x € RN , we define A(x) to be the diagonal N x N matrix where
the sth diagonal entry is the ith component of the vector x. We define A, p,, and n;
to be row vectors where their ith component equals A}, iy, and n}, respectively. We
aso define ®, to bethe N x N matrix whose (i, j) entry is ¢

Q()=Q(0) + Z

i=1

, (4.2

Theorem 4.1. Defining Q" by uniform acceleration as in (2.8), the fluid limit for the
(M; /My /n:)N network is the solution to the integral equation

t
Q1) = QO(O) + / Dot (QO() AN) AW @, — D]ds. (43
0

Moreover, the diffusion limit for the (M; /M; /n:)™ network is the unique solution
to the integral equation

QW)
t
= QW) + / (Q(l)(3)+I{Q(0)(s)<ns} - Q(l)(s)j{Q(m(s)gns})A(Hs)(‘bs —1)ds

+Z ZB ( / Q(O)(S)An)ﬂs¢”d5>(ey e)

i=1 Lj=1

# (e[ ones) -2 [ @O nntutes d>)a]
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where B, Bf, and ij fori,j =1,..., N are mutualy independent standard Brown-
ian motions.

Proof. From (4.2), it follows that

N T N
()= | Mg — (zi Anf)piole + > (w5 And)ule] (e — ej)]
L j=1

i—1
D | D (i And) el — (i A ni)ui] &
-1l =1

= At + (XA N)A(p )Py — (XA Ne)A(pey)

= At + (XA N)A(p) (P — 1). (4.4

The fluid limit now follows from applying theorem 2.2.
If f(x) = x and g(x) = n; for all x € R™, then by theorem 3.2

Nx;y) =y and Ag(xy) =0. (4.5)
Applying theorem 3.3 to f A g(X) = X A n; gives

AF A QK Y) =Ylix<ny + (Y AO) lix=ny}
= (" =Y )ixeng =Y lixeng =Y lixany =Y lix<ng- (46)
Using (4.4) and (4.6), the scalable Lipschitz derivative of a is

Ney(Xpy) = (y+|{x<nt} - yil{xént})A(Nt)(th —1) (4.7)

and the diffusion limit follows from applying theorem 2.3. O

The following result, which follows immediately from theorem 2.4, provides
ordinary differential equations for the mean vector and covariance matrix of Q.

Theorem 4.2. The mean vector for the diffusion limit solves the differential equation

%E[Q(l)(t)] = (E[Q(l)(t)+] ligo@<ny — E[QP®)] I{Q(O)(t)gnt}>A(/J/t)(th —1)

and the covariance matrix for the diffusion limit solves the differential equation
2 coviQ®(), W)

= {cov| QW) QUM 1 (g0 )<ny — QUMD @or<ny | Al)@: — )}
+ A+ Q) Ane) Au)(@: + 1) — {A(QV() A ny) APy}

Proof. Given (4.4) and (4.6), the proof is simply an application of theorem 2.4. O
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5. Queues with abandonment and retrials

We construct the multiserver queue with abandonment and retrials (see figure 3)
by first defining the following set of parameters:

A\; = external arrival rate to the service node at time ¢,

6, = abandonment rate from the service node at time ¢,

ui = service rate for the service node at time t,

u? = service rate for the retry pool at time ¢,

1y = probability that a customer abandoning at time ¢ does not retry,
n; = number of servers in service node at time ¢.

We then set V = R? and define Q(t) = (Q1(t), Q2(t)), where
t t
Q1(t) = Q1(0) + A“ (/o As d8> + A5, (/0 Qa(s)12 dS)

([ @ nnuies) - ([ (@ -n) suvucs)
- Aliz( /0 t (Qa(s) = ns) "Bu(1 — 1) ds)

M
—_— @ HI[ @it ANyY
1 Qo) Q) '
. )

Bt wt (Qq(t) - np)*

Bt (1-y) (Qq(t) - np)*

Qy(t)

Figure 3. The abandonment queue with retrials.
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and
b t n t )

Q)= Qe+ Ay [ Qa6 =) 1= vys) — ([ (Qato)uzas).
Here we have a network with two nodes where the first one corresponds to the service
node. The second nodeistheretrial pool and has an infinite number of servers to model
retrial delay. Moreover, the act of abandoning the service queue due to impatience is
modeled as abandonment routing where the customer enters the retrial pool with some
probability or leaves the network entirely. Service routing instructs customers to leave
the entire network after service completion at the first node and to enter the service
gueue after service completion at the retrial pool.
Theorem 5.1. Defining Q" by uniform acceleration as in (2.8), the fluid limit for

the multiserver queue with abandonment and retrials is the unique solution to the
differential equations

Ecz“”(t) =\ + 12Q0(t) — 1 ( QW) Any) — B:(QP) —ne) T, (B
“”(t) B — ) QL) — ne) T — 12QP ). (5.2)

Moreover, the diffusion limit for the multiserver queue with abandonment and
retrials is the unique solution to the integral equations

t
Qg_l)(t) = Qg_l)(o) + /0 |:('LL81{Q(O)(S)<TLS} + ﬁs {Q(O)(s)>n })Q (3)7
1 1
— (10 eny + BoligOigsny ) QP + 1205 (s)] ds

- sz( /0 Q) — ) 51— ) ds> - Bgl( /O (Q9(s)) 2 ds)

+Ba</0t As ds) - Bb</0t (QP(s) — ns) " Bswis ds)

- Bc( /O 1 (QO(s) At ds)

and

t
QP () = QN (0) + BS, ( [ @)z ds)
t
Bl ( [ (@06 - n) - ds)

t
+ /0 [QO(s)" B — 1) — 12QP(s)] s
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where
1)\ 1 Dn—
QP = Q(l)(t)+1{Q(10)(t)2nt} — Q¥ L 000)5n (5.3

Proof. These results follow from theorems 2.2 and 2.3. O

Theorem 5.2. The mean vector for the diffusion limit solves the set of differentia
equations

%E Q0] = (1Y gyeny + Al 0sny JE[REPO]
— (1L g0 ny + BrLgOpsny JEIQPO] + 1EE[QP®)] B4
and
%E [@57)] = 51— ) (B[P0 1L 00y~ EIQPD T T g0021)
— nrE[QY ()] (55)

and the covariance matrix for the diffusion limit solves the differential equations

d
(1) _ 1 @ (1) f\—
FVar[QP0)] = 2( 53 g0y + 1L g0<ny ) CoV [P, QP 0]

1 1
= 2(88gOsny + 10 <ny ) SR, QPO
+ 2+ B (QP®) — ne) T + 1 (QP) Ane) + 12QP (),

d 5.6
&Var [Q(zl) ®)] (5.6)

= —2uVar [QS ()] + Bi(L — ) (V) — ne) T + 12QY () + 26,1 — 1)
x (Cov [P0, QPO g0y — SR O. QPO TNy, )
and

< covlafa). Q0]

= (B3 a0usny + Hlg0<ns ) CV QS 0, Q)]
~ (83000 + H o0 <ny ) o[ 0, QP ()]
+ p? (Var[QS(1)] — cov[QV (), Q5 (1))
+ B — ) (Q) — ) T+ 12QP (). (5.7)



A. Mandelbaum et al. / Strong approximations 169

Proof. These results follow from theorem 2.4. As we show in the next section, they
are also a special case of theorem 6.2 where the matrices that are specified by the
given parameter rates are then

ui 0

0 uf
0 1—4% 00

v, = [ t] , and @, = |: :| .
0 0 10

Resulting products of these matrices are

agywi= o M) e age— | 2.

AB,) = {5 ol A= ,

0 O

(5.8)

(5.9)

The specia matrices that are functionals of the diffusion process are
cov[QP1), Q)] o]

5.10
cov[@$(1), Pty 0 =10

cov[QP(t),QW(t)*] = [

and
cov[QP(1), QW(t) — QW(t)*]
cov[QP 1), Q@) — QP )] cov[QP ), QP ()] ]

o 1 1 1 1 (511)
cov[QS (1), Q) — Q)] Var[Q$V(1)]

where
QW) = QD) T gow=ng — QW) 1o @ny (5.12)
and
QP = QP Y g0zny — QO Lg0ny (.13
The vector formulas of theorem 6.2 reduce to
A+ (QO) —ne) TABYW: + 1)+ (QO() A ne) Al ) (@ +1)

_ O — )t SO
=[N 0] + [(QP() — ) O][o o} 0o 1

pt 01 0

e a2 ]
= (A + B Q) — )™ + 1 QL) Ay + 12Q9(2)) e

+ (B — ) (QRE) — ne) T + 12QQ()) e (5.14)

Combining al these identities gives us our answer. O
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Finaly, we explore the asymptotic regime suggested in Halfin and Whitt [4]
by applying the full power of theorems 2.2 and 2.3 to this multiserver queue with
abandonment and retrials. First, we modify our rate functions so that

. . 1 .
W)"=p; + —my fori=1,2, (5.16)
t t NG
1
Bl =6+ %bt’ (5.17)
d=+ 1 (5.18)
= —Dt, .
t t \/ﬁ t
ny =nny, (5.19)

where like N\, ut, B; and ¢, the functions ¢;, m?, b;, and p, are localy integrable,
but unlike them, not necessarily non-negative. By theorems 2.2 and 2.3 we see that
these additional terms of order /5 or 1/,/7 have no effect on the fluid approximation
of Q". However, the diffusion approximation is now the unique solution to the integral
eguation

t
1 1 1 1 —
QY=Y O + /0 [P e Lo/ ©
1 1 2~(1
- ('usl{ng)(S)<ns} + ﬂsl{QgO)(s)>n5})Qg_ )(S)+ + MSQ(Z )(5)] ds
t
+ /0 (65 +m2QP(s) — mE(QP(s) Ans) — bs(QD(s) — ns) "] ds

~me( [ L (QO(s) — ) Bl — 1) SRy (@02 a) |

+ Ba(/ot As ds) - Bb</0t (QV(s) — ns) " Bswis ds>
c ! 0) 1
- 5o( [ @ nnuies)

and
t
W) = QD) + B, ( [ (@06 - n) - ds)
t
T B3, ( [ @)z ds)

t
1
+ /0 (@6 100y
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= QL) L g0y ) Bl — ) — 1205 ()| ds
t
+ /0 [(ba(L— ) — Bups) (QO(s) — )™ — m2QO(s)] ds.

The differential equations for the covariance matrix of Q' are unchanged but the
equations for the mean vector are now

d 1
GEQPw)]
1 _
= (1100 <n T B0y JELQVO)]
1 1
— (MY g0cny + Brligoiysny |ELQP O] +1PE[QPW)]
+ €+ mQP() — mp (QL) Ane) = b (QP(W) —ne) T (5.20)
and
d 1
P [RP®)]

= Bl =9 (E QP O] 050 — EIRT® ] 1{Q(10)(t)>m})

— ZE[QP®)] + [be(L — vr) — Bipe] (QL(1) — ne) T = m2QP (). (5.21)

6. Jackson networks with abandonment

The multiserver queue with abandonment and retrials is a special case of a more
general network that we discuss in this section. Here, we construct a time varying
analogue of the Jackson network that has the added feature of service abandonment
(see figure 4). Extending Kendall notation, we call it the (M;/M;\M; /n;) network
for short. We construct it by first defining the following set of parameters:

! = externa arriva rate to node i at time ¢,

gg = abandonment rate for node 7 at time ¢,

ui = service rate for node i at time ¢,
.’ = abandonment routing probability from node i to node j at time ¢,
'/ — service routing probability from node i to node j at time ¢,

i = abandonment departure probability from node i at time ¢,

¢% = service departure probability from node i at time .

ni = number of servers for node 7 at time ¢,

where we require that
VY =1 and ¢+ ¢ =1 6.1)
Jj=1 J

1
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w oY (@ ANy

]

BE(Qy(t) - np*

Bt - np+

Figure 4. The Jackson network with abandonment.

foradlt>0andi=1,...,N.
We then set V = R¥ and define

QH=QWO) + > > 4 ( /O (Qils) — n;)%w?ds) (e —e)

i=1 j=1

N N t . L
£ 5ay( [ (@ nnduiolas) e - e)

i=1 j=1
N t .
i i — Al . i\t i A
S ([ w) ([ 100y )
- ZAS< / (Qi(s)/\né)ugqﬁéds>ei. 62)
i=1 0

Theorems 2.2 and 2.3 yield the following limiting results for these networks.

Theorem 6.1. Defining Q" by uniform acceleration as in (2.8), the fluid limit for the
(M / M\ M; /n:)N network is the unique solution to the integral equation

t
0

QO(r) =QO(0) + / A+ (QO(s) — ) TABYW, — 1)]ds

+ ' (QO() ANy A (@, — 1)ds, (6.3)
0



A. Mandelbaum et al. / Strong approximations 173

Moreover, the diffusion limit for the (M;/M;\M;/n;)"N network is the unique
solution to the integral equation

QW ()
t
= QYO + /0 (@Y 1(Quyzny — QU Tgoysny ) ABIW, — 1) ds

t
+/0 (Q(l)(s)+|{Q(0)(s)<ns} - Q(l)(8)7|{Q(0>(s)<ns})A(MS)(‘DS —1)ds

N N

t
b O(g) — ni)* giyiids
Z<B13</0 (Qz () s) ﬁs¢sd>

=1

t
1B ( [ @06 ni)ui¢ijd8> ) € @)

w (e[ oeas) - B [ @O - piuias)
0 0
— B ( / (Q(s) A n;)u;¢zds> ) &
0

Proof. From (6.2), it follows that
ar(X) = A + (X = n) TAB)(Wr — 1) + (XA ) A ) (@ — ). (6.5

The fluid limit now follows from applying theorem 2.2.
The scaable Lipschitz derivative of o is

N (X)(Y) = (y+|{x>nt} - yil{x>nt})A(/6t)(Lpt —1)
+ (y+|{x<nt} - yil{xgnt})A(Ht)(q)t —1). (6.6)

The diffusion limit now follows from applying theorem 2.3. O

. (6.4)

Theorem 6.2. The mean vector for the diffusion limit solves the differential equation

d _
&E[Q(l)(t)] = E[Q(l)(t)JrI{Q(U)(t);nt} - QW) I{Q(O)(t)>nt}} ABYW: — 1)
+E [Q(l)(t)+|{Q(0)(t)<nt} - Q(l)(t)_|{Q<0)(t)<nt}] Apy)(®r — 1)
and the covariance matrix for the diffusion limit solves the differential equation
d
- @ @
—0ov [ QP QU]
= {cov[QW(1), QP11 qoy=ng — QVO I omsng | ABIW: ~ D},

+{cov|Q0, QD) 1 goi<ny — Q) N gomen | A — 1)}
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AN+ (QUE) —n) TABIW: +1) + (QUO(E) ANy ) A(p ) (@ + 1))
—{A((QO(®) — n) ") ABYW; + A(QO(H) Any) AP, ).

7. Priority queues
A multiserver queue with preemptive priorities (see figure 5) is defined using the
following parameters:

X! = arrival rate for class i customers at time ¢,
ui = service rate for class i customers at time ¢,
ny; = number of servers at time ¢,

¢ = number of customer classes.

We then set V = R¢ and define

. . i—1 +
A?(/O Aids> —Ai?(/o 1L Qi(s) A <nt— ‘ le(3)> ds)

=

€.

Q(t) = Q(0)+ Z
= (7.1)

Theorem 7.1. Defining Q" by uniform acceleration as in (2.8), the fluid limit for the
priority queueing model is the solution to the integral equation

t
Q) = V(o) + / [As + (QO(s) A (ns1 — QO()@)) "A(uy)]ds,  (7.2)
0
where © = {0;; | 1 < i,j < ¢} isthe ¢ x ¢ matrix

1 fori <y,
Oi; = Z ] (7.3)
0 fori>j.

Moreover, the diffusion limit is the solution to the integral equation
t
QW) =QM(0) - /0 QM(8)l 1 qO(s)<(me1-QO(s)@)+} Altss) s
t 1 I
- /O (QW()®) 100y (s 1-QO()0)+, mi1<QO(s)0y Alht,) s
t
+ /0 (QD()0) 11 00()> (ne1-0O(5)8) . ne1<QO )0y AlkLs) ds
t
_/o (QW(s) A (—(QW(5)©)*)) - I100(s)=(ni1_0O(s)0) +} Altt) ds

+Z; Bf(/otkids) _sz</0tﬂéQi(5)/\ <nt—§c2j(s)>ds>

€,
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Q_(t) @ ul (Q;(hAn)
1

EEE— @ 12 (Qa()A (n=Q4(0)*)

175

1S (Qu) A (n=Qy(1)-...~Qq_4 1)*)

Q,(t) @

Figure 5. The preemptive priority queue.

where

(QWWe)" = (Q(l)(t)('))+|{ntl<Q(0)(t)@} — (QP®)O) "1 1,1<00 (10} - (7.4)
Proof. From (7.1), it follows that
oy (X) = Ap — (XA (1 — x0) ) A(py). (7.5)

The fluid limit now follows from applying theorem 2.2.
Applying (3.8) and (3.9), the scalable Lipschitz derivative of a; is

Ny (X Y)

= (=(YO) "l xs(ne1—x0), ne1<x0) + (YO) lixs(nu1-x0)+, ni1<xoy) Alis;)
— (YA (—(YO) " I, 10x0) + (YO) 1, 1<x0} ) ) ixmne1—x0)+) A1)
= Ylixcmii—xey+y Alry)-
The diffusion limit now follows from applying theorem 2.3. O

Theorem 7.2. The mean vector for the diffusion limit solves the differential equation
d
FE1QPM] =E[QP®]11qow)<(ui1-x0))

+
+E[(QP®O) 11000 (me1-00@e)*, m1<00()e}

—E[(QYMO) ] {qon>m1-00me)+, ni<qope)
+E[QUN A (—(QU(1)8)")] - gm0y
and the covariance matrix for the diffusion limit solves the differential equation

d D¢y oD
5 Cov[QYW(t), QW (t)]
- {Cov [QW(E), QP 100 1) <(ne1-xe)*} }

+
+ {CO" [QW), (R MO) " J11q0)>m1-ome)-, nt1<Q(°>(t>@}}
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~ {cov[Q(®), (Q(18) ]I (g0 (r1-a0e), mi1<avie) |
+{cov[QW(1, QP A (~(QP(1O)")] - 11000)=(u1-00me)) }
+AMN) ~ AQYW) A (nl - QO)O) ") - Ay,

where (QW()@)* is given by (7.4).

8. Jackson networks with state dependent routing

We now consider another generalization of the classical Jackson network where
the arrival rate, service rate, and routing probabilities are al functions of the state of
the joint queue length vector Q(¢) (see figure 6). We extend Kendall notation and call
it the (M;(Q)/M;(Q)/n:)™N network. The examples considered in sections 4 and 7 are
special cases of this network. We construct the (M(Q)/M(Q)/n:)N network by first
defining the following set of parameters:

X (Q(t)) = external arrival rate to node i at time ¢,

ui(Q(t)) = service rate for node i at time ¢,

$17(Q(t)) = service routing probability to node i from node j at time ¢,

#i(Q(t)) = service departure probability from node i at time ¢,

ng = number of servers for node 7 at time ¢,
where Xi(2), pi(-), ¢ (-), and ¢i(-) are al Lipschitz functions with scalable Lipschitz
derivatives and we require that

N N
I+ Y ) =1 and ¢+ > ¢’(x) =1 (8.1)
j=1 =1

foralt>0adlxeV=RN, andi=1,...,N.

w(Q) Q) (QH A ny)

M) @ 1@ (A )

Figure 6. The Jackson network with state dependent routing.



A. Mandelbaum et al. / Strong approximations 177

We then define

Q)= Q(0) + i 42 ( / By (Q<s))ds) e
- Z At / (i) A ) Q)4 (U0 )
Yy ( / Qils) Al i (Q(s)) ?(Q(s))ds> & —e). (82

i=1 j=1

Theorem 8.1. Defining Q" by uniform acceleration as in (2.8), the fluid limit for the
(M(Q)/M¢(Q)/n:)N network is the unique solution to the integral equation

Q) =Q(0) + / t s (QO(s))ds
0

t
+ [ QO A A1, (QO) (@,(QO) ~Nes. (B3

Moreover, the diffusion limit for the (M;(Q)/M:(Q)/n:)"Y network is the unique
solution to the integral equation

QW) = QW(0) + / " AA(QO(s); QW () ds
0
t
+ /O QO()* A (11, (QO(s)) ) (0, (Q(s)) — 1)dls
t
+ /0 (QO(s) A ng) (A (A (QO(5); QM (5))) (@,(QO(s)) — 1)) ds

t
+ /0 (Q9(s) A ) (A (1, (Q9(5)) ) AP, (QO(s); QW(5)) ) ds

+ Z Z B¢, </ (QO(s) Anl) i (QO(s)) ¢ (Q(O)(S))d5> (e — &)

=1 j=1

- Z By ( / (QO(s) A ni) i (QO(s)) (Q(O)(s))ds>

+ZB“< / AL( Q(O)(s))ds>
where

QU(®)* = QU)o @<ny — QUM igor<ns- (8.4)
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Proof. From (8.2), it follows that

ap(X) = Ae(X) + (X A ND)A (X)) (Pe(x) — 1) (8.5)

The fluid limit now follows from applying theorem 2.2.
The scalable Lipschitz derivative of o is

Noy(X; ) = AN Y) + (Y Tixeny — Y Tixeniy ) A (1(X)) (Pe(x) — 1)
+ AN (A (A 06)) (@09 — 1) + A (11, () AD(x:Y)). (8.6)

The diffusion limit now follows from applying theorem 2.3. O

Theorem 8.2. The mean vector for the diffusion limit solves the differential equation

%E QW] = E[AN(QU(): QP )]
+E[QW®) I qo<ny - Ak (QOM)) (®:(QO() —1)
—E[QW(M) Tlqo<ny - A1 (QV®)) (®:(QV ) — 1)
)

+(QO) A i) A (E[Ar (QO1); QP®)]) (@ (QV1) — 1)
+(QU(1) Ani) A (1, Q1) JE [N (QV); QW ()] (87)

and the covariance matrix for the diffusion limit solves the differentia equation
d
5,Cov[QP®). QP )]
= {cov[QD(#), AA (QV1); QW ()]}

+ {cov[QP®), QU1 (gogy<ny - A1 (QOM)) - (®1(QO®) ~ 1) }

{ V[Q(l)(t)Q(l)(tr]|{Q(0>(t)<nt}'A(Ht(Q(O)(t))) (O)(t) | }
+{Cov[QW(®), (QV1) A ny) A Ak (QV): QW(t))) (q’t (Q(O’(t)) D]}
+ {Cov[QW(®), (QO() A ny) A (1, (QO®))) AP (QO(); QW (1)) ] }

+ AN A+ (QO) ANy A (1, (QOM))) (@ (QVE)) +1))
—{A(QO®) Any) A (1, (QO))) @ (QO(1)) }. (8.8)

9. Proofs of the strong limit theorems

In this section, we prove the strong approximation and strong law of large number
theorems stated in section 2. As preparation, we first show existence and uniqueness
for the process Q = {Q(¢) | t > 0}. In defining this process, we also construct a
process Z = {Z(t) | t > O} that we use as a bound on its growth. In afashion similar
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to results found in Kurtz [9], the Z process plays the key role in a stochastic analogue
to Gronwall’s inequality.

Recall, from section 2, that for all the results in this section we make the following
set of assumptions:

1. The family of Lipschitz rate functions { au(-,7) | ¢« € I} has the growth condition

for al i € I, where §3; is a positive, locally integrable function and {v | i € I} is
an absolutely summable sequence. Similarly, the family of Lipschitz rate functions
{a](-,i) | i € I,n > O} has the property that

| ¢ 3)|| < nBey®. (9.2)
2. The family of transition vectors {v; | i € I} has the property that
3 il < . 9.3)
1€l

It should be noted that the last condition is not as limiting as it seems. If V is the
Banach space ¢, of absolutely summable sequences and {v; | ¢ € I} is the set of unit
basis vectors, merely redefine the norm to give each basis vector a weight where all
of the weights are summable.

Lemma 9.1. There exists a positive, increasing process Z = {Z(t) | t > O} that is the
unique solution to the equation

t
Zit) =X </0 BsZ(5) ds), (9.9

for dl ¢ > O, where the process X = {X(t) | t > 0} is defined by a random varigble
X (0) > 0O that is independent of the collection of Poisson processes { 4; | i € I} and

X(t)=X©0) + > A(vt) vil, (9.5)
i€l
is an increasing pure jump process with no explosions.
Moreover, the process M = {M(t) | t > 0} defined by

) t
M(t) = Z(t) exp( > Ay - / Bs ds>, (9.6)
i€l 0
is a martingale.

Proof. Since }°,.;7® < oo, it follows that the process A = { A(t) | t > O}, where

At) = Ai(2t) (9.7)

el
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is Poisson with mean rate Y., +®. Given that 3, ; |vi| < oo aso, we then have
foralt>0

E[X(®)] =E[XO)] + > 71D vift <E[XOQ)] + D D> |vilt <oo.  (98)
i€l el el

Hence X (t) < oo as. for dl ¢ and its jump times are given by the Poisson process A.
Now let b(t) = fg Bsds. If 3 isastrictly positive function then b1, the inverse
function for b, is well defined. For al ¢t > O, define the random process {7(t) | t > O}

such that
7 t) = bl< /O t ;(Z )>. (9.9)

This is well defined since X (¢) > X (0) > 0 for dl ¢ > 0. Hence, we can define the
process { Z(t) | t > O} to be

_ T
Z(@t) = B (9.10)

Since 7(t) = [5 8sZ(s) ds, we have uniqueness.
Now consider the process M, = { M..(t) | t > O}, where

t
M) = 20~ 32O [ 5.20)ds (9.11)

i€l 0
This process is a martingale, since {X(t) — > ,c;7?|v;|t | ¢t > O} is one, and by
(9.9) we see that 7(t) = fg BsZ(s)ds is a stopping time with respect to the filtration

generated by the process X for all ¢ > 0. Findly, M is a martingale since M, is one
of bounded variation and

t
M) =200~ 10Nl [ s.0s)

iel
t ) s
— 200+ / exp(—zfy(’)]vi]- / s, dr)dM*(s), (9.12)
0 il 0
which completes the proof. O
Theorem 9.2. Given the rate functions {«(-,7) | t > 0, ¢ € I} and the initial state

vector Q(0) is independent of the collection of Poisson processes { A; | i € I}, we can
construct a unique stochastic process Q = {Q(¢) | t > 0} such that

t
Q(t) = Q(0) + Z A; ( /O s (Q(s), i)ds) V;. (9.13)

el
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Moreover, we have for al ¢ > 0,

1+ sup |Q(s)| < Z(1), (9.14)

0<s<t

where the process Z = {Z(t) | t > 0} is uniquely defined by (9.4) and (9.5) with
X(0) =1+1Q(0)].

Proof. Define the following sequence Q,, = {Q.,(¢) | t > 0}, where Qo(t) = Q(0)
for al ¢ > 0 and for al positive integers n we have

tA\T,
Qu() = QO + 3" 4, ( [ @i z')ds> v (9.15)

el

We are done once we prove the following two statements:
1 Q,) =Qu_a(t) fordl 0<t < T,.

where

t Y A (/ s (Qn-1(s),1)d ) n} (9.16)

el

2. lim,_o T,, = o0 as.

We can then construct the desired process Q = {Q(¢) | t > O} by defining for dl
n>1,

Q) = Qu_1(t) fordl 0<t <T,. (9.17)

Uniqueness follows by using induction on n. Using (9.15) shows that the uniqueness
of Q,, implies the uniqueness of Q,, 1.

Thefirst statement is proved by using induction on n. The result holds for n = 1,
since t < Ty implies that Q1(¢) = Qo(t) = Q(0), since t < T1; means that

> 4 ( / as(Qo(s),i)d > =0, (9.18)

el

and for dl ¢ € I, we have

t
Al</ ()ZS(QQ(S),’i)dS> =0 (9.19)
0

If we assume that Q,,_1(t) = Q,(¢) for dl 0 < ¢t < T}, then it follows that

t t
/ Qg (Qn(s) )ds = / Qs (Qn_l(s),i)ds (9.20)
0 0
fordl ie I and 0 <t < T,,. We then must have
Qni1(t) = Qut) fordl 0<t < Ty, (9.21)
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Now consider the case of T,, <t < T},+1. By definition of the Q,,’s we have

Qn(t) = Qn(Tn) (9-22)
and
t
Quia() = QO+ 0 i [ 0n(Quee i) v (0.23)
el 0
However, by the definition of T,, and T,,, 1, we have
ZA (/ Qg Qn(s) ) ) <n+1 (9.24)
el

This follows from the fact that the A;’s are increasing processes. Combining this with
the fact that the processes are also integer valued not only shows that the sum in (9.24)
equals n, but that for al i € I,

A; t (0% (Qn(s)f Z) ds | = A; " Qs (Qn(5)1 'l) ds
0 0
=A; < /OTn Qg (Qn_l(s),i)ds>,

where the last equality follows from (9.20). Findly, this gives us

Qn—l—l(t) = Qu(t) = Qu(Ty) fordl T, <t < T, (9.25)
which means that
Quialt) = Qu(t) foral 0<t < Ty, (9.26)

completing the induction argument.
To prove the second statement, we observe that

2,0/ < Q0 + 4 / Joue D (14 Qs ) el (020

el

<loo| + X4 O [ 5.1+ ]Qn sl (@29

el

It follows by induction that for al » > 0 and ¢ > 0 we have
1+ |Q.0)] < 2(0), (9.29)
where Z(t) is the process defined in (9.4), with X (0) = 1+ |Q(0)|. Consequently,

>4 ( / s (Qpu(s),4) ) > A ( Q) / Bs2(s) ds) (9.30)

el el
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If wesety=3",.,79, then 3=, ; A;(v)t) is a Poisson process with rate . Let 7}
be the time of the n-th jump for this Poisson process. It now follows from (9.16) and
(9.30) that for al n > 1,

ST < T, (9.31)

n

where
Sy
T) = BsZ(s) ds. (9.32)
0

Sincelim,,_.o, 7)) = oo as., then lim,,_. . S, = oo as., and so we have lim,,_,. T}, =
o0 as.

Finally, (9.14) follows from the fact that 1 + |Q(¢)| < Z(¢) for dl ¢t and Z is a
non-decreasing process. O

Now consider the family of uniformly accelerated processes {Q” | n > O} as
defined in (2.9). We will adways assume that every element of {Q"7(0) | n > 0}
is a random vector in V that is independent of the collection of Poisson processes
{A;|iel}.

Lemma 9.3. If {Q"(0) | n > 0O} is a family of random vectors independent of the
Poisson processes { A; | i € I}, then

— (0 . . —
lim,—o |Q?7( ) <ooas implies lim,_Z"(s) < oo as, (9.33)
which implies
_ n
lim,, . sup M < o0 as. (9.34)
ogsst M

Proof. Let {Z"(t) |t > O} be the unique process such that

t
Z(t) = X"(/ BsZ"(s) ds) (9.35)
0
and
1 1 4
X7(t) =1+ =|QUO)| + > = A;i (vnt) |vil. (9.36)
K i1 !
A simple modification of the proof for theorem 9.2 gives us
1+ 1 sup |Q"(s)| < Z"(1). (9.37)
1 o<t

A similar modification of the proof for lemma 9.1 shows that

{Z"(t) exp(— >0l [ 4 ds> I= 0} (9.39

el
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isamartingale, and so for al ¢ > 0.

1 t
E[Z7()] = <1+ —|Q"(O)|> exp <’y / Bs ds>. (9.39)
n 0

Using Chebyshev's inequality, we see that for al ¢t > O, the set {Z"(¢t) | n > O} isa
tight family of random variables and so

lim, o Z"(t) < oo as. (9.40)

which combined with (9.37), completes the proof. O

Our fundamental results, stated in section 2, are proved within the framework of
strong approximations. The framework is based on a pathwise approximation of the
Poisson process, articulated in the following lemma.

Lemma 9.4 (Kurtz [9, lemma3.1]). A standard (rate 1) Poisson process { A(t) | ¢ > O}
can be realized on the same probability space as a standard Brownian motion { B(t) |
t > 0} in such away that the positive random variable X, given by

_ |A(t) — t — B(t)|
X = g2 1)

has a finite moment generating function in a neighborhood of the origin. In particular
it has a finite mean.

00, (9.41)

Using lemma 9.4, we associate with our stochastic primitives {A; | i € I},
namely the family of mutually independent standard Poisson processes, another family
{B; | i € I} of mutually independent standard Brownian motions, such that

¥ = g Ai®) —t — Bi®)]
'S0 log(2 V t)

Moreover, the random variables X;’s can be taken i.i.d. with a finite mean. Note that
both families, as well as the X;’s, must be realized on a common probability space.
In the sequel, we write w € Q for elementary outcomes in this common probability
space.

Now we give the proof for our strong approximation theorem.

< 0o as. (9.42)

Proof of theorem 2.1. Using lemma 9.4, we have
Q- QO - [ a?(%%))dr - ZBZ( / Oé?GQ"(?“),i)dr)Vi
0 n el 0 n

<) Xilog <2v /ot aZ(%Q"(s),i) ds> Vi (9.43)

el

Sup
0<s<t
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<) Xilog <2v (/ |-, Z)H<1+ —|Q"(s)|>ds>>|vl (9.44)

i€l
ZX log (2\/ (n’y(Z)Z”(t) / s ds>) V| (9.45)
i€l
<) Xilvi|log <2v (m Z7(t) / By ds>> (9.46)
el

where v* = sup,c; ;. Thefirst step follows from (9.42). The second step follows from
(2.6). The third step uses (9.2) and (9.14). Since the X; are nonnegative, using (2.10)
and the fact that the X;’s are i.i.d. with the same finite mean implies that

E[ZXHV@‘@ < 00, (947)

el
which gives us the desired result. O

Now we give the proof for our functional strong law of large numbers.

Proof of theorem 2.2.  First observe that a§°> is well defined for almost @l ¢ as given
by (2.16) since for al ¢ > 0,

77
/ Ha(o)Hds < ds + ol ds (9.48)
<5Up Vil - Z |:’Yz/ Bs ds + M (., 7) ds} < 0.
i€l
Moreover, we have for al ¢ > 0,
t n ne. s
/ Qs a0 as( ) _ O, 9| ds < . (9.49)
0 n iel n

el

Applying condition (9.3) then gives us

t
Iim/ = _
n— Jo

n
Combining (2.12) with (2.15), the integral equation for Q©, we obtain

(t) Q(O)(t) / [;QZ(EQW(S)) _ ago)(Q(O)(s))]ds

+Z (/ (%Q"(s), >d5>vz+0<|2 ) (9.51)

ZGI

aO| ds = 0. (9.50)

where O(logn/n) holds uniformly on compact sets in ¢.
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Taking the supremum of (9.51), we obtain

0<s<t 77
<[ }a’;<—Q"(s)> a0( Q) |a
oM n n
t
/. a@(%on(s)) —a(Qs)) | ds

IVZI+O<IOgn>
n

1 s 71 ,
Lo, (Gen)e)
</Ot 7_0‘(0) ds - Zn(t)+/ o) = Qn(r)_Q(O)(r)‘ds

+) sup 1‘ (m“’/ B dr- Z"(s)) |vl|+o<I S") (9.52)

ie1 0<s<t 1]
Since (9.48) holds, we can apply Gronwall’s inequality (lemma 11.1, corollary 11.2,
or Hale [3, p. 36]) and obtain

Ui

sup Q (S) Q(O)(S)
ogs<t | M
t n
< exp (/ Hago)H ds) < ago) ds - Z"(t)

+Z SUp ' (m“’ / B, dr - Z"(s)) |vl|+o<'°g”>>. (9.53)
7 0<s<t 7l n
Using (9.50) and lemma 9.3, taking the limit yields
lim sup | ) QO )' (9.54)
n—oogsg<t| M
which completes the proof. O

10. Proof of the central limit theorem

In this section, we prove results related to convergence in distribution, so it is
useful to define partial ordering between two rea-valued random variables in distri-
bution. For any two real-vaued random variables X and Y we defi ne the relation

X <t Y to mean that there exists some X and ¥ with X £ X and Y £ ¥V such that
P(X < Y) = 1. We use < to denote a strict inequality.

Before we prove theorem 2.3, we show that the limit supremum of |Q"(t) —
nQO®)|/\/n asn — oo is aways finite in distribution.
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Theorem 10.1. For dl ¢t > O, if ay(-) satisfies the same hypothesis as in theorem 2.1
and

(i) = nal(, i)

ds < oo, 10.1
7 < (10.1)

> lim Ilm,ﬁOO

el

we then have

_ »00
T, sp |26 = 1QOG) _

(10.2)
0<s<t V1

Proof. By theorem 2.2, we know that a§0) is a Lipschitz mapping of V into itself
where ||| islocally integrable over ¢, since dividing the sum in condition (10.1) by
/1 and taking the limit as n — oo gives us condition (2.13). Moreover, multiplying
the inequality (9.49) by /7 gives us

t
/
foral¢t>0

Using theorem 2.1 and the self similarity of standard Brownian motion, we have

¢ —nad

(81

Q"(t) £ Q(0) + /0 t ol (%Q%)) ds

+Zf3*< / taZ(%Q"(s),i)ds)Vi+O(Iogn), (10.4)
0

el

which holds uniformly on compact sets of ¢. The collection of independent Brownian
motions used here are denoted B; for al i € I to distinguish them from the Brownian
motions B; used in section 9. This gives us

QW) - mQOW a 1 [, (%Q’?(s)) — 7a®(QO(s))ds

Vi Vi Jo
+;B*</ <%Q"(s),i>ds>vz~+0<lo%>, (10.5)

which holds uniformly on compact sets of ¢. Applying the Lipschitz property of o,
we have

!Q”(S) —1Q9(s),

0<s<t \/_
( Q”(s)) na(°)<%Q”(S)) ds

\st
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t na§°)<%Q"(S)> —na®(QU(s))| ds

& Lo (o)o)o-o()
B@(n/o (@0 )ar )|+ o

\St/ Ha” na(O)Hds Z"(t)

+) " sup
iel OSsst

+ / Haé‘”H Q) - 1Q0)|ds
0

g7
vl +0( %)
Vil /i

( @) / B, dr - ZW(S)>

Now we apply Gronwall’s inequality, which yields

+) " sup
icl 0<s<t

aup 1Q"(s) — nQ(s)|
0<s<t V1

gstexp(/otuagowds).(/ L e = 5a®@lds - 27)
0 - 2(s |9n)>
5 (0 [ o Z’?()) vl +o(22)).

Taking limits on both sides we obtain

+) " sup
icl 0<s<t

Q"(s5) — nQU(s)]

lim sup
N—00 0L s<t \/7_7
<ot EX o ds . B! (i)/sﬁrdr-Zs) V!,
ceo( [ \)ZEZIM (2 (5)) v
and this completes the proof. a

Proof of theorem 2.3. By applying arguments similar to those in the proof of theo-

rem 2.2 combined with conditions (2.24) and (2.25), we can show that both that o?

and aﬁl) are well defined Lipschitz functions mapping V into itself for aimost all t,

where [|a{?| and ||aP|| are locally integrable functions of ¢. Moreover by similar

arguments we can show that conditions (2.24) and (2.25) imply

ds = lim /t M—a@
= Jo

t n
lim / ’—s — a0 ds = 0. (10.6)
n—oc Jq \/ﬁ

n
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Now combine the integral equations for Q”, Q©@, and Q® to obtain

Q') — QW)
7 Q™ ()

£ [ (er(2) - 1a(@00) Jos
N / ' Aa® (QO(s); QW (s)) + a® (QO(s))ds

+3 [B*(n/ <%Q’7(S),i>ds> B;k</Otoz§°)(Q(o)(S),i)dS>]Vi

ze[

s (i e)a([omemanl
i€l
o)
4 /Ot (ag%zago) _ ag)) (%Q"(s)) ds (10.7)

t 1
0) 0) = e 0)
+ /0 fn(as <Q () + Q") - Q (s))
— a9(QO®s)) — A (Q(O)(s): %Q%) — Q<°><s)> ) ds  (10.8)

T /0 iR (Q<°><s): %Q”(S) - Q(O)(8)> — Aa® (QO(s); QW (s))ds (10.9)

+ /Ot a(l)GQ"(S)) — af?(QO(s))ds (10.10)
+; [B*< / (%Q"(s),i)ds> —B;(/Ot ago)(Q(O)(s),z')dsﬂvi(lo.ll)

+O<I(j%7).
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Now we show that summands (10.7), (10.8), (10.10), and (10.11) all converge to zero.
For the first summand (10.7), we have
< /t al —na® a®
0

[(E2 ) (oo [ |22

For the second summand (10.8) when Q"(s) # nQ®©(s), we have
a®(1Q'9) - a®(QV) ~ Aol (207 - QO )|

— Vi 206 - QO

. Na@(@/nQ7(s) — aPQO(s) — Aad(1/m)Q"(s) — QVs))]
|(1/mQ(s) — QUO(s)|

s0 combining the fact that o (") is scalable Lipschitz differentiable with theorem 2.2
we obtain

ds - Z"(t).
(10.12)

Vi

, (10.13)

fim Vil (3079 - a.(@0) - Aa(7076) - QU )| <0 (1014

For the fourth summand (10.10), we have

t 1 t
[ a9 (30) - a@(@Ow)a < [ o s
0 n 0

0<s<t

La16) - QO
n

(10.15)

Finally for the fifth summand (10.11), observe that

}Sn}n->s(0)(0)-
02::21‘, 77/0 ozr(nQ (r),4 | dr /0 Q. (Q (r),z)dr
</ t }aZGQ"(s),i) —a?’(%%)w‘) ds

o |m *\n n
- / t ag°)<3Q’7(s),i> —ag°><3Q”(s),¢> ds
0 n n

1
~a — a0

Ui

</
0

so by theorem 2.2, we have

/Os Qy (%(r),z) dr — /OS ar(Q(O)(r),i)dr

t
ds.zn(t)+/ || ds - sup
0

0<s<t

La1(s) — QO(s)
n

lim sup
=00 0Ls<t

=0. (10.16)
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1o (G ) (5 ))
— B} ( /0 } a@(QO(), i)dr) ] Vi

by dominated convergence and the fact that continuous functions are uniformly con-
tinuous on compact sets.
If we make the observation that

1A (QO@), ) || < [l (10.18)

From this it follows that

lim sup
=00 0Lt

=0, (10.17)

then we have

Q"(s) — nQ(s)
Vi

_ Q(l)(s)

l[im sup
=00 0Lt

¢ () — )
g/ @@ - Tim  sup QM) —nQ7M) _ qweylds.  (10.19)
0 N0 0<r<s N4
Now we apply Gronwall’s inequality and obtain
n(s) — OO
lim sup | LB =17 —Q(l)(s)‘ ~0, (10.20)
N—00 0Ls<t V1
which completes the proof. O

Proof of theorem 2.4. Given the integral equation (2.29) that QW (¢) solves, we im-
mediately have for the mean vector E[QW(¢)]

t t
E[QU®)] = E[QW(0)] + / E[Aa?(QO(s); QW(s))]ds + / a® (QO(s))ds.
° ° (10.21)
Differentiating (10.21) gives us (2.31).
The solution to the integral equation (2.29) aso solves the stochastic differentia
equation

dQ®(t) = (Ae? (Q(1); QV(1)) + f (QO(1)) ) it

+3°1/aP@QO), iyv; dB; (2), (10.22)

iel
see Karatzas and Shreve [8] for more details on stochastic calculus. Using Ito's

formula [8, p. 149] we can rigorously show the following result obtained through
formal manipulations
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dQ¥®" - QW)
= dQW(®)" - QUM + QWM - dQW(®) + dQW(®)' - dQV (1)
= (Aaf?(QU: Q%) +af?(QV1)) - QP

+ 3 /a2@QO), iV - QO dB; (1)

el

+QD®)" - (Al (QO(1); QU ()) + o (QO 1)) ) ot

+31/aP@QO), N - vidB; (1) + > af? (QO(), i)V] - v; .

el i€l

Taking expectations, the Brownian motion differential terms disappear and we get

%E QY- QW)
= E[(Aa®(QO1); QV(t)) + i (QO®))" - QV(t)]
+E[QDEH - (Al (QO0:QP() + o (QV))]

+> " a?(QO@. i)V - v, (10.23)
i€l

for amogt al ¢. Using the derivative of (10.21), we obtain
9001 Elo®
GEQYM] -E[QW)]
= (E[Aa®(QO1; QY®)] + o (QO®)) " - E[QW(1)]
+E[QPM] - E[Aa®(QO1): QP (1) + o (QO®)].  (10.24)

Subtracting (10.24) from (10.23) gives us (2.32).
If Aal?(QO();) is alinear operator for almost all ¢, then let A, be the matrix
that represents its action on V or

/\agO) (Q(O)(t); Q(l)(t)) — Q(l)(t)At. (10.25)

If |A| is the bounded linear operator norm of A, then by (2.18) and theorem 3.1 we
have

Al = [Aaf®(QO); )| < [, (10.26)
and so by theorem 2.2, |A,| is alocdly integrable function of t.
We can then rewrite (10.21) as

=[] = £[Q¥0] + [ ElQ¥A s+ [ a®(@)ds oz
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and observe that by (2.6)
1P (QOM)| < [|a]|(1+]Q©Ow))). (10.28)

Since we know that Hagl)H is a locally integrable function of ¢ by theorem 2.3, then
we need only prove that supyc,, |Q(s)| is finite for al ¢ to show that [ (Q(1))|
is a localy integrable function of ¢. From this and theorem 11.4, the uniqueness of
the solution to the integral equation (10.27) immediately follows.

Using the integral equation for the fluid approximation of theorem 2.2, we have

1+]QO@ =1+ 'Q(O)(o) + / t o (QO(s))ds (10.29)
0

<1+]Q9O) + /O t 12 (QO(s))|ds (10.30)

<1+]Q0) + /Ot @@ (14 |QO(s))ds, (1031

where the second step is an application of (2.6). Applying Gronwall’s inequality, we
have

1+ sp [QO)| < (1+ |QO)) -exp( /0 tHa@Hds) (10.32)

0<s<t

and so (10.28) for dl ¢, gives us
t t
/ ‘agl)(Q(O)(S))‘dsg/ a®] - (1+]QUO(s)|)ds
0 0
t
<(1+ 3p [QOO)) - [ [la? s
0<<s<t 0

t t
<(1+1090)) e [ a®ld:)- [ a]a:

< o0.
Finally, observe that
Cov[QU (1), Aaf? (QO(1); QP(#))] = Cov[QW(1), QW (1)] A, (1033)

for amogt al ¢, and so the integral equation for the covariance matrix is
t
cov[QU(, V()] = Cov[QY(0, QU] + | {Cov]QV(s), QU] A. b
0
t
+ / > a(QOs),i)v] - vids. (10.34)
0

el

Unigueness then follows by a similar argument as for the mean vector. O
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11. Appendix: Ordinary differential equations

The existence and uniqueness of the fluid and diffusion approximations for our
service network processes rely heavily on the theory of non-linear ordinary differential
equations. In this section, we provide a self-contained summary of these results. More
details can be found in books by Hale [3] or Hochstadt [5].

Lemma 11.1 (Gronwall, cf.[2,3], or [8]). Let z, y, and z be measurable, non-negative
functions on the redls. If y is bounded and z is integrable on [0, 7] and for al
0t T,
t
x(t) < z(t) +/ x(s)y(s) ds, (11.1)
0

then
t t
x(t) < 2(t) +/ z(s)y(s) exp </ y(r) dr) ds. (11.2)
0 s
Proof. If we multiply both sides of (11.1) by , then
t
w0~ [ 26wt ds)o0) < (000 13

Now if we multiply both sides by exp(— fg y(s) ds) we obtain

t t t
x(t)y(t)exp( /O y(s)ds> - ( /O x(s)y(s)ds>y<t)exp( /O y(s)ds>

t
< () exp( /O y(s) ds>. (11.4)

Simplifying the left side of the inequality as the derivative of a product of absolutely
continuous functions, we have

d t t .
&[</0 z(s)y(s) ds) exp(/o y(s) ds)} < z(t)y(t) exp(/o y(s) ds). (11.5)

Integrating both sides yields

(/Ot z(s)y(s) ds> eXp(— /oty(S) ds> < /ot 2(8)y(s) exp(- /OS y(r) dr) ds,

(11.6)
which is equivalent to

t t t
/0 z(s)y(s)ds < /0 z(s)y(s) exp </8 y(r) dr) ds. (11.7)

Combining (11.1) to (11.7) gives us (11.2). O
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Corollary 11.2. If z, y, and z satisfy the same hypotheses as above, then

T
sup z(t) < sup z(t)-exp( /0 y(t) dt>. (11.8)

0<t<T 0<t<T

Proof. Using (11.2), we have for adl 0 < ¢ < T,

T T
z(t) < sup z(t)+/0 z(t)y(t) exp(/t y(s) ds) dt, (11.9

ot<T
which in turn gives us
T T
sup z(t) < sup Z(t)+/ z(t)y(t) exp(/ y(s) ds)dt (11.10)
o<t<T o<t<T 0 t
T T
< sup z(t)+ sup z(t)/ y(t)exp</ y(s)ds)dt (11.11)
o<t<T o<t<T 0 t

< sup z(t) + sup z(t)(exp( / ! y(t) dt) - 1) (11.12)
0

0<t<T 0<t<T
T

< sup z(t) exp( / y(t) dt), (11.13)
0<t<T 0

and this completes the proof. O

Lemma 11.3. Let {z(™ | n > 0} be a sequence of bounded, non-negative functions
on the interval [0, 7] and let y be a non-negative, integrable function on [0, T]. If we
haveforal n >0and0<t < T

() < /O t 2 (s)y(s) ds, (11.14)

then we have for adl 0 < ¢ < T,

2M(t) < il( / ty(s) ds>n sup 2O(s). (11.15)
n. 0

0<s<t
Proof.  Since z(0(t) < supy< <, 2(©(s), then (11.15) follows from induction on n. O
Now we state and prove the result that is referred to in Hochstadt (see [5, p. 204])

as the fundamental existence and uniqueness theorem for nonlinear ordinary differential
equations.
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Theorem 11.4. If for dl ¢ in [0,77], the function f,:V — V is Lipschitz such that

||f¢|| is integrable over [0, 77, then the integral equation

t
X(t) = / fs (X(s))ds
0
has a unique bounded solution X :[0,7] — V.

Proof. For dl n > 0, let

X(n+1)(t) = /t f, (X(”)(s))ds
0

and
() = sup [XOTD(s) — XM(s)].
0<s<t
This gives us
x(n+l)(t)< sup ‘X(nJrZ)(S)_X(nJrl)(s)‘
0<s<t
< sup / (£, (X)) — 1, (X)) ] dr
0<s<t | JO

t

< / |5 (XD (s)) — £, (X)(s)) |ds
' (n+1) (n)

< f || [ X" (s) — XY (s)|ds

< [ IR11X0 ) - X0

t
g/HuwW@m
0

which by the previous lemma means that

t n
2 (1) < %( / Hszds> sup zO(s).
n: 0 0<s<t

For al m > n, we then have

sup [XM(t) — XM
o<t<T

m—1
> Og@! (1) = XO)]

-
Il

AN

3

1/ (T '
< 7(/‘me>-sm|ﬂWﬂX@@|
— 7! 0 o<t<T

7

(11.16)

(11.17)

(11.18)

(11.19)

(11.20)

(11.21)
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_ (iii!(/;uftudt)i—i%(/c,T”””dt>i>

- sup [XB(e) = xO),
0<t<T
which gives us
lim  sup [X(™() — X)) =0, (11.22)

mMn—=00 ot<T

and makes {X((-) | n > 0} a Cauchy sequence.

Now let X(-) = lim,_.o X((-). It follows that X is a bounded solution to the
integral equation (11.16). Moreover, it is unique. If )A((.) is some other bounded
solution to (11.16), we then have

IX(t) - X(t)\_‘/ (X(s)) — fo(X(s))ds

/||fs\||X(s) X(s)|ds  (11.23)

and by Gronwall’'s inequality, X = X. a

12. Appendix: Scalable Lipschitz derivatives

In this section, we provide al the proofs for the theorems about scalable Lipschitz
differentiability stated in section 3.

Proof of theorem 3.1. Let Afy be another scalable Lipschitz function such that

i [FOHY) — £ — Af)
y—0 ly|
We then have for dl y that

=0. (12.1)

IAF() — Afx(Ay)]

|Nfx(y) — Afx(y)| = lim

A
A0 A
A0 A
=0,

and 0 Af, = Afy.
To show that the property of scalable Lipschitz differentiability is closed under
composition, we must show that

lim lgof(x+y) —gof(x) — (Aix) o Af)(Y)|
y—0 1yl

=0. (12.2)
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We have

lgof(x+y) —gof(x) — (Arx) o Af)(Y)|

Y|

- l9(f(x +y) — f(x) + (X)) — 9(f(X)) — AGrx)(F(X +Y) — f(X))]
h lyl

4 |(AGrx) © AF)(Y) — /’;@’]f(x)(f (x+y) — f(x)| (12.3)
. l9(f(x +y) — f(x) + (X)) — 9(f(X)) — AGrx)(F(X +Y) — f(X))]
< Lt xery) #1003 ]
<Ly f lg(f(x +y) — F(X) + (X)) — 9(f(X)) — Ao (F(X +y) — F(X))|
= (x+y)#AF ()} |f(X + y) . f(X)|
<1y f l9(fF(x +y) — F(X) + F(X)) — 9(F(X)) — AGrpo(F(X +y) — (X))
= e [FOx+y) — ()]

f — f(X) — Afy fx
, fx+y) | 3E‘X) MO L 1 esmsron 22 ’y(’y)\

, 19E 4 y) =09 + () — 9(f (X)) — AGreg(Fx +y) — F(X))]
fx+y) — (3
fx+y) — () — Afx(y)|

< 1 f l9(f(x +y) — f(X) + f(X)) — g(f(X)) — Agreo(F(x +Y) — (X))
= e [FOc+y) — 0]
f —f(x) — Afy
 fOtY) ‘j‘x) O 4 Lergptcon [ A%
, 19E G +y) =09 + () — 9t (X)) — AGreg(Fx +y) — (X))
f(x+y) —f(X)|
+ g [fX +y) — F(x) — Af(Y)| (12.7)

vl
and this proves (12.2).

Finaly, if O is an open subset of V1 and x € O, then for al y; and y, in Vy,
there exists a positive scalar Ao such that

X+Ay1 €0 and x+ Ay, €0 (12.8)
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for al 0 < A < Ag. Since it follows from the definition of scalable Lipschitz differen-
tiability at x that for all y € V;
im f(x+ Ay) — f(X)

li
Al0 A

= A\x(y), (12.9)
we then have

[Afx(y1) = Afx(y2)| =1im (X + Ay1) — F(X + Ay2)|

A
which completes the proof. O

< lfllo -y —ya|, (12.10)

Proof of theorem 3.2. Combining the uniqueness result (statement 1) of theorem 3.1

with the fact that al linear operators are scalable and Lipschitz, we see that any

differentiable function with Jacobian matrix Df(x) is scalable Lipschitz differentiable
with

Nix(y) =y - Df(X). (12.11)

Define Df(x;y) to be the radial derivative of f at x with respect to y, namely
f(X+ Ay) — f(X)
3 .

It follows immediately that Df(x; \y) = ADf(x;y) for dl A > 0. To show that Df(x; -)
is Lipschitz, we use the same proof as for theorem 3.1 to derive

| Df(x;y1) — DE(x; y2)| < [[fllo - [y1 — yal. (12.13)

Finaly, we show that Df(x;y) satisfies (2.20), hence it is the scalable Lipschitz
derivative of f at x. We do this by observing that the surface of the unit ball defined
by some norm | - | for R™ is compact. It follows that any sequence {y,, | » > 0O} in
R™ converging to zero must have some subsequence {z, | n > 0} converging to zero
with

Df(x;y) = |)I\[Bl (12.12)

lim 2 — 2, (12.14)

where |2| = 1. Assuming that z, # O for al n > O, if we define 2, = z,/|z,|, then

lim X+ 2Z0) = () — Df(x;2,)|

n— o0 ‘Zn’
< lim [f(x +z,) — f(X + |z,|2)| + lim | DI (X; z,) — Df(X; |2,,|2)|
e 2] oo 2]
" im \f(x+rzn\z)—féx)’—Df(x,rznrz)\

f(x + 12,|2) — (%)
25|

<2fffo- lim [z, -2+ lim — Df(x; 2)

=0.
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Since z is arbitrary, then (2.20), with Df(x;y) replacing Af(X;y), must hold for al
sequences that converge to zero, which proves statement 2 of the theorem. O

Proof of theorem 3.3. We write out the proof for the case for the maximum of two
functions. All of the proofs for the other statements in this theorem are done in a
similar manner, applying the composition formula for scalable Lipschitz derivatives in
statement 2 of theorem 3.1, as well as statement 1 of theorem 3.2 when it applies.

Let m:R? — R equa the maximum function, so that m(x) = z1 V z» where
X = (x1,x2). We then have

[m(X +y) = mX) = Yaysa3¥1 — Yar<an V2 — Kaor—an v1 V 42|
= [(x1+ Y1) V (@2 +y2) — 21V 22 — Yar5a Y1 — Yaycan} V2 — Kao—an Y1 V 2|
= Laysas | (@1 + y2) V (@2 + 32) — (@1 + y1)|
+ Yayear [(@1 + y2) V (22 + y2) — (x2 + 2|
+ Yoy=ag | (@1 + 92) V (@24 92) — (224 (1 V 12)) |
= Yayoan | (@1 + y2) V (@2 + y2) — (21 + y1)|
+ Yayan [(@1 + 42) V (22 + y2) — (22 + 12)|-
If 21 > xo, then we can find sufficiently small y1 and y, such that 1 + y1 > 2 + y».
Since a similar argument can be made for z1 < x,, we see that

Ilm 0 |m(x + y) - m(X) - yl 1{:B1>:B2} - yz 1{:131<:132} - yl V 112 1{112332} ‘ = O (1215)

Yy1.y2—

and this expression equals zero when y; and y, are small but non-zero. This means
that

lim ‘m(X + y) - m(X) - 1{961>J:2} — Y2 1{3[:1<J:2} —y1Vy2 1{3[:1:952} ’
lyl—0 lyl
which makes m scalable Lipschitz differentiable. By composition, f V g is scalable

Lipschitz differentiable at x if f and g are and the composition formula gives us the
desired formula. O

=0, (12.16)
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