
Queueing Systems 30 (1998) 149–201 149

Strong approximations for Markovian service networks

Avi Mandelbaum a, William A. Massey b and Martin I. Reiman c

a Davidson Faculty of Industrial Engineering and Management, Technion Institute, Haifa 32000, Israel
E-mail: avim@tx.technion.ac.il

b Bell Laboratories, Lucent Technologies, Office 2C-320, Murray Hill, NJ 07974, USA
E-mail: will@research.bell-labs.com

c Bell Laboratories, Lucent Technologies, Office 2C-315, Murray Hill, NJ 07974, USA
E-mail: marty@research.bell-labs.com

Received 22 August 1997; revised 1 May 1998

Inspired by service systems such as telephone call centers, we develop limit theorems for
a large class of stochastic service network models. They are a special family of nonstationary
Markov processes where parameters like arrival and service rates, routing topologies for the
network, and the number of servers at a given node are all functions of time as well as the
current state of the system. Included in our modeling framework are networks of Mt/Mt/nt
queues with abandonment and retrials. The asymptotic limiting regime that we explore for
these networks has a natural interpretation of scaling up the number of servers in response
to a similar scaling up of the arrival rate for the customers. The individual service rates,
however, are not scaled. We employ the theory of strong approximations to obtain functional
strong laws of large numbers and functional central limit theorems for these networks. This
gives us a tractable set of network fluid and diffusion approximations. A common theme
for service network models with features like many servers, priorities, or abandonment is
“non-smooth” state dependence that has not been covered systematically by previous work.
We prove our central limit theorems in the presence of this non-smoothness by using a new
notion of derivative.

Keywords: strong approximations, fluid approximations, diffusion approximations, multi-
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1. Introduction and summary

Motivated by the need to design and analyze Markovian service networks, we
investigate fluid and diffusion limits for such systems. The main distinguishing feature
of (most, but not all of) the systems we consider in this paper is that service is
provided by a large supply of servers, and there is a corresponding large demand
for this service. It is these large quantities that motivate the asymptotic regime we
consider. Our methods allow us to consider networks with time dependent parameters,
state dependent routing, abandonment, and retrials.

To make the description of our models and results easier to follow, we first
consider a simple example (see figure 1). The Mt/Mt/nt queue has a (time-
inhomogeneous) Poisson arrival process with rate λt, a service rate (per server) of µt,
and nt servers, for all t > 0. We can construct the sample paths for the Mt/Mt/nt
queue length process as the unique set of solutions to the functional equation

Q(t) = Q(0) +A1

(∫ t

0
λs ds

)
−A2

(∫ t

0
µs ·

(
Q(s) ∧ ns

)
ds

)
, (1.1)

where A1(·) and A2(·) are given independent, standard (rate 1) Poisson processes, and
for all real x and y, x ∧ y ≡ min(x, y).

Figure 1. The Mt/Mt/nt queue.
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The asymptotic approach to the Mt/Mt/1 queue, as used in both Massey [15,16]
and Mandelbaum and Massey [11], was to create a family of associated Mt/Mt/1
queues where the queue indexed by η > 0 has arrival rate ηλt and service rate ηµt.
We then determined the asymptotic behavior for the time evolution of this family of
queues, when η →∞.

For the Mt/Mt/nt queue, we also create a family of associated processes. The
key difference here is that, for the Mt/Mt/nt queue indexed by η, we want to have
both the arrival rate and number of servers grow large, i.e., scaled up by η, but leave
the service rate unscaled.

We are then interested in the asymptotic behavior of the processes

Qη(t) =Qη(0) +A1

(∫ t

0
ηλs ds

)
−A2

(∫ t

0
µs ·

(
Qη(s) ∧ ηns

)
ds

)
(1.2)

=Qη(0) +A1

(∫ t

0
ηλs ds

)
−A2

(∫ t

0
ηµs ·

(
1
η
Qη(s) ∧ ns

)
ds

)
(1.3)

as η → ∞. Note that (1.3) shows that the scaling we want is equivalent to the
simultaneous scaling of λt and µt with multiplication by η, provided that we also
divide Qη by η (when nt ≡ 1, this distinction does not matter since the Mt/Mt/1
service rate indexed by η is ηµt1{Qηt>0}, where 1{Qηt>0} is the indicator function for
the event {Qηt > 0}, which is the same as ηµt1{Qηt /η>0}).

Equation (1.3) is a special case of equation (2.8), which is in turn a special
case of equation (2.9). Equation (2.9) defines the processes of interest to us in the
general service network setting. For systems with infinitesimal rates that are not state
dependent, the scaling used in (1.3) and (2.8) is the same as uniform acceleration,
as considered in Massey [15,16] and Mandelbaum and Massey [11] for the Mt/Mt/1
queue, as well as Massey and Whitt [18] for the general case of finite state, time-
inhomogeneous, continuous time Markov chains. In these articles a parameter ε is
used and limits are taken such that ε ↓ 0. This parameterization can be reconciled with
the notation in this paper by setting ε = 1/η. We refer to the scaling in (1.3) and (2.8)
as uniform acceleration also, even though this involves a slight abuse of terminology.

It seems appropriate to comment here on two distinguishing features of the above
formulation that carry over to the general results of this paper: many “unscaled”
servers, and time-dependent parameters. Our original motivating examples were call
centers, where service involves an interaction between either two people (the customer
and server), or a person and a machine (the person is the customer). In either case,
because a person is involved, it does not seem reasonable to scale the service rates
with η. Thus, in order to accommodate the arrivals, whose rate is proportional to η,
the number of servers must be scaled with η. Time dependent arrival rates should
need no justification, since phenomena such as rush hours are quite common. Time
dependent service rates can be used to model phenomena such as server fatigue or
changes in the nature of services over the day. Finally, a time dependent number of
servers arises with shift changes and in systems where the number of servers is varied
to accommodate changes in the arrival rate.



152 A. Mandelbaum et al. / Strong approximations

Our “first-order” asymptotic result takes the form of a functional strong law of
large numbers (FSLLN), and yields a fluid approximation for the original process. For
the above Mt/Mt/nt example, the FSLLN states that

lim
η→∞

1
η
Qη(0) = Q(0)(0) implies lim

η→∞
1
η
Qη(t) = Q(0)(t) a.s., (1.4)

uniformly on compact sets in t, where Q(0) = {Q(0)(t) | t > 0} is the unique process
that solves the integral equation

Q(0)(t) = Q(0)(0) +

∫ t

0

[
λs − µs ·

(
Q(0)(s) ∧ ns

)]
ds, (1.5)

for all t > 0. The general version of our FSLLN is theorem 2.2.
The above FSLLN can be refined with a functional central limit theorem (FCLT).

A fundamental difficulty arises in attempting to apply prior results to obtain the FCLT,
even for the Mt/Mt/nt queue. The resolution of this difficulty for general Markov-
ian service networks is the purpose of this paper. Before stating the FCLT for the
Mt/Mt/nt queue we first point out the essence of the difficulty.

Consider a sequence of real valued random variables {Xn, n > 1} that corre-
spond to partial sums of i.i.d. random variables (with finite means µ and variances σ2).
Letting Yn = Xn/n and

Zn =

√
n

σ
(Yn − µ) =

Xn − nµ
σ
√
n

, (1.6)

then the strong law of large numbers and central limit theorem yield

lim
n→∞

Yn = µ a.s. and lim
n→∞

Zn
d
= Z, (1.7)

where limn→∞ Zn
d
= Z indicates convergence in distribution, and Z is a standard

(mean 0, variance 1) normal random variable. Let f :R → R be differentiable in a
neighborhood of µ, then (cf. [21])

lim
n→∞

f (Yn) = f (µ) a.s., and lim
n→∞

√
n

σ

(
f (Yn)− f (µ)

) d
= f ′(µ)Z. (1.8)

What happens if f is continuous but not differentiable at µ? Continuity is sufficient
to ensure that limn→∞ f (Yn) = f (µ) a.s. If f ′(µ+) ≡ limx↓µ f ′(x) and f ′(µ−) ≡
limx↑µ f ′(x) both exist, then a more careful treatment can be used to show that

lim
n→∞

√
n

σ

(
f (Yn)− f (µ)

) d
= f ′(µ+)Z+ − f ′(µ−)Z−,

where for all real x and y, x ∨ y ≡ max(x, y), x+ ≡ x ∨ 0, and x− ≡ (−x) ∨ 0.
Going back to the Mt/Mt/nt example, we cannot apply previous results, such as

Kurtz [9] to obtain an FCLT for its queue length because the function ft(x) = x ∧ nt
is not differentiable with respect to x at x = nt. To circumvent this difficulty we
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introduce a new notion of derivative (in the context of a multivariate function), which
we call the scalable Lipschitz derivative. For example, if Λft(x; y) denotes the scalable
Lipschitz derivative of ft at x for any real y, then

Λft(x; y) = y · 1{x<nt} − y− · 1{x=nt} = y+ · 1{x<nt} − y− · 1{x6nt}. (1.9)

Using this new notion of derivative we are able to obtain an FCLT for a wider class
of stochastic models. For the Mt/Mt/nt queue, the FCLT that arises from uniform
acceleration states that, if {Qη(0) | η > 0} is a family of random variables (see
section 2 for the independence assumption), then

lim
η→∞

√
η

[
Qη(0)
η
−Q(0)(0)

]
d
= Q(1)(0) (1.10)

implies

lim
η→∞

√
η

[
Qη(t)
η
−Q(0)(t)

]
d
= Q(1)(t), (1.11)

where Q(0) is defined in (1.5), Q(1) = {Q(1)(t) | t > 0} is the unique stochastic process
that solves the integral equation

Q(1)(t) =Q(1)(0)−
∫ t

0
µs1{Q(0)(s)<ns}Q

(1)(s)+ ds +

∫ t

0
µs1{Q(0)(s)6ns}Q

(1)(s)− ds

+B1

(∫ t

0
λs ds

)
−B2

(∫ t

0
µs ·

(
Q(0)(s) ∧ ns

)
ds

)
, (1.12)

and B1(·), B2(·) are two independent, standard Brownian motions.
Although it seems clear that the FCLT for the Mt/Mt/nt queue could be proved

on an ad-hoc basis without the scalable Lipschitz derivative, this notion is the key
to proving the FCLT for more general systems, which is our theorem 2.3. We are
also able to obtain ordinary differential equations for the mean and covariance of the
diffusion limit arising in the FCLT. These are given in theorem 2.4.

We actually obtain a more refined FCLT which is motivated by the work of
Halfin and Whitt [4]. They identify an important asymptotic regime that corresponds
to parameter asymptotics of the form

ληs = ηλs +
√
η`s + o

(√
η
)

and µηs = ηµs +
√
ηms + o

(√
η
)
. (1.13)

The fluid limit is unchanged. The resulting refined diffusion limit for the Mt/Mt/nt
queue is
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Q(1)(t) =Q(1)(0)−
∫ t

0
µs1{Q(0)(s)<ns}Q

(1)(s)+ ds

+

∫ t

0
µs1{Q(0)(s)6ns}Q

(1)(s)− ds+

∫ t

0

[
`s −ms ·

(
Q(0)(s) ∧ ns

)]
ds

+B1

(∫ t

0
λs ds

)
−B2

(∫ t

0
µs ·

(
Q(0)(s) ∧ ns

)
ds

)
. (1.14)

If we set λs = λ, µs = µ, ns = n, ms = 0, and `s = −µβ with λ = µn, and let
Qη(0) = ηn, we recover the M/M/n special case for the diffusion limit of [4].

The SLLN and the FCLT are proved in two steps. First, we prove a strong
approximation theorem, which in the context of the Mt/Mt/nt queue states that, as
η →∞

Qη(t) =Qη(0) +

∫ t

0

(
ληs − µηs ·

(
1
η
Qη(s) ∧ ns

))
ds +B1

(∫ t

0
ληs ds

)
−B2

(∫ t

0
µηs ·

(
1
η
Qη(s) ∧ ns

)
ds

)
+ O(log η) a.s., (1.15)

where B1(·) and B2(·) are as above and the convergence is uniform on compact t sets.
The general version of this result is theorem 2.1. The limit theorems then follow from
a more detailed asymptotic analysis of this approximation theorem.

Although we leave the precise specification of our model and assumptions to sec-
tion 2, we describe here two more examples that illustrate the breath of our framework.
One example (see section 7) is a single node with several customer classes operating
under the preemptive priority discipline (figure 5), and the other (see section 5) is a
system with customer abandonment and retrials (figure 3). More complicated exam-
ples, such as a Jackson network (figure 2) and a network with state dependent routing
(figure 6) are treated in the body of the paper (sections 4 and 8, respectively). All
the network examples given in the paper have the features of time-varying rates and
multiserver nodes.

The priority system we consider has c classes of customers and nt servers. Cus-
tomers of class i arrive as a Poisson process with rate λit and have service rate µit. (All
the arrival and service processes are constructed from mutually independent Pois-
son processes.) Class i is given preemptive priority over any class j such that
i > j, 1 6 i, j 6 c.

The system with abandonment and retrials has a single “service” node with nt
servers. New customers arrive to the service node in a Poisson process of rate λt.
Customers arriving to find an idle server are taken into service with rate µ1

t . Customers
that find all servers busy join the queue, from which they are taken into service in a
FCFS manner. Each customer waiting in the queue abandons at rate βt. An abandoning
customer leaves the system with probability ψt or joins the retrial pool with probability
1 − ψt. Each customer in the retrial pool leaves to enter the service node at rate µ2

t .
Upon entry to the service node these customers are treated the same as new customers.
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Systems with an infinite number of servers, or where the number of servers grows
“fast enough” to be effectively infinite in the limit are also covered by our model and
results. Examples of such results in the literature are Iglehart [6] and Whitt [23].
Although all of the examples that we consider in this paper correspond to systems
with a large number of servers, this is not the only context in which our results are
applicable. In particular it should be noted that our results can be applied to some
closed queueing networks with a large number of customers. For discussion of such
networks, we refer the reader to the references on finite population models found in
the bibliography of Mandelbaum and Pats [14].

There has been a great deal of work on state dependent queues, time dependent
queues, and related asymptotics. We make no attempt to survey this literature, focusing
instead on four pieces of work related closely enough to ours to merit specific mention:
[9,13,14], and [19]. The reader interested in more references on state dependent queues
should consult [14] or [13]. References on time dependent queues are contained in
Mandelbaum and Massey [11], and Massey and Whitt [17]. Motivated by population,
epidemic, and chemical reaction models Kurtz [9] proves a FSLLN and a FCLT for
systems with “smooth” parameters. Our motivation is queueing systems that do not
satisfy the smoothness required in [9]. We also generalize [9] in the sense that we allow
time dependent rates, but this is mostly a notational issue. In Mandelbaum and Pats [14]
limit theorems are proved for Markovian networks with state dependent rates. Systems
whose limits may hit a boundary of the state space are allowed in [14], so that the issue
of reflection must be dealt with. The limit processes that we obtain do not have the
singular local time terms typically associated with reflection. Intuitively, this is because
our limit processes do not hit any boundaries. The issue of piecewise continuous
derivatives is treated in [13, theorem 4.3] for the one-dimensional case and is suggested
as a subject for future research in [14]. Newell [19] considers approximations for the
Gt/G/n queue with large n. The approximations in [19] are of fluid and diffusion
type, and are motivated by the strong law of large numbers and the central limit
theorem, but no limit theorems are stated or proved in that work.

The rest of this paper is organized as follows. The model and main results are
presented in section 2. The some properties of scalable Lipschitz derivatives are
described in section 3. Some examples of Markovian service networks covered by our
theorems are presented in sections 4–8. In section 4 we consider Jackson networks with
many servers at each node. The system with abandonment and retrial discussed above
is treated in section 5. This is a special case of a Jackson network with abandonment,
which is treated in section 6. Section 7 deals with the priority system described above,
and section 8 covers Jackson networks with state dependent routing. The proofs of our
main results are contained in sections 9 and 10. The strong approximation theorem and
the FSLLN are proved in section 9. The FCLT is proved in section 10. There are two
appendices. The first appendix (section 11) contains results on ordinary differential
equations that we need, including a version of Gronwall’s inequality and a uniqueness
result for our limit processes. The second appendix (section 12) contains proofs of
some of the basic properties of Lipschitz derivatives.
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2. The model and main results

The primitives for our model are {Ai(·) | i ∈ I}, a collection of mutually
independent, standard (rate 1) Poisson processes, indexed by a set I which is at most
countably infinite; a separable Banach space V with norm | · |; a collection of “jump”
vectors {vi ∈ V | i ∈ I} such that ∑

i∈I
|vi| <∞; (2.1)

a random initial state vector Q(0) in V that is always assumed to be independent of
the collection of Poisson processes {Ai(·) | i ∈ I}; and a collection of real-valued,
non-negative Lipschitz “rate” functions on V,{

αt(·, i) | t > 0, i ∈ I
}

, (2.2)

that jointly satisfy ∥∥αt(·, i)∥∥ 6 βtγ(i) (2.3)

for some βt, a locally integrable function, and {γ(i) | i ∈ I}, a summable sequence of
real numbers; here ‖ · ‖ is the Lipschitz norm for real-valued functions on V, namely

‖f‖ ≡ sup
x,y∈V, x6=y

|f (x)− f (y)|
|x− y| ∨

∣∣f (0)
∣∣. (2.4)

It follows that for all x and y in V, we have∣∣f (x)− f (y)
∣∣ 6 ‖f‖ · |x− y| (2.5)

and so f is a Lipschitz function whenever ‖f‖ <∞. Moreover, for all x ∈ V,∣∣f (x)
∣∣ 6 ‖f‖ · (1 + |x|

)
. (2.6)

For all of the examples that we consider in this paper, V = RN for some 1 6
N < ∞ and the number of elements in I is finite. Thus, although we prove the
main results of the paper for a more general setting, any reader uncomfortable with
the trappings of Banach spaces can replace V with RN and still follow the examples
we present. In that case | · | is the standard Euclidean norm on RN .

In terms of the primitives, we represent our Markovian service network to be the
V-valued stochastic process Q ≡ {Q(t) | t > 0}, whose sample paths are uniquely
determined by Q(0) and the functional equations

Q(t) = Q(0) +
∑
i∈I

Ai

(∫ t

0
αs
(
Q(s), i

)
ds

)
vi (2.7)

for all t > 0 (for the Mt/Mt/nt example, V = R, I = {1, 2}, v1 = 1, v2 = −1,
αt(x, 1) = λt, αt(x, 2) = µt · (x∧nt)). Uniqueness of the solution to (2.7) is shown in
theorem 9.2. The special uniform acceleration that is used for the rate functions of the
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Mt/Mt/nt queue in (1.3) now generalizes to an asymptotic analysis of the processes
{Qη | η > 0} as η →∞, where

Qη(t) = Qη(0) +
∑
i∈I

Ai

(
η

∫ t

0
αs

(
1
η

Qη(s), i

)
ds

)
vi. (2.8)

Our goal is to characterize this asymptotic behavior as η ↑ ∞ with a functional strong
law of large numbers and a central limit theorem, but we do this with a more general
type of asymptotic behavior for the rate functions.

The asymptotic analysis that we describe above was carried out by Kurtz [9]
for the special case of rate functions having no explicit time dependence and state
dependence that is continuously differentiable. In this paper, we extend his analysis
to the following general class of processes:

Qη(t) = Qη(0) +
∑
i∈I

Ai

(∫ t

0
αηs

(
1
η

Qη(s), i

)
ds

)
vi, (2.9)

where ∥∥αηt (·, i)
∥∥ 6 ηβtγ(i). (2.10)

In our extension, we allow the following:

1. The rate functions αηt (·, i) are functions of time as well as state.

2. The rate functions, which are indexed by the parameter η, are such that for each
i ∈ I , αηt (·, i) has the following asymptotic expansion as η →∞:

αηt (·, i) = ηα(0)
t (·, i) +

√
ηα(1)

t (·, i) + o
(√
η
)
. (2.11)

3. The rate functions, as a function of the state space V, have a more general type
of differentiability that include functions on the real line that are everywhere left
and right differentiable.

The first condition is a minor extension of Kurtz but the latter two conditions are
significant new extensions. The last condition is the most significant in that a new
nonsmooth differential calculus must be developed to deal with these continuous but
piecewise differentiable rate functions. These new conditions allow us to apply the
limit theorems to a wider class of Markov processes that arise in the study of queueing
networks with large numbers of servers.

Within the framework of strong approximations, we first approximate the sample-
path representation (2.9) of the family {Qη | η > 0} by the following theorem, which
is proved in section 9.

Theorem 2.1 (Strong approximation). If (2.1) and (2.10) hold, then as η → ∞ we
have
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Qη(t) = Qη(0) +

∫ t

0
αηs

(
1
η

Qη(s)

)
ds

+
∑
i∈I

Bi

(∫ t

0
αηs

(
1
η

Qη(s), i

)
ds

)
vi + O(log η) a.s. (2.12)

where the convergence is uniform on compact sets in t.

From this strong approximation, we deduce a FSLLN (theorem 2.2), followed by a
FCLT (theorem 2.3). The limit theorems enable sample-path (2.17) and distributional
approximations (2.30), which support computations and confidence intervals. The
proof of the following functional strong law of large numbers is presented in section 9.

Theorem 2.2 (FSLLN). Assume that (2.1) and (2.10) hold. Moreover, assume that

lim
η→∞

∑
i∈I

∫ t

0

∥∥∥∥αηs (·, i)
η
− α(0)

s (·, i)
∥∥∥∥ds = 0, (2.13)

for all t > 0. If {Qη(0) | η > 0} is any family of random initial state vectors in V,
then

lim
η→∞

Qη(0)
η

= Q(0)(0) a.s. implies lim
η→∞

Qη(t)
η

= Q(0)(t) a.s., (2.14)

where the convergence is uniform on compact sets in t, and Q(0) is the unique deter-
ministic process {Q(0)(t) | t > 0} that solves the integral equation

Q(0)(t) = Q(0)(0) +

∫ t

0
α(0)
s

(
Q(0)(s)

)
ds, t > 0. (2.15)

Here α(0)
t , given by

α(0)
t (x) =

∑
i∈I

α(0)
t (x, i)vi, x ∈ V, (2.16)

is a Lipschitz mapping of V into itself and its Lipschitz norm ‖α(0)
t ‖ is a locally

integrable function of t.

We call Q(0) the fluid approximation associated with the family {Qη(t) | t > 0}. It
gives rise to first-order “macroscopic” fluid approximations of the form

Qη(t,ω) = ηQ(0)(t) + o(η) a.s., t > 0. (2.17)

In the development of a functional central limit theorem for our stochastic net-
work, which refines the above fluid approximation, it is necessary to differentiate
α(0)
t (·) over the Banach space V. There are specific examples of queueing systems

that we analyze, like the Mt/Mt/nt queue, where the corresponding α(0)
t is piecewise

differentiable but not everywhere differentiable. This poses a problem that is not easily
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ignored since these derivatives are evaluated at values for the fluid model Q(0)(t). So
even if α(0)

t (·) has no derivative at only a finite number of points, the fluid process
could spend all of its time at these points.

We resolve this issue by introducing a new type of differentiability. If f(·) is a
mapping from V1 into V2, we extend the Banach space norms | · |1 and | · |2 on V1

and V2, respectively, to define the following norm on f:

‖f‖ ≡ sup
x,y∈V1, x6=y

|f(x)− f(y)|2
|x− y|1

∨ |f(0)|2, (2.18)

and say that f is Lipschitz on V1 whenever ‖f‖ < ∞. If O is an open subset of V1

and x ∈ O, we say that f is locally Lipschitz at x if

‖f‖O ≡ sup
y,z∈O, y6=z

|f(y) − f(z)|2
|y− z|1

∨ |f(0)|2 <∞. (2.19)

Now we define f to have a scalable Lipschitz derivative at x ∈ V1 if there exists
another mapping from V1 into V2, denoted Λf(x; ·), such that

lim
y→0

|f(x + y)− f(x)− Λf(x; y)|2
|y|1

= 0, (2.20)

where the function Λf(x; ·) is Lipschitz on V1 so that∥∥Λf(x; ·)
∥∥ <∞, (2.21)

and for all real scalars with λ > 0,

λΛf(x; y) = Λf(x;λy). (2.22)

Since all bounded linear mappings between V1 and V2 possess these last two properties,
we see that differentiability is a special case of scalable Lipschitz differentiability. Non-
smooth differentiation in the context of generalizing directional derivatives has been
defined before, see Clarke [1] and Rockafellar [22] for details. Our definition (2.20)
can be viewed as the analogue to the multivariate definition of differentiability or
constructing the Jacobian.

We sometimes write this new derivative as

Λfx(y) ≡ Λf(x; y) (2.23)

to emphasize that we should fix x and view the derivative as a function of y.
We can now state the functional central limit theorem, whose proof is postponed

to section 10.

Theorem 2.3 (FCLT). Assume that (2.1) and (2.10) hold. Moreover, assume that∑
i∈I

limη→∞

∫ t

0

∥∥∥∥√η[αηs (·, i)
η
− α(0)

s (·, i)
]∥∥∥∥ds <∞ (2.24)
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and

lim
η→∞

∑
i∈I

∫ t

0

∥∥∥∥√η[αηs (·, i)
η
− α(0)

s (·, i)
]
− α(1)

s (·, i)
∥∥∥∥ds = 0. (2.25)

It follows that α(0)
t , given by (2.16), and α(1)

t , given by

α(1)
t (x) =

∑
i∈I

α(1)
t (x, i)vi, x ∈ V, (2.26)

are both Lipschitz mappings of V into itself, and their Lipschitz norms are locally
integrable functions of t,

Moreover, if we assume that α(0)
t (·) has a scalable Lipschitz derivative

Λα(0)
t (Q(0)(t); ·) and we have a family of random initial state vectors {Qη(0) | η > 0}

in V, then for all random vectors Q(0)(0) and Q(1)(0) in V, it follows that

lim
η→∞

√
η

[
Qη(0)
η
−Q(0)(0)

]
d
= Q(1)(0) (2.27)

implies

lim
η→∞

√
η

[
Qη(t)
η
−Q(0)(t)

]
d
= Q(1)(t), (2.28)

the convergence being weak-convergence in DV[0,∞), the space of V-valued functions
that are right-continuous with left-limits, equipped with the Skorohod J1 topology.

Finally, the limit Q(1) ≡ {Q(1)(t) | t > 0} is the unique stochastic process that
solves the stochastic integral equation

Q(1)(t) = Q(1)(0) +

∫ t

0

[
Λα(0)

s

(
Q(0)(s); Q(1)(s)

)
+α(1)

s

(
Q(0)(s)

)]
ds

+
∑
i∈I

Bi

(∫ t

0
α(0)
s

(
Q(0)(s), i

)
ds

)
vi, t > 0, (2.29)

where the {Bi | i ∈ I} are a family of mutually independent, standard Brownian
motions.

We call Q(1) the diffusion approximation associated with the family {Qη(t) |
t > 0}. It quantifies deviations from the fluid approximations, and it gives rise to
second-order “mesoscopic” diffusion approximations of the form

Qη(t)
d
= ηQ(0)(t) +

√
ηQ(1)(t) + o

(√
η
)

(2.30)

as η →∞ for all t > 0, with the approximation being in distribution.
Although we state (and prove) theorems 2.1–2.3 for the setting of (2.9), all but

one of the examples are presented in the more restrictive context of (2.8). This is done
mainly to reduce the notational burden. The full generality of (2.9) is employed for
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the system with abandonment and retrials in section 5. It should be clear from these
results how to extend the other examples to the setting of (2.9).

Now consider the case of V being either a finite dimensional vector space or a
Banach space that can be embedded into its own dual space (like a Hilbert space),
so that we can define the notion of a transpose, denoted by a superscript “T” ( for
V = RN , this corresponds to the standard transpose of a matrix). One consequence of
the diffusion limit is an associated set of differential equations that become useful in
the computation of its mean and covariance matrix. The proof is given at the end of
section 10.

Theorem 2.4. If conditions (2.1), (2.10), (2.24), and (2.25) all hold, then the mean
vector and covariance matrix for Q(1)(t) solve the following set of differential equa-
tions:

d
dt

E
[
Q(1)(t)

]
= E

[
Λα(0)

t

(
Q(0)(t); Q(1)(t)

)]
+α(1)

t

(
Q(0)(t)

)
(2.31)

and
d
dt

Cov
[
Q(1)(t), Q(1)(t)

]
=
{

Cov
[
Q(1)(t), Λα(0)

t

(
Q(0)(t); Q(1)(t)

)]}
+
∑
i∈I

α(0)
t

(
Q(0)(t), i

)
vT
i · vi (2.32)

for almost all t, where

Cov
[
Q(1)(t), Q(1)(t)

]
≡ E

[
Q(1)(t)

T ·Q(1)(t)
]
− E

[
Q(1)(t)

]T · E[Q(1)(t)
]

(2.33)

and for all operators A on V,

{A} ≡ A + AT. (2.34)

Moreover, if Λα(0)
t (Q(0)(t); ·) is a linear operator for almost all t, then E[Q(1)(t)] is the

unique solution for (2.31) and Cov[Q(1)(t), Q(1)(t)] is the unique solution for (2.32).
Finally, for all s < t, Cov[Q(1)(s), Q(1)(t)] solves the same set of differential equations
in t as does E[Q(1)(t)], but with a different set of initial conditions.

3. Calculus for scalable Lipschitz derivatives

Certain basic properties of the scalable Lipschitz derivative are useful in doing
calculations for the diffusion limits of our service network processes. All of the theo-
rems in this section are proved in section 12. The first theorem states general properties
for these functions.

Theorem 3.1. Scalable Lipschitz differentiability has the following properties:

1. If the function f :V1 → V2 is scalable Lipschitz differentiable at x, then the
resulting Lipschitz derivative function Λfx :V1 → V2 is unique.
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2. If f :V1 → V2 and g :V2 → V3 are both scalable Lipschitz differentiable at f(x),
then g ◦ f :V1 → V3 is scalable Lipschitz differentiable at x, with

Λ(g ◦ f)x(y) = (Λgf(x) ◦ Λfx)(y). (3.1)

3. If f :V1 → V2 is locally Lipschitz, as defined in section 2, in an open neighborhood
O ⊂ V1 of x ∈ V1 and has a scalable Lipschitz derivative at x, then∥∥Λfx(·)

∥∥ 6 ∥∥f
∥∥
O. (3.2)

The next theorem is useful in the identification of scalable Lipschitz differentiable
functions that act on finite dimensional vector spaces.

Theorem 3.2. The following results hold:

1. If f :Rn → Rm is differentiable at x ∈ Rn with Jacobian matrix Df(x), then it
is scalable Lipschitz differentiable there and its scalable Lipschitz derivative is
matrix multiplication by the Jacobian matrix so that

Λfx(y) = y ·Df(x) (3.3)

for all y ∈ Rm, viewing y as a row vector.

2. If f :Rn → Rm is locally Lipschitz at x ∈ Rn and has all its radial derivatives at
x, then f has a scalable Lipschitz derivative at x.

One simple consequence of the second statement of this theorem is that if f :R→ R
has left and right derivatives everywhere, then it is everywhere scalable Lipschitz
differentiable and

Λfx(y) = f ′(x+)y+ − f ′(x−)y−, (3.4)

for all real x and y.
For all x and y in Rm, let x ∧ y be the Rm-vector whose ith component equals

xi ∧ yi and define x ∨ y in a similar fashion. We can then define x+ ≡ x ∨ 0 and
x− ≡ (−x) ∨ 0. Now let f, g :V → Rm and define I{f(x)>g(x)} to be the projection
operator on Rm such that for any unit basis vector ei for i = 1, . . . ,m we have

eiI{f(x)>g(x)} ≡
{

ei if fi(x) > gi(x),

0 if fi(x) 6 gi(x).
(3.5)

where f(x) = (f1(x), . . . , fm(x)) and g(x) = (g1(x), . . . , gm(x)). The projection oper-
ators I{f(x)<g(x)} and I{f(x)=g(x)} are defined similarly. We use these operators in the
following theorem which gives us a non-smooth calculus for computing these scalable
Lipschitz derivatives.

Theorem 3.3. The following operations preserve scalable Lipschitz differentiabil-
ity:
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1. If f :V1 → V2 and g :V1 → V2 are both scalable Lipschitz differentiable at x,
then f + g is scalable Lipschitz differentiable at x, where

Λ(f + g)x(y) = Λfx(y) + Λgx(y). (3.6)

2. If f :V → R and g :V → R are both scalable Lipschitz differentiable at x, then
fg is scalable Lipschitz differentiable at x, where

Λ(fg)x(y) = f (x)Λgx(y) + g(x)Λfx(y). (3.7)

3. If f :V → Rm and g :V → Rm are both scalable Lipschitz differentiable
at x, then f ∨ g and f ∧ g are both scalable Lipschitz differentiable at x,
where

Λ(f ∨ g)x(y) = Λfx(y)I{f(x)>g(x)} + Λgx(y)I{f(x)<g(x)}

+
(
Λfx(y) ∨ Λgx(y)

)
I{f(x)=g(x)} (3.8)

and

Λ(f ∧ g)x(y) = Λfx(y)I{f(x)<g(x)} + Λgx(y)I{f(x)>g(x)}

+
(
Λfx(y) ∧ Λgx(y)

)
I{f(x)=g(x)}. (3.9)

Note that if f :Rn → R, then we have |f (x)| = f (x) ∨ 0 + (−f (x)) ∨ 0, and so

Λ|f |x(y) = Λfx(y)1{f (x)>0} +
∣∣Λfx(y)

∣∣1{f (x)=0} − Λfx(y)1{f (x)<0}. (3.10)

4. Classical Jackson networks

We now consider the classical Jackson network but with the additional features
of time varying rates and number of servers (see figure 2). We extend Kendall notation
and call it the (Mt/Mt/nt)N network, where N denotes the number of nodes. We
construct the (Mt/Mt/nt)N network by first defining the following set of parameters:

Figure 2. The Jackson network.
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λit = external arrival rate to node i at time t,
µit = service rate for node i at time t,
φijt = service routing probability to node i from node j at time t,
φit = service departure probability from node i at time t,
nit = number of servers for node i at time t.

All these rate functions are assumed to be locally integrable functions of t and we
require that

φit +
N∑
j=1

φijt = 1 (4.1)

for all t > 0 and i = 1, . . . ,N .
We then set V = RN and define

Q(t) = Q(0) +
N∑
i=1

[
N∑
j=1

Acij

(∫ t

0

(
Qi(s) ∧ nis

)
µisφ

ij
s ds

)
(ej − ei)

+

(
Aai

(∫ t

0
λisds

)
−Abi

(∫ t

0

(
Qi(s) ∧ nis

)
µisφ

i
sds

))
ei

]
, (4.2)

where Aai , Abi , and Acij for i, j = 1, . . . ,N are mutually independent standard Poisson
processes. For all x ∈ RN , we define ∆(x) to be the diagonal N × N matrix where
the ith diagonal entry is the ith component of the vector x. We define λt, µt, and nt
to be row vectors where their ith component equals λit, µ

i
t, and nit, respectively. We

also define Φt to be the N ×N matrix whose (i, j) entry is φijt .

Theorem 4.1. Defining Qη by uniform acceleration as in (2.8), the fluid limit for the
(Mt/Mt/nt)N network is the solution to the integral equation

Q(0)(t) = Q(0)(0) +

∫ t

0

[
λs +

(
Q(0)(s) ∧ ns

)
∆(µs)(Φs − I)

]
ds. (4.3)

Moreover, the diffusion limit for the (Mt/Mt/nt)N network is the unique solution
to the integral equation

Q(1)(t)

= Q(1)(0) +

∫ t

0

(
Q(1)(s)+I{Q(0)(s)<ns} −Q(1)(s)−I{Q(0)(s)6ns}

)
∆(µs)(Φs − I) ds

+
N∑
i=1

[
N∑
j=1

Bc
ij

(∫ t

0

(
Q(0)
i (s) ∧ nis

)
µisφ

ij
s ds

)
(ej − ei)

+

(
Ba
i

(∫ t

0
λis ds

)
−Bb

i

(∫ t

0

(
Q(0)
i (s) ∧ nis

)
µisφ

i
s ds

))
ei

]
,



A. Mandelbaum et al. / Strong approximations 165

where Ba
i , Bb

i , and Bc
ij for i, j = 1, . . . ,N are mutually independent standard Brown-

ian motions.

Proof. From (4.2), it follows that

αt(x) =
N∑
i=1

[
λitei −

(
xi ∧ nit

)
µitφ

i
tei +

N∑
j=1

(
xj ∧ njt

)
µjtφ

ji
t (ei − ej)

]

=
N∑
i=1

[
λit +

N∑
j=1

(
xj ∧ njt

)
µjtφ

ji
t − (xi ∧ nit)µit

]
ei

=λt + (x ∧ nt)∆(µt)Φt − (x ∧ nt)∆(µt)

=λt + (x ∧ nt)∆(µt)(Φt − I). (4.4)

The fluid limit now follows from applying theorem 2.2.
If f(x) ≡ x and g(x) = nt for all x ∈ Rm, then by theorem 3.2

Λf(x; y) = y and Λg(x; y) = 0. (4.5)

Applying theorem 3.3 to f ∧ g(x) = x ∧ nt gives

Λ(f ∧ g)(x; y) = yI{x<nt} + (y ∧ 0) I{x=nt}

=
(
y+ − y−

)
I{x<nt} − y−I{x=nt} = y+I{x<nt} − y− I{x6nt}. (4.6)

Using (4.4) and (4.6), the scalable Lipschitz derivative of αt is

Λαt(x; y) =
(
y+I{x<nt} − y−I{x6nt}

)
∆(µt)(Φt − I) (4.7)

and the diffusion limit follows from applying theorem 2.3. �

The following result, which follows immediately from theorem 2.4, provides
ordinary differential equations for the mean vector and covariance matrix of Q(1).

Theorem 4.2. The mean vector for the diffusion limit solves the differential equation

d
dt

E
[
Q(1)(t)

]
=
(

E
[
Q(1)(t)+

]
I{Q(0)(t)<nt} − E

[
Q(1)(t)−

]
I{Q(0)(t)6nt}

)
∆(µt)(Φt − I)

and the covariance matrix for the diffusion limit solves the differential equation

d
dt

Cov
[
Q(1)(t), Q(1)(t)

]
=
{

Cov
[
Q(1)(t), Q(1)(t)+I{Q(0)(t)<nt} −Q(1)(t)−I{Q(0)(t)6nt}

]
∆(µt)(Φt − I)

}
+ ∆

(
λt +

(
Q(0)(t) ∧ nt

)
∆(µt)(Φt + I)

)
−
{

∆
(
Q(0)(t) ∧ nt

)
∆(µt)Φt

}
.

Proof. Given (4.4) and (4.6), the proof is simply an application of theorem 2.4. �
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5. Queues with abandonment and retrials

We construct the multiserver queue with abandonment and retrials (see figure 3)
by first defining the following set of parameters:

λt = external arrival rate to the service node at time t,
βt = abandonment rate from the service node at time t,
µ1
t = service rate for the service node at time t,
µ2
t = service rate for the retry pool at time t,
ψt = probability that a customer abandoning at time t does not retry,
nt = number of servers in service node at time t.

We then set V = R2 and define Q(t) = (Q1(t),Q2(t)), where

Q1(t) =Q1(0) +Aa
(∫ t

0
λs ds

)
+Ac21

(∫ t

0
Q2(s)µ2

s ds

)
−Ac

(∫ t

0

(
Q1(s) ∧ ns

)
µ1
s ds

)
−Ab

(∫ t

0

(
Q1(s)− ns

)+
βsψs ds

)
−Ab12

(∫ t

0

(
Q1(s)− ns

)+
βs(1− ψs) ds

)

Figure 3. The abandonment queue with retrials.
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and

Q2(t) =Q2(0) +Ab12

(∫ t

0

(
Q1(s)− ns

)+
βs(1− ψs) ds

)
−Ac21

(∫ t

0

(
Q2(s)

)
µ2
s ds

)
.

Here we have a network with two nodes where the first one corresponds to the service
node. The second node is the retrial pool and has an infinite number of servers to model
retrial delay. Moreover, the act of abandoning the service queue due to impatience is
modeled as abandonment routing where the customer enters the retrial pool with some
probability or leaves the network entirely. Service routing instructs customers to leave
the entire network after service completion at the first node and to enter the service
queue after service completion at the retrial pool.

Theorem 5.1. Defining Qη by uniform acceleration as in (2.8), the fluid limit for
the multiserver queue with abandonment and retrials is the unique solution to the
differential equations

d
dt
Q(0)

1 (t) = λt + µ2
tQ

(0)
2 (t)− µ1

t

(
Q(0)

1 (t) ∧ nt
)
− βt

(
Q(0)

1 (t)− nt
)+

, (5.1)

d
dt
Q(0)

2 (t) = βt(1− ψt)
(
Q(0)

1 (t)− nt
)+ − µ2

tQ
(0)
2 (t). (5.2)

Moreover, the diffusion limit for the multiserver queue with abandonment and
retrials is the unique solution to the integral equations

Q(1)
1 (t) =Q(1)

1 (0) +

∫ t

0

[(
µ1
s1{Q(0)

1 (s)6ns} + βs1{Q(0)
1 (s)>ns}

)
Q(1)

1 (s)−

−
(
µ1
s1{Q(0)

1 (s)<ns} + βs1{Q(0)
1 (s)>ns}

)
Q(1)

1 (s)+ + µ2
sQ

(1)
2 (s)

]
ds

−Bb
12

(∫ t

0

(
Q(0)

1 (s)− ns
)+
βs(1− ψs) ds

)
−Bc

21

(∫ t

0

(
Q(0)

2 (s)
)
µ2
s ds

)
+Ba

(∫ t

0
λs ds

)
−Bb

(∫ t

0

(
Q(0)

1 (s)− ns
)+
βsψs ds

)
−Bc

(∫ t

0

(
Q(0)

1 (s) ∧ ns
)
µ1
s ds

)
and

Q(1)
2 (t) =Q(1)

2 (0) +Bc
21

(∫ t

0

(
Q(0)

2 (s)
)
µ2
s ds

)
+Bb

12

(∫ t

0

(
Q(0)

1 (s)− ns
)+
βs(1− ψs) ds

)
+

∫ t

0

[
Q(1)

1 (s)∗βs(1− ψs)− µ2
sQ

(1)
2 (s)

]
ds,
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where

Q(1)
1 (t)∗ = Q(1)

1 (t)+1{Q(0)
1 (t)>nt} −Q

(1)
1 (t)−1{Q(0)

1 (t)>nt}
. (5.3)

Proof. These results follow from theorems 2.2 and 2.3. �

Theorem 5.2. The mean vector for the diffusion limit solves the set of differential
equations

d
dt

E
[
Q(1)

1 (t)
]

=
(
µ1
t1{Q(0)

1 (t)6nt} + βt1{Q(0)
1 (t)>nt}

)
E
[
Q(1)

1 (t)−
]

−
(
µ1
t1{Q(0)

1 (t)<nt}
+ βt1{Q(0)

1 (t)>nt}

)
E
[
Q(1)

1 (t)+
]

+ µ2
tE
[
Q(1)

2 (t)
]

(5.4)

and

d
dt

E
[
Q(1)

2 (t)
]

= βt(1− ψt)
(

E
[
Q(1)

1 (t)+
]
1{Q(0)

1 (t)>nt} − E
[
Q(1)

1 (t)−
]
1{Q(0)

1 (t)>nt}

)
− µ2

tE
[
Q(1)

2 (t)
]

(5.5)

and the covariance matrix for the diffusion limit solves the differential equations

d
dt

Var
[
Q(1)

1 (t)
]

= 2
(
βt1{Q(0)

1 (t)>nt}
+ µ1

t1{Q(0)
1 (t)6nt}

)
Cov
[
Q(1)

1 (t),Q(1)
1 (t)−

]
− 2
(
βt1{Q(0)

1 (t)>nt} + µ1
t1{Q(0)

1 (t)<nt}

)
Cov
[
Q(1)

1 (t),Q(1)
1 (t)+

]
+ λt + βt

(
Q(0)

1 (t)− nt
)+

+ µ1
t

(
Q(0)

1 (t) ∧ nt
)

+ µ2
tQ

(0)
2 (t),

(5.6)d
dt

Var
[
Q(1)

2 (t)
]

= −2µ2
tVar

[
Q(1)

2 (t)
]

+ βt(1− ψt)
(
Q(0)

1 (t)− nt
)+

+ µ2
tQ

(0)
2 (t) + 2βt(1− ψt)

×
(

Cov
[
Q(1)

2 (t),Q(1)
1 (t)+

]
1{Q(0)

1 (t)>nt} − Cov
[
Q(1)

2 (t),Q(1)
1 (t)−

]
1{Q(0)

1 (t)>nt}

)
and

d
dt

Cov
[
Q(1)

1 (t),Q(1)
2 (t)

]
=
(
βt1{Q(0)

1 (t)>nt}
+ µ1

t1{Q(0)
1 (t)6nt}

)
Cov

[
Q(1)

2 (t),Q(1)
1 (t)−

]
−
(
βt1{Q(0)

1 (t)>nt} + µ1
t1{Q(0)

1 (t)<nt}

)
Cov

[
Q(1)

2 (t),Q(1)
1 (t)+

]
+ µ2

t

(
Var
[
Q(1)

2 (t)
]
− Cov

[
Q(1)

1 (t),Q(1)
2 (t)

]
+ βt(1− ψt)

(
Q(0)

1 (t)− nt
)+

+ µ2
tQ

(0)
2 (t). (5.7)
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Proof. These results follow from theorem 2.4. As we show in the next section, they
are also a special case of theorem 6.2 where the matrices that are specified by the
given parameter rates are then

∆(βt) =

[
βt 0

0 0

]
, ∆(µt) =

[
µ1
t 0

0 µ2
t

]
,

(5.8)

Ψt =

[
0 1− ψt
0 0

]
, and Φt =

[
0 0

1 0

]
.

Resulting products of these matrices are

∆(βt)Ψt =

[
0 βt(1− ψt)
0 0

]
and ∆(µt)Φt =

[
0 0
µ2
t 0

]
. (5.9)

The special matrices that are functionals of the diffusion process are

Cov
[
Q(1)(t), Q(1)(t)∗

]
=

[
Cov
[
Q(1)

1 (t),Q(1)
1 (t)∗

]
0

Cov
[
Q(1)

2 (t),Q(1)
1 (t)∗

]
0

]
(5.10)

and

Cov
[
Q(1)(t), Q(1)(t)−Q(1)(t)∗

]
=

[
Cov

[
Q(1)

1 (t),Q(1)
1 (t)−Q(1)

1 (t)∗
]

Cov
[
Q(1)

1 (t),Q(1)
2 (t)

]
Cov

[
Q(1)

2 (t),Q(1)
1 (t)−Q(1)

1 (t)∗
]

Var
[
Q(1)

2 (t)
]

]
, (5.11)

where

Q(1)(t)∗ = Q(1)(t)+I{Q(0)(t)>nt} −Q(1)(t)−I{Q(0)(t)>nt} (5.12)

and

Q(1)
1 (t)∗ = Q(1)

1 (t)+1{Q(0)
1 (t)>nt} −Q

(1)
1 (t)−1{Q(0)

1 (t)>nt}
. (5.13)

The vector formulas of theorem 6.2 reduce to

λ+
(
Q(0)(t)− nt

)+
∆(βt)(Ψt + I) +

(
Q(0)(t) ∧ nt

)
∆(µt)(Φt + I)

=
[
λt 0

]
+
[(
Q(0)

1 (t)− nt
)+

0
] [βt 0

0 0

][1 1− ψt
0 1

]

+
[
Q(0)

1 (t) ∧ nt Q(0)
2 (t)

] [µ1
t 0

0 µ2
t

][
1 0

1 1

]
=
(
λt + βt

(
Q(0)

1 (t)− nt
)+

+ µ1
t

(
Q(0)

1 (t) ∧ nt
)

+ µ2
tQ

(0)
2 (t)

)
e1

+
(
βt(1− ψt)

(
Q(0)

1 (t)− nt
)+

+ µ2
tQ

(0)
2 (t)

)
e2. (5.14)

Combining all these identities gives us our answer. �
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Finally, we explore the asymptotic regime suggested in Halfin and Whitt [4]
by applying the full power of theorems 2.2 and 2.3 to this multiserver queue with
abandonment and retrials. First, we modify our rate functions so that

ληt ≡ ηλt +
√
η`t, (5.15)

(µit)
η ≡µit +

1
√
η
mi
t for i = 1, 2, (5.16)

βηt ≡ βt +
1
√
η
bt, (5.17)

ψηt ≡ψt +
1
√
η
pt, (5.18)

nηt ≡ ηnt, (5.19)

where like λt, µit, βt and φt, the functions `t, mi
t, bt, and pt are locally integrable,

but unlike them, not necessarily non-negative. By theorems 2.2 and 2.3 we see that
these additional terms of order

√
η or 1/

√
η have no effect on the fluid approximation

of Qη. However, the diffusion approximation is now the unique solution to the integral
equation

Q(1)
1 (t) =Q(1)

1 (0) +

∫ t

0

[(
µ1
s1{Q(0)

1 (s)6ns} + βs1{Q(0)
1 (s)>ns}

)
Q(1)

1 (s)−

−
(
µ1
s1{Q(0)

1 (s)<ns} + βs1{Q(0)
1 (s)>ns}

)
Q(1)

1 (s)+ + µ2
sQ

(1)
2 (s)

]
ds

+

∫ t

0

[
`s +m2

sQ
(0)
2 (s)−m1

s

(
Q(0)

1 (s) ∧ ns
)
− bs

(
Q(0)

1 (s)− ns
)+]

ds

−
[
Bb

12

(∫ t

0

(
Q(0)

1 (s)− ns
)+
βs(1− ψs) ds

)
+Bc

21

(∫ t

0

(
Q(0)

2 (s)
)
µ2
s ds

)]
+Ba

(∫ t

0
λs ds

)
−Bb

(∫ t

0

(
Q(0)

1 (s)− ns
)+
βsψs ds

)
−Bc

(∫ t

0

(
Q(0)

1 (s) ∧ ns
)
µ1
s ds

)
and

Q(1)
2 (t) =Q(1)

2 (0) +Bb
12

(∫ t

0

(
Q(0)

1 (s)− ns
)+
βs(1− ψs) ds

)
+Bc

21

(∫ t

0

(
Q(0)

2 (s)
)
µ2
s ds

)
+

∫ t

0

[(
Q(1)

1 (s)+1{Q(0)
1 (s)>ns}
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−Q(1)
1 (s)−1{Q(0)

1 (s)>ns}

)
βs(1− ψs)− µ2

sQ
(1)
2 (s)

]
ds

+

∫ t

0

[(
bs(1− ψs)− βsps

)(
Q(0)

1 (s)− ns
)+ −m2

sQ
(0)
2 (s)

]
ds.

The differential equations for the covariance matrix of Q(1) are unchanged but the
equations for the mean vector are now

d
dt

E
[
Q(1)

1 (t)
]

=
(
µ1
t1{Q(0)

1 (t)6nt} + βt1{Q(0)
1 (t)>nt}

)
E
[
Q(1)

1 (t)−
]

−
(
µ1
t1{Q(0)

1 (t)<nt}
+ βt1{Q(0)

1 (t)>nt}

)
E
[
Q(1)

1 (t)+
]

+ µ2
tE
[
Q(1)

2 (t)
]

+ `t +m2
tQ

(0)
2 (t)−m1

t

(
Q(0)

1 (t) ∧ nt
)
− bt

(
Q(0)

1 (t)− nt
)+

(5.20)

and
d
dt

E
[
Q(1)

2 (t)
]

= βt(1− ψt)
(

E
[
Q(1)

1 (t)+
]
1{Q(0)

1 (t)>nt} − E
[
Q(1)

1 (t)−
]
1{Q(0)

1 (t)>nt}

)
− µ2

tE
[
Q(1)

2 (t)
]

+
[
bt(1− ψt)− βtpt

](
Q(0)

1 (t)− nt
)+ −m2

tQ
(0)
2 (t). (5.21)

6. Jackson networks with abandonment

The multiserver queue with abandonment and retrials is a special case of a more
general network that we discuss in this section. Here, we construct a time varying
analogue of the Jackson network that has the added feature of service abandonment
(see figure 4). Extending Kendall notation, we call it the (Mt/Mt\Mt/nt)N network
for short. We construct it by first defining the following set of parameters:

λit = external arrival rate to node i at time t,
βit = abandonment rate for node i at time t,
µit = service rate for node i at time t,
ψijt = abandonment routing probability from node i to node j at time t,
φijt = service routing probability from node i to node j at time t,
ψit = abandonment departure probability from node i at time t,
φit = service departure probability from node i at time t.
nit = number of servers for node i at time t,

where we require that

ψit +
N∑
j=1

ψijt = 1 and φit +
N∑
j=1

φijt = 1 (6.1)
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Figure 4. The Jackson network with abandonment.

for all t > 0 and i = 1, . . . ,N .
We then set V = RN and define

Q(t) = Q(0) +
N∑
i=1

N∑
j=1

Abij

(∫ t

0

(
Qi(s)− nis

)+
βisψ

ij
s ds

)
(ej − ei)

+
N∑
i=1

N∑
j=1

Acij

(∫ t

0

(
Qi(s) ∧ nis

)
µisφ

ij
s ds

)
(ej − ei)

+
N∑
i=1

(
Aai

(∫ t

0
λisds

)
−Abi

(∫ t

0

(
Qi(s)− nis

)+
βisψ

i
sds

))
ei

−
N∑
i=1

Aci

(∫ t

0

(
Qi(s) ∧ nis

)
µisφ

i
sds

)
ei. (6.2)

Theorems 2.2 and 2.3 yield the following limiting results for these networks.

Theorem 6.1. Defining Qη by uniform acceleration as in (2.8), the fluid limit for the
(Mt/Mt\Mt/nt)N network is the unique solution to the integral equation

Q(0)(t) = Q(0)(0) +

∫ t

0

[
λs +

(
Q(0)(s)− ns

)+
∆(βs)(Ψs − I)

]
ds

+

∫ t

0

(
Q(0)(s) ∧ ns

)
∆(µs)(Φs − I) ds. (6.3)
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Moreover, the diffusion limit for the (Mt/Mt\Mt/nt)N network is the unique
solution to the integral equation

Q(1)(t)

= Q(1)(0) +

∫ t

0

(
Q(1)(s)+I{Q(0)(s)>ns} −Q(1)(s)−I{Q(0)(s)>ns}

)
∆(βs)(Ψs − I) ds

+

∫ t

0

(
Q(1)(s)+I{Q(0)(s)<ns} −Q(1)(s)−I{Q(0)(s)6ns}

)
∆(µs)(Φs − I) ds

+
N∑
i=1

[
N∑
j=1

(
Bb
ij

(∫ t

0

(
Q(0)
i (s)− nis

)+
βisψ

ij
s ds

)

+Bc
ij

(∫ t

0

(
Q(0)
i (s) ∧ nis

)
µisφ

ij
s ds

))
(ej − ei)

+

(
Ba
i

(∫ t

0
λis ds

)
−Bb

i

(∫ t

0

(
Q(0)
i (s)− nis

)+
βisψ

i
sds

)
−Bc

i

(∫ t

0

(
Q(0)
i (s) ∧ nis

)
µisφ

i
sds

))
ei

]
. (6.4)

Proof. From (6.2), it follows that

αt(x) = λt + (x− nt)+∆(βt)(Ψt − I) + (x ∧ nt)∆(µt)(Φt − I). (6.5)

The fluid limit now follows from applying theorem 2.2.
The scalable Lipschitz derivative of αt is

Λαt(x)(y) =
(
y+I{x>nt} − y−I{x>nt}

)
∆(βt)(Ψt − I)

+
(
y+I{x<nt} − y−I{x6nt}

)
∆(µt)(Φt − I). (6.6)

The diffusion limit now follows from applying theorem 2.3. �

Theorem 6.2. The mean vector for the diffusion limit solves the differential equation

d
dt

E
[
Q(1)(t)

]
= E
[
Q(1)(t)+I{Q(0)(t)>nt} −Q(1)(t)−I{Q(0)(t)>nt}

]
∆(βt)(Ψt − I)

+ E
[
Q(1)(t)+I{Q(0)(t)<nt} −Q(1)(t)−I{Q(0)(t)6nt}

]
∆(µt)(Φt − I)

and the covariance matrix for the diffusion limit solves the differential equation

d
dt

Cov
[
Q(1)(t), Q(1)(t)

]
=
{

Cov
[
Q(1)(t), Q(1)(t)+I{Q(0)(t)>nt} −Q(1)(t)−I{Q(0)(t)>nt}

]
∆(βt)(Ψt − I)

}
,

+
{

Cov
[
Q(1)(t), Q(1)(t)+I{Q(0)(t)<nt} −Q(1)(t)−I{Q(0)(t)6nt}

]
∆(µt)(Φt − I)

}
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+ ∆
(
λt +

(
Q(0)(t)− nt

)+
∆(βt)(Ψt + I) +

(
Q(0)(t) ∧ nt

)
∆(µt)(Φt + I)

)
−
{

∆
((
Q(0)(t)− nt

)+)
∆(βt)Ψt + ∆

(
Q(0)(t) ∧ nt

)
∆(µt)Φt

}
.

7. Priority queues

A multiserver queue with preemptive priorities (see figure 5) is defined using the
following parameters:

λit = arrival rate for class i customers at time t,
µit = service rate for class i customers at time t,
nt = number of servers at time t,
c = number of customer classes.

We then set V = Rc and define

Q(t) = Q(0)+
c∑
i=1

[
Aai

(∫ t

0
λisds

)
−Abi

(∫ t

0
µisQi(s)∧

(
nt−

i−1∑
j=1

Qj(s)

)+

ds

)]
ei.

(7.1)

Theorem 7.1. Defining Qη by uniform acceleration as in (2.8), the fluid limit for the
priority queueing model is the solution to the integral equation

Q(0)(t) = Q(0)(0) +

∫ t

0

[
λs +

(
Q(0)(s) ∧ (ns1−Q(0)(s)Θ)

)+
∆(µs)

]
ds, (7.2)

where Θ = {θij | 1 6 i, j 6 c} is the c× c matrix

θij =

{
1 for i < j,

0 for i > j. (7.3)

Moreover, the diffusion limit is the solution to the integral equation

Q(1)(t) = Q(1)(0)−
∫ t

0
Q(1)(s)I{Q(0)(s)<(nt1−Q(0)(s)Θ)+}∆(µs) ds

−
∫ t

0

(
Q(1)(s)Θ

)+I{Q(0)(s)>(nt1−Q(0)(s)Θ)+, nt16Q(0)(s)Θ}∆(µs) ds

+

∫ t

0

(
Q(1)(s)Θ

)−I{Q(0)(s)>(nt1−Q(0)(s)Θ)+, nt1<Q(0)(s)Θ}∆(µs) ds

−
∫ t

0

(
Q(1)(s) ∧

(
−(Q(1)(s)Θ)∗

))
· I{Q(0)(s)=(nt1−Q(0)(s)Θ)+}∆(µs) ds

+
c∑
i=1

[
Ba
i

(∫ t

0
λis ds

)
−Bb

i

(∫ t

0
µisQi(s) ∧

(
nt −

i−1∑
j=1

Qj(s)

)
ds

)]
ei,
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Figure 5. The preemptive priority queue.

where(
Q(1)(t)Θ

)∗
=
(
Q(1)(t)Θ

)+I{nt1<Q(0)(t)Θ} −
(
Q(1)(t)Θ

)−I{nt16Q(0)(t)Θ}. (7.4)

Proof. From (7.1), it follows that

αt(x) = λt −
(
x ∧ (nt1− xΘ)+

)
∆(µt). (7.5)

The fluid limit now follows from applying theorem 2.2.
Applying (3.8) and (3.9), the scalable Lipschitz derivative of αt is

Λαt(x; y)

=
(
−(yΘ)+I{x>(nt1−xΘ)+, nt16xΘ} + (yΘ)−I{x>(nt1−xΘ)+, nt1<xΘ}

)
∆(µt)

−
(
y ∧

(
−(yΘ)+I{nt1<xΘ} + (yΘ)−I{nt16xΘ}

))
I{x=(nt1−xΘ)+}∆(µt)

− yI{x<(nt1−xΘ)+}∆(µt).

The diffusion limit now follows from applying theorem 2.3. �

Theorem 7.2. The mean vector for the diffusion limit solves the differential equation

d
dt

E
[
Q(1)(t)

]
= E
[
Q(1)(t)

]
I{Q(0)(t)<(nt1−xΘ)+}

+ E
[(

Q(1)(t)Θ
)+]I{Q(0)(t)>(nt1−Q(0)(t)Θ)+, nt16Q(0)(t)Θ}

− E
[(

Q(1)(t)Θ
)−]I{Q(0)(t)>(nt1−Q(0)(t)Θ)+, nt1<Q(0)(t)Θ}

+ E
[
Q(1)(t) ∧

(
−
(
Q(1)(t)Θ

)∗)] · I{Q(0)(t)=(nt1−Q(0)(t)Θ)+}

and the covariance matrix for the diffusion limit solves the differential equation

d
dt

Cov
[
Q(1)(t), Q(1)(t)

]
=
{

Cov
[
Q(1)(t), Q(1)(t)

]
I{Q(0)(t)<(nt1−xΘ)+}

}
+
{

Cov
[
Q(1)(t),

(
Q(1)(t)Θ

)+]I{Q(0)(t)>(nt1−Q(0)(t)Θ)+, nt16Q(0)(t)Θ}

}
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−
{

Cov
[
Q(1)(t),

(
Q(1)(t)Θ

)−]I{Q(0)(t)>(nt1−Q(0)(t)Θ)+, nt1<Q(0)(t)Θ}

}
+
{

Cov
[
Q(1)(t), Q(1)(t) ∧

(
−
(
Q(1)(t)Θ

)∗)] · I{Q(0)(t)=(nt1−Q(0)(t)Θ)+}

}
+ ∆(λt)−∆

(
Q(0)(t) ∧

(
nt1−Q(0)(t)Θ

)+) ·∆(µt),

where (Q(1)(t)Θ)∗ is given by (7.4).

8. Jackson networks with state dependent routing

We now consider another generalization of the classical Jackson network where
the arrival rate, service rate, and routing probabilities are all functions of the state of
the joint queue length vector Q(t) (see figure 6). We extend Kendall notation and call
it the (Mt(Q)/Mt(Q)/nt)N network. The examples considered in sections 4 and 7 are
special cases of this network. We construct the (Mt(Q)/Mt(Q)/nt)N network by first
defining the following set of parameters:

λit(Q(t)) = external arrival rate to node i at time t,
µit(Q(t)) = service rate for node i at time t,
φijt (Q(t)) = service routing probability to node i from node j at time t,
φit(Q(t)) = service departure probability from node i at time t,
nit = number of servers for node i at time t,

where λit(·), µit(·), φ
ij
t (·), and φit(·) are all Lipschitz functions with scalable Lipschitz

derivatives and we require that

ψit(x) +
N∑
j=1

ψijt (x) = 1 and φit(x) +
N∑
j=1

φijt (x) = 1 (8.1)

for all t > 0, all x ∈ V = RN , and i = 1, . . . ,N .

Figure 6. The Jackson network with state dependent routing.
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We then define

Q(t) = Q(0) +
N∑
i=1

Aai

(∫ t

0
λis
(
Q(s)

)
ds

)
ei

−
N∑
i=1

Abi

(∫ t

0

(
Qi(s) ∧ nis

)
µis
(
Q(s)

)
φis
(
Q(s)

)
ds

)
ei

+
N∑
i=1

N∑
j=1

Acij

(∫ t

0

(
Qi(s) ∧ nis

)
µis
(
Q(s)

)
φijs
(
Q(s)

)
ds

)
(ej − ei). (8.2)

Theorem 8.1. Defining Qη by uniform acceleration as in (2.8), the fluid limit for the
(Mt(Q)/Mt(Q)/nt)N network is the unique solution to the integral equation

Q(0)(t) = Q(0)(0) +

∫ t

0
λs
(
Q(0)(s)

)
ds

+

∫ t

0

(
Q(0)(s) ∧ ns

)
∆
(
µs
(
Q(0)(s)

))(
Φs

(
Q(0)(s)

)
− I
)
ds. (8.3)

Moreover, the diffusion limit for the (Mt(Q)/Mt(Q)/nt)N network is the unique
solution to the integral equation

Q(1)(t) = Q(1)(0) +

∫ t

0
Λλt

(
Q(0)(s); Q(1)(s)

)
ds

+

∫ t

0
Q(1)(s)∗∆

(
µs
(
Q(0)(s)

))(
Φs

(
Q(0)(s)

)
− I
)
ds

+

∫ t

0

(
Q(0)(s) ∧ ns

)(
∆
(
Λµt

(
Q(0)(s); Q(1)(s)

))(
Φt(Q(0)(s))− I

))
ds

+

∫ t

0

(
Q(0)(s) ∧ ns

)(
∆
(
µt
(
Q(0)(s)

))
ΛΦt

(
Q(0)(s); Q(1)(s)

))
ds

+
N∑
i=1

N∑
j=1

Bc
ij

(∫ t

0

(
Q(0)
i (s) ∧ nis

)
µis
(
Q(0)(s)

)
φijs
(
Q(0)(s)

)
ds

)
(ej − ei)

−
N∑
i=1

Bc
i

(∫ t

0

(
Q(0)
i (s) ∧ nis

)
µis
(
Q(0)(s)

)
φis
(
Q(0)(s)

)
ds

)
ei

+
N∑
i=1

Ba
i

(∫ t

0
λis
(
Q(0)(s)

)
ds

)
ei,

where

Q(1)(t)∗ = Q(1)(t)+I{Q(0)(t)<nt} −Q(1)(t)−I{Q(0)(t)6nt}. (8.4)
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Proof. From (8.2), it follows that

αt(x) = λt(x) + (x ∧ nt)∆
(
µt(x)

)(
Φt(x) − I

)
. (8.5)

The fluid limit now follows from applying theorem 2.2.
The scalable Lipschitz derivative of αt is

Λαt(x; y) = Λλt(x; y) +
(
y+I{x<nt} − y−I{x6nt}

)
∆
(
µt(x)

)(
Φt(x)− I

)
+ (x ∧ nt)

(
∆
(
Λµt(x; y)

)(
Φt(x)− I

)
+ ∆

(
µt(x)

)
ΛΦt(x; y)

)
. (8.6)

The diffusion limit now follows from applying theorem 2.3. �

Theorem 8.2. The mean vector for the diffusion limit solves the differential equation

d
dt

E
[
Q(1)(t)

]
= E
[
Λλt

(
Q(0)(t); Q(1)(t)

)]
+ E

[
Q(1)(t)+

]
I{Q(0)(t)<nt} ·∆

(
µt
(
Q(0)(t)

))(
Φt

(
Q(0)(t)

)
− I
)

− E
[
Q(1)(t)−

]
I{Q(0)(t)6nt} ·∆

(
µt
(
Q(0)(t)

))(
Φt

(
Q(0)(t)

)
− I
)

+
(
Q(0)(t) ∧ nt

)
∆
(
E
[
Λµt

(
Q(0)(t); Q(1)(t)

)])(
Φt

(
Q(0)(t)

)
− I
)

+
(
Q(0)(t) ∧ nt

)
∆
(
µt
(
Q(0)(t)

))
E
[
ΛΦt

(
Q(0)(t); Q(1)(t)

)]
(8.7)

and the covariance matrix for the diffusion limit solves the differential equation

d
dt

Cov
[
Q(1)(t), Q(1)(t)

]
=
{

Cov
[
Q(1)(t), Λλt

(
Q(0)(t); Q(1)(t)

)]}
+
{

Cov
[
Q(1)(t), Q(1)(t)+

]
I{Q(0)(t)<nt} ·∆

(
µt
(
Q(0)(t)

))
·
(
Φt

(
Q(0)(t)

)
− I
)}

−
{

Cov
[
Q(1)(t), Q(1)(t)−

]
I{Q(0)(t)6nt} ·∆

(
µt
(
Q(0)(t)

))
·
(
Φt

(
Q(0)(t)

)
− I
)}

+
{

Cov
[
Q(1)(t),

(
Q(0)(t) ∧ nt

)
∆
(
Λµt

(
Q(0)(t); Q(1)(t)

))(
Φt

(
Q(0)(t)

)
− I
)]}

+
{

Cov
[
Q(1)(t),

(
Q(0)(t) ∧ nt

)
∆
(
µt
(
Q(0)(t)

))
ΛΦt

(
Q(0)(t); Q(1)(t)

)]}
+ ∆

(
λt +

(
Q(0)(t) ∧ nt

)
∆
(
µt
(
Q(0)(t)

))(
Φt

(
Q(0)(t)

)
+ I
))

−
{

∆
(
Q(0)(t) ∧ nt

)
∆
(
µt
(
Q(0)(t)

))
Φt

(
Q(0)(t)

)}
. (8.8)

9. Proofs of the strong limit theorems

In this section, we prove the strong approximation and strong law of large number
theorems stated in section 2. As preparation, we first show existence and uniqueness
for the process Q = {Q(t) | t > 0}. In defining this process, we also construct a
process Z = {Z(t) | t > 0} that we use as a bound on its growth. In a fashion similar
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to results found in Kurtz [9], the Z process plays the key role in a stochastic analogue
to Gronwall’s inequality.

Recall, from section 2, that for all the results in this section we make the following
set of assumptions:

1. The family of Lipschitz rate functions {αt(·, i) | i ∈ I} has the growth condition∥∥αt(·, i)∥∥ 6 βtγ(i), (9.1)

for all i ∈ I , where βt is a positive, locally integrable function and {γ(i) | i ∈ I} is
an absolutely summable sequence. Similarly, the family of Lipschitz rate functions
{αηt (·, i) | i ∈ I , η > 0} has the property that∥∥αηt (·, i)

∥∥ 6 ηβtγ(i). (9.2)

2. The family of transition vectors {vi | i ∈ I} has the property that∑
i∈I
|vi| <∞. (9.3)

It should be noted that the last condition is not as limiting as it seems. If V is the
Banach space `1 of absolutely summable sequences and {vi | i ∈ I} is the set of unit
basis vectors, merely redefine the norm to give each basis vector a weight where all
of the weights are summable.

Lemma 9.1. There exists a positive, increasing process Z ≡ {Z(t) | t > 0} that is the
unique solution to the equation

Z(t) ≡ X
(∫ t

0
βsZ(s) ds

)
, (9.4)

for all t > 0, where the process X ≡ {X(t) | t > 0} is defined by a random variable
X(0) > 0 that is independent of the collection of Poisson processes {Ai | i ∈ I} and

X(t) ≡ X(0) +
∑
i∈I

Ai
(
γ(i)t

)
|vi|, (9.5)

is an increasing pure jump process with no explosions.
Moreover, the process M ≡ {M (t) | t > 0} defined by

M (t) ≡ Z(t) exp

(
−
∑
i∈I

γ(i)|vi| ·
∫ t

0
βs ds

)
, (9.6)

is a martingale.

Proof. Since
∑

i∈I γ
(i) <∞, it follows that the process A ≡ {A(t) | t > 0}, where

A(t) =
∑
i∈I

Ai
(
γ(i)t

)
(9.7)
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is Poisson with mean rate
∑

i∈I γ
(i). Given that

∑
i∈I |vi| < ∞ also, we then have

for all t > 0

E
[
X(t)

]
= E

[
X(0)

]
+
∑
i∈I

γ(i)|vi|t < E
[
X(0)

]
+
∑
i∈I

γ(i) ·
∑
i∈I
|vi|t <∞. (9.8)

Hence X(t) <∞ a.s. for all t and its jump times are given by the Poisson process A.
Now let b(t) ≡

∫ t
0 βs ds. If β is a strictly positive function then b−1, the inverse

function for b, is well defined. For all t > 0, define the random process {τ (t) | t > 0}
such that

τ−1(t) = b−1
(∫ t

0

ds
X(s)

)
. (9.9)

This is well defined since X(t) > X(0) > 0 for all t > 0. Hence, we can define the
process {Z(t) | t > 0} to be

Z(t) ≡ τ ′(t)
βt

. (9.10)

Since τ (t) ≡
∫ t

0 βsZ(s) ds, we have uniqueness.
Now consider the process M∗ ≡ {M∗(t) | t > 0}, where

M∗(t) ≡ Z(t)−
∑
i∈I

γ(i)|vi| ·
∫ t

0
βsZ(s) ds. (9.11)

This process is a martingale, since {X(t) −
∑

i∈I γ
(i)|vi| t | t > 0} is one, and by

(9.9) we see that τ (t) =
∫ t

0 βsZ(s) ds is a stopping time with respect to the filtration
generated by the process X for all t > 0. Finally, M is a martingale since M∗ is one
of bounded variation and

M (t) =Z(t) exp

(
−
∑
i∈I

γ(i)|vi| ·
∫ t

0
βs ds

)
=Z(0) +

∫ t

0
exp

(
−
∑
i∈I

γ(i)|vi| ·
∫ s

0
βr dr

)
dM∗(s), (9.12)

which completes the proof. �

Theorem 9.2. Given the rate functions {αt(·, i) | t > 0, i ∈ I} and the initial state
vector Q(0) is independent of the collection of Poisson processes {Ai | i ∈ I}, we can
construct a unique stochastic process Q ≡ {Q(t) | t > 0} such that

Q(t) = Q(0) +
∑
i∈I

Ai

(∫ t

0
αs
(
Q(s), i

)
ds

)
vi. (9.13)
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Moreover, we have for all t > 0,

1 + sup
06s6t

∣∣Q(s)
∣∣ 6 Z(t), (9.14)

where the process Z ≡ {Z(t) | t > 0} is uniquely defined by (9.4) and (9.5) with
X(0) = 1 + |Q(0)|.

Proof. Define the following sequence Qn ≡ {Qn(t) | t > 0}, where Q0(t) ≡ Q(0)
for all t > 0 and for all positive integers n we have

Qn(t) ≡ Q(0) +
∑
i∈I

Ai

(∫ t∧Tn

0
αs
(
Qn−1(s), i

)
ds

)
vi, (9.15)

where

Tn ≡ inf

{
t

∣∣∣∣ ∑
i∈I

Ai

(∫ t

0
αs
(
Qn−1(s), i

)
ds

)
= n

}
. (9.16)

We are done once we prove the following two statements:

1. Qn(t) = Qn−1(t) for all 0 6 t < Tn.

2. limn→∞ Tn =∞ a.s.

We can then construct the desired process Q ≡ {Q(t) | t > 0} by defining for all
n > 1,

Q(t) = Qn−1(t) for all 0 6 t < Tn. (9.17)

Uniqueness follows by using induction on n. Using (9.15) shows that the uniqueness
of Qn implies the uniqueness of Qn+1.

The first statement is proved by using induction on n. The result holds for n = 1,
since t < T1 implies that Q1(t) = Q0(t) = Q(0), since t < T1 means that∑

i∈I
Ai

(∫ t

0
αs
(
Q0(s), i

)
ds

)
= 0, (9.18)

and for all i ∈ I , we have

Ai

(∫ t

0
αs
(
Q0(s), i

)
ds

)
= 0. (9.19)

If we assume that Qn−1(t) = Qn(t) for all 0 6 t < Tn, then it follows that∫ t

0
αs
(
Qn(s), i

)
ds =

∫ t

0
αs
(
Qn−1(s), i

)
ds (9.20)

for all i ∈ I and 0 6 t 6 Tn. We then must have

Qn+1(t) = Qn(t) for all 0 6 t < Tn. (9.21)
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Now consider the case of Tn 6 t < Tn+1. By definition of the Qn’s we have

Qn(t) = Qn(Tn) (9.22)

and

Qn+1(t) = Q(0) +
∑
i∈I

Ai

(∫ t

0
αs
(
Qn(s), i

)
ds

)
vi. (9.23)

However, by the definition of Tn and Tn+1, we have

n 6
∑
i∈I

Ai

(∫ t

0
αs
(
Qn(s), i

)
ds

)
< n+ 1. (9.24)

This follows from the fact that the Ai’s are increasing processes. Combining this with
the fact that the processes are also integer valued not only shows that the sum in (9.24)
equals n, but that for all i ∈ I ,

Ai

(∫ t

0
αs
(
Qn(s), i

)
ds

)
=Ai

(∫ Tn

0
αs
(
Qn(s), i

)
ds

)
=Ai

(∫ Tn

0
αs
(
Qn−1(s), i

)
ds

)
,

where the last equality follows from (9.20). Finally, this gives us

Qn+1(t) = Qn(t) = Qn(Tn) for all Tn 6 t < Tn+1, (9.25)

which means that

Qn+1(t) = Qn(t) for all 0 6 t < Tn+1, (9.26)

completing the induction argument.
To prove the second statement, we observe that∣∣Qn(t)

∣∣6 ∣∣Q(0)
∣∣+
∑
i∈I

Ai

(∫ t

0

∥∥αs(·, i)∥∥(1 +
∣∣Qn−1(s)

∣∣)ds)|vi| (9.27)

6
∣∣Q(0)

∣∣+
∑
i∈I

Ai

(
γ(i)
∫ t

0
βs
(
1 +

∣∣Qn−1(s)
∣∣)ds)|vi|. (9.28)

It follows by induction that for all n > 0 and t > 0 we have

1 +
∣∣Qn(t)

∣∣ 6 Z(t), (9.29)

where Z(t) is the process defined in (9.4), with X(0) = 1 + |Q(0)|. Consequently,∑
i∈I

Ai

(∫ t

0
αs
(
Qn(s), i

)
ds

)
6
∑
i∈I

Ai

(
γ(i)
∫ t

0
βsZ(s) ds

)
. (9.30)
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If we set γ ≡
∑

i∈I γ
(i), then

∑
i∈I Ai(γ

(i)t) is a Poisson process with rate γ. Let T γn
be the time of the n-th jump for this Poisson process. It now follows from (9.16) and
(9.30) that for all n > 1,

Sγn 6 Tn, (9.31)

where

T γn =

∫ Sγn

0
βsZ(s) ds. (9.32)

Since limn→∞ T
γ
n =∞ a.s., then limn→∞ S

γ
n =∞ a.s., and so we have limn→∞ Tn =

∞ a.s.
Finally, (9.14) follows from the fact that 1 + |Q(t)| 6 Z(t) for all t and Z is a

non-decreasing process. �

Now consider the family of uniformly accelerated processes {Qη | η > 0} as
defined in (2.9). We will always assume that every element of {Qη(0) | η > 0}
is a random vector in V that is independent of the collection of Poisson processes
{Ai | i ∈ I}.

Lemma 9.3. If {Qη(0) | η > 0} is a family of random vectors independent of the
Poisson processes {Ai | i ∈ I}, then

limη→∞
|Qη(0)|
η

<∞ a.s. implies limη→∞Z
η(s) <∞ a.s., (9.33)

which implies

limη→∞ sup
06s6t

|Qη(s)|
η

<∞ a.s. (9.34)

Proof. Let {Zη(t) | t > 0} be the unique process such that

Zη(t) = Xη

(∫ t

0
βsZ

η(s) ds

)
(9.35)

and

Xη(t) ≡ 1 +
1
η

∣∣Qη(0)
∣∣ +
∑
i∈I

1
η
Ai
(
γ(i)ηt

)
|vi|. (9.36)

A simple modification of the proof for theorem 9.2 gives us

1 +
1
η

sup
06s6t

∣∣Qη(s)
∣∣ 6 Zη(t). (9.37)

A similar modification of the proof for lemma 9.1 shows that{
Zη(t) exp

(
−
∑
i∈I

γ(i)|vi| ·
∫ t

0
βs ds

) ∣∣∣ t > 0

}
(9.38)
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is a martingale, and so for all t > 0.

E
[
Zη(t)

]
=

(
1 +

1
η

∣∣Qη(0)
∣∣) exp

(
γ

∫ t

0
βs ds

)
. (9.39)

Using Chebyshev’s inequality, we see that for all t > 0, the set {Zη(t) | η > 0} is a
tight family of random variables and so

limη→∞Z
η(t) <∞ a.s. (9.40)

which combined with (9.37), completes the proof. �

Our fundamental results, stated in section 2, are proved within the framework of
strong approximations. The framework is based on a pathwise approximation of the
Poisson process, articulated in the following lemma.

Lemma 9.4 (Kurtz [9, lemma 3.1]). A standard (rate 1) Poisson process {A(t) | t > 0}
can be realized on the same probability space as a standard Brownian motion {B(t) |
t > 0} in such a way that the positive random variable X, given by

X ≡ sup
t>0

|A(t)− t−B(t)|
log(2 ∨ t) <∞, (9.41)

has a finite moment generating function in a neighborhood of the origin. In particular
it has a finite mean.

Using lemma 9.4, we associate with our stochastic primitives {Ai | i ∈ I},
namely the family of mutually independent standard Poisson processes, another family
{Bi | i ∈ I} of mutually independent standard Brownian motions, such that

Xi ≡ sup
t>0

|Ai(t)− t−Bi(t)|
log(2 ∨ t) <∞ a.s. (9.42)

Moreover, the random variables Xi’s can be taken i.i.d. with a finite mean. Note that
both families, as well as the Xi’s, must be realized on a common probability space.
In the sequel, we write ω ∈ Ω for elementary outcomes in this common probability
space.

Now we give the proof for our strong approximation theorem.

Proof of theorem 2.1. Using lemma 9.4, we have

sup
06s6t

∣∣∣∣Qη(s)−Qη(0)−
∫ s

0
αηr

(
1
η

Qη(r)

)
dr −

∑
i∈I

Bi

(∫ s

0
αηr

(
1
η

Qη(r), i

)
dr

)
vi

∣∣∣∣
6
∑
i∈I

Xi log

(
2 ∨

∫ t

0
αηs

(
1
η

Qη(s), i

)
ds

)
|vi| (9.43)
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6
∑
i∈I

Xi log

(
2 ∨

(∫ t

0

∥∥αηs (·, i)
∥∥(1 +

1
η

∣∣Qη(s)
∣∣)ds

))
|vi| (9.44)

6
∑
i∈I

Xi log

(
2 ∨

(
ηγ(i)Zη(t)

∫ t

0
βs ds

))
|vi| (9.45)

6
∑
i∈I

Xi|vi| log

(
2 ∨

(
ηγ∗Zη(t)

∫ t

0
βs ds

))
, (9.46)

where γ∗ ≡ supi∈I γi. The first step follows from (9.42). The second step follows from
(2.6). The third step uses (9.2) and (9.14). Since the Xi are nonnegative, using (2.10)
and the fact that the Xi’s are i.i.d. with the same finite mean implies that

E

[∑
i∈I

Xi|vi|
]
<∞, (9.47)

which gives us the desired result. �

Now we give the proof for our functional strong law of large numbers.

Proof of theorem 2.2. First observe that α(0)
t is well defined for almost all t as given

by (2.16) since for all t > 0,∫ t

0

∥∥α(0)
s

∥∥ds6
∫ t

0

∥∥∥∥αηsη
∥∥∥∥ ds +

∫ t

0

∥∥∥∥αηsη −α(0)
s

∥∥∥∥ ds (9.48)

6 sup
i∈I
|vi| ·

∑
i∈I

[
γi

∫ t

0
βs ds+

∫ t

0

∥∥∥∥αηs (·, i)
η
− α(0)

s (·, i)
∥∥∥∥ ds

]
<∞.

Moreover, we have for all t > 0,∫ t

0

∥∥∥∥αηsη −α(0)
s

∥∥∥∥ ds 6 sup
i∈I
|vi| ·

∑
i∈I

∫ t

0

∥∥∥∥αηs (·, i)
η
− α(0)

s (·, i)
∥∥∥∥ ds <∞. (9.49)

Applying condition (9.3) then gives us

lim
η→∞

∫ t

0

∥∥∥∥αηsη −α(0)
s

∥∥∥∥ ds = 0. (9.50)

Combining (2.12) with (2.15), the integral equation for Q(0), we obtain

Qη(t)
η
−Q(0)(t) =

∫ t

0

[
1
η
αηs
(1
η

Qη(s)
)
−α(0)

s

(
Q(0)(s)

)]
ds

+
∑
i∈I

1
η
Bi

(∫ t

0
αηs

(
1
η

Qη(s), i

)
ds

)
vi + O

(
log η
η

)
, (9.51)

where O(log η/η) holds uniformly on compact sets in t.



186 A. Mandelbaum et al. / Strong approximations

Taking the supremum of (9.51), we obtain

sup
06s6t

∣∣∣∣Qη(s)
η
−Q(0)(s)

∣∣∣∣
6
∫ t

0

∣∣∣∣1ηαηs
(

1
η

Qη(s)

)
−α(0)

s

(
1
η

Qη(s)

)∣∣∣∣ ds
+

∫ t

0

∣∣∣∣α(0)
s

(
1
η

Qη(s)

)
−α(0)

s

(
Q(0)(s)

)∣∣∣∣ ds
+
∑
i∈I

sup
06s6t

1
η

∣∣∣∣Bi(∫ s

0
αηr

(
1
η

Qη(r), i

)
dr

)∣∣∣∣|vi|+ O

(
log η
η

)
6
∫ t

0

∥∥∥∥αηsη −α(0)
s

∥∥∥∥ ds · Zη(t) +

∫ t

0

∥∥α(0)
s

∥∥ sup
06r6s

∣∣∣∣Qη(r)
η
−Q(0)(r)

∣∣∣∣ ds
+
∑
i∈I

sup
06s6t

1
η

∣∣∣∣Bi(ηγ(i)
∫ s

0
βr dr · Zη(s)

)∣∣∣∣|vi|+ O

(
log η
η

)
. (9.52)

Since (9.48) holds, we can apply Gronwall’s inequality (lemma 11.1, corollary 11.2,
or Hale [3, p. 36]) and obtain

sup
06s6t

∣∣∣∣Qη(s)
η
−Q(0)(s)

∣∣∣∣
6 exp

(∫ t

0

∥∥α(0)
s

∥∥ ds

)(∫ t

0

∥∥∥∥αηsη −α(0)
s

∥∥∥∥ ds · Zη(t)

+
∑
i∈I

sup
06s6t

1
η

∣∣∣∣Bi(ηγ(i)
∫ s

0
βr dr · Zη(s)

)∣∣∣∣|vi|+ O

(
log η
η

))
. (9.53)

Using (9.50) and lemma 9.3, taking the limit yields

lim
η→∞

sup
06s6t

∣∣∣∣Qη(s)
η
−Q(0)(s)

∣∣∣∣ = 0, (9.54)

which completes the proof. �

10. Proof of the central limit theorem

In this section, we prove results related to convergence in distribution, so it is
useful to define partial ordering between two real-valued random variables in distri-
bution. For any two real-valued random variables X and Y , we define the relation

X 6st Y to mean that there exists some X̂ and Ŷ with X
d
= X̂ and Y

d
= Ŷ such that

P(X̂ 6 Ŷ ) = 1. We use <st to denote a strict inequality.
Before we prove theorem 2.3, we show that the limit supremum of |Qη(t) −

ηQ(0)(t)|/√η as η →∞ is always finite in distribution.
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Theorem 10.1. For all t > 0, if αt(·) satisfies the same hypothesis as in theorem 2.1
and ∑

i∈I
limη→∞

∫ t

0

∥∥∥∥αηs (·, i) − ηα(0)
s (·, i)

√
η

∥∥∥∥ ds <∞, (10.1)

we then have

limη→∞ sup
06s6t

|Qη(s)− ηQ(0)(s)|
√
η

<st ∞. (10.2)

Proof. By theorem 2.2, we know that α(0)
t is a Lipschitz mapping of V into itself

where ‖α(0)
t ‖ is locally integrable over t, since dividing the sum in condition (10.1) by√

η and taking the limit as η → ∞ gives us condition (2.13). Moreover, multiplying
the inequality (9.49) by

√
η gives us∫ t

0

∥∥∥∥αηs − ηα(0)
s√

η

∥∥∥∥ ds <∞ (10.3)

for all t > 0.
Using theorem 2.1 and the self similarity of standard Brownian motion, we have

Qη(t)
d
= Qη(0) +

∫ t

0
αηs

(
1
η

Qη(s)

)
ds

+
∑
i∈I

√
ηB∗i

(
1
η

∫ t

0
αηs

(
1
η

Qη(s), i

)
ds

)
vi + O(log η), (10.4)

which holds uniformly on compact sets of t. The collection of independent Brownian
motions used here are denoted B∗i for all i ∈ I to distinguish them from the Brownian
motions Bi used in section 9. This gives us

Qη(t)− ηQ(0)(t)
√
η

d
=

1
√
η

∫ t

0
αηs

(
1
η

Qη(s)

)
− ηα(0)

s

(
Q(0)(s)

)
ds

+
∑
i∈I

B∗i

(
1
η

∫ t

0
αηs

(
1
η

Qη(s), i

)
ds

)
vi + O

(
log η
√
η

)
, (10.5)

which holds uniformly on compact sets of t. Applying the Lipschitz property of αηs ,
we have

sup
06s6t

|Qη(s)− ηQ(0)(s)|
√
η

6st
1
√
η

∫ t

0

∣∣∣∣αηs(1
η

Qη(s)

)
− ηα(0)

s

(
1
η

Qη(s)

)∣∣∣∣ ds
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+
1
√
η

∫ t

0

∣∣∣∣ηα(0)
s

(
1
η

Qη(s)

)
− ηα(0)

s

(
Q(0)(s)

)∣∣∣∣ ds
+
∑
i∈I

sup
06s6t

∣∣∣∣B∗i(1
η

∫ s

0
αηr

(
1
η

Qη(r)

)
dr

)∣∣∣∣|vi|+ O

(
log η
√
η

)

6st
∫ t

0

1
√
η

∥∥αηs − ηα(0)
s

∥∥ds · Zη(t)

+

∫ t

0

∥∥α(0)
s

∥∥ 1
√
η

sup
06r6s

∣∣Qη(r)− ηQ(0)(r)
∣∣ds

+
∑
i∈I

sup
06s6t

∣∣∣∣B∗i(γ(i)
∫ s

0
βr dr · Zη(s)

)∣∣∣∣|vi|+ O

(
log η
√
η

)
.

Now we apply Gronwall’s inequality, which yields

sup
06s6t

|Qη(s)− ηQ(0)(s)|
√
η

6st exp

(∫ t

0

∥∥α(0)
s

∥∥ds

)
·
(∫ t

0

1
√
η

∥∥αηs − ηα(0)
s

∥∥ds · Zη(t)

+
∑
i∈I

sup
06s6t

∣∣∣∣B∗i(γ(i)
∫ s

0
βr dr · Zη(s)

)∣∣∣∣|vi|+ O

(
log η
√
η

))
.

Taking limits on both sides we obtain

lim
η→∞

sup
06s6t

|Qη(s)− ηQ(0)(s)|
√
η

6st exp

(∫ t

0

∥∥αs∥∥ds

)
·
∑
i∈I

sup
06s6t

∣∣∣∣B∗i(γ(i)
∫ s

0
βr dr · Z(s)

)∣∣∣∣|vi|,
and this completes the proof. �

Proof of theorem 2.3. By applying arguments similar to those in the proof of theo-
rem 2.2 combined with conditions (2.24) and (2.25), we can show that both that α(0)

t

and α(1)
t are well defined Lipschitz functions mapping V into itself for almost all t,

where ‖α(0)
t ‖ and ‖α(1)

t ‖ are locally integrable functions of t. Moreover by similar
arguments we can show that conditions (2.24) and (2.25) imply

lim
η→∞

∫ t

0

∥∥∥∥αηsη −α(0)
s

∥∥∥∥ ds = lim
η→∞

∫ t

0

∥∥∥∥αηs − ηα(0)
s√

η
−α(1)

s

∥∥∥∥ ds = 0. (10.6)
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Now combine the integral equations for Qη, Q(0), and Q(1) to obtain

Qη(t)− ηQ(0)(t)
√
η

−Q(1)(t)

d
=

∫ t

0

1
√
η

(
αηs

(
1
η

Qη(s)

)
− ηα(0)

s

(
Q(0)(s)

))
ds

−
∫ t

0
Λα(0)

s

(
Q(0)(s); Q(1)(s)

)
+α(1)

s

(
Q(0)(s)

)
ds

+
∑
i∈I

[
B∗i

(
1
η

∫ t

0
αηs

(
1
η

Qη(s), i

)
ds

)
−B∗i

(∫ t

0
α(0)
s

(
Q(0)(s), i

)
ds

)]
vi

+ O

(
log η
√
η

)
d
=

∫ t

0

1
√
η

(
αηs

(
1
η

Qη(s)

)
− ηα(0)

s

(
1
η

Qη(s)

))
−α(1)

s

(
1
η

Qη(s)

)
ds

+

∫ t

0

1
√
η

(
ηα(0)

s

(
1
η

Qη(s)

)
− ηα(0)

s

(
Q(0)(s)

))
− Λα(0)

s

(
Q(0)(s); Q(1)(s)

)
ds

+

∫ t

0
α(1)
s

(
1
η

Qη(s)

)
−α(1)

s

(
Q(0)(s)

)
ds

+
∑
i∈I

[
B∗i

(
1
η

∫ t

0
αηs

(
1
η

Qη(s), i

)
ds

)
−B∗i

(∫ t

0
α(0)
s

(
Q(0)(s), i

)
ds

)]
vi

+ O

(
log η
√
η

)
d
=

∫ t

0

(
αηs − ηα(0)

s√
η

−α(1)
s

)(
1
η

Qη(s)

)
ds (10.7)

+

∫ t

0

√
η

(
α(0)
s

(
Q(0)(s) +

1
η

Qη(s)−Q(0)(s)

)
−α(0)

s

(
Q(0)(s)

)
− Λα(0)

s

(
Q(0)(s);

1
η

Qη(s)−Q(0)(s)

))
ds (10.8)

+

∫ t

0

√
ηΛα(0)

s

(
Q(0)(s);

1
η

Qη(s)−Q(0)(s)

)
− Λα(0)

s

(
Q(0)(s); Q(1)(s)

)
ds (10.9)

+

∫ t

0
α(1)
s

(
1
η

Qη(s)

)
−α(1)

s

(
Q(0)(s)

)
ds (10.10)

+
∑
i∈I

[
B∗i

(
1
η

∫ t

0
αηs

(
1
η

Qη(s), i

)
ds

)
−B∗i

(∫ t

0
α(0)
s

(
Q(0)(s), i

)
ds

)]
vi (10.11)

+ O

(
log η
√
η

)
.
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Now we show that summands (10.7), (10.8), (10.10), and (10.11) all converge to zero.
For the first summand (10.7), we have∣∣∣∣ ∫ t

0

(
αηs − ηα(0)

s√
η

−α(1)
s

)(
1
η

Qη(s)

)
ds

∣∣∣∣ 6 ∫ t

0

∥∥∥∥αηs − ηα(0)
s√

η
−α(1)

s

∥∥∥∥ ds · Zη(t).

(10.12)
For the second summand (10.8) when Qη(s) 6= ηQ(0)(s), we have

√
η

∣∣∣∣α(0)
s

(
1
η

Qη(s)

)
−α(0)

s

(
Q(0)(s)

)
− Λα(0)

s

(
1
η

Qη(s)−Q(0)(s)

)∣∣∣∣
=
√
η

∣∣∣∣1ηQη(s)−Q(0)(s)

∣∣∣∣
× |α

(0)
s ((1/η)Qη(s))−α(0)

s (Q(0)(s))− Λα(0)
s ((1/η)Qη(s)−Q(0)(s))|

|(1/η)Qη(s)−Q(0)(s)| , (10.13)

so combining the fact that α(0)
t (·) is scalable Lipschitz differentiable with theorem 2.2

we obtain

lim
η→∞

√
η

∣∣∣∣αs(1
η

Qη(s)

)
−αs

(
Q(0)(s)

)
− Λαs

(
1
η

Qη(s)−Q(0)(s)

)∣∣∣∣ = 0. (10.14)

For the fourth summand (10.10), we have∣∣∣∣ ∫ t

0
α(1)
s

(
1
η

Qη(s)

)
−α(1)

s

(
Q(0)(s)

)
ds

∣∣∣∣ 6 ∫ t

0

∥∥α(1)
s

∥∥ds · sup
06s6t

∣∣∣∣1ηQη(s)−Q(0)(s)

∣∣∣∣.
(10.15)

Finally for the fifth summand (10.11), observe that

sup
06s6t

∣∣∣∣1η
∫ s

0
αηr

(
1
η

Qη(r), i

)
dr −

∫ s

0
α(0)
r

(
Q(0)(r), i

)
dr

∣∣∣∣
6
∫ t

0

∣∣∣∣1ηαηs
(

1
η

Qη(s), i

)
− α(0)

s

(
1
η

Qη(s), i

)∣∣∣∣ ds
+

∫ t

0

∣∣∣∣α(0)
s

(
1
η

Qη(s), i

)
− α(0)

s

(
1
η

Qη(s), i

)∣∣∣∣ ds
6
∫ t

0

∥∥∥∥1
η
αηs − α(0)

s

∥∥∥∥ ds · Zη(t) +

∫ t

0

∥∥α(0)
s

∥∥ ds · sup
06s6t

∣∣∣∣1ηQη(s)−Q(0)(s)

∣∣∣∣
so by theorem 2.2, we have

lim
η→∞

sup
06s6t

∣∣∣∣ ∫ s

0
αr

(
Qη(r)
η

, i

)
dr −

∫ s

0
αr
(
Q(0)(r), i

)
dr

∣∣∣∣ = 0. (10.16)
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From this it follows that

lim
η→∞

sup
06s6t

∣∣∣∣∑
i∈I

[
B∗i

(
1
η

∫ s

0
αηr

(
Qη(r)
η

, i

)
dr

)

−B∗i
(∫ s

0
α(0)
r

(
Q(0)(r), i

)
dr

)]
vi

∣∣∣∣ = 0, (10.17)

by dominated convergence and the fact that continuous functions are uniformly con-
tinuous on compact sets.

If we make the observation that∥∥Λα(0)
t

(
Q(0)(t), ·

)∥∥ 6 ∥∥α(0)
t

∥∥, (10.18)

then we have

lim
η→∞

sup
06s6t

∣∣∣∣Qη(s)− ηQ(0)(s)
√
η

−Q(1)(s)

∣∣∣∣
6
∫ t

0

∥∥α(0)
s

∥∥ · lim
η→∞

sup
06r6s

∣∣∣∣Qη(r)− ηQ(0)(r)
√
η

−Q(1)(r)

∣∣∣∣ ds. (10.19)

Now we apply Gronwall’s inequality and obtain

lim
η→∞

sup
06s6t

∣∣∣∣Qη(s)− ηQ(0)(s)
√
η

−Q(1)(s)

∣∣∣∣ = 0, (10.20)

which completes the proof. �

Proof of theorem 2.4. Given the integral equation (2.29) that Q(1)(t) solves, we im-
mediately have for the mean vector E[Q(1)(t)]

E
[
Q(1)(t)

]
= E

[
Q(1)(0)

]
+

∫ t

0
E
[
Λα(0)

s

(
Q(0)(s); Q(1)(s)

)]
ds +

∫ t

0
α(1)
s

(
Q(0)(s)

)
ds.

(10.21)
Differentiating (10.21) gives us (2.31).

The solution to the integral equation (2.29) also solves the stochastic differential
equation

dQ(1)(t) =
(
Λα(0)

t

(
Q(0)(t); Q(1)(t)

)
+α(1)

t

(
Q(0)(t)

))
dt

+
∑
i∈I

√
α(0)
t (Q(0)(t), i)vi dB∗i (t), (10.22)

see Karatzas and Shreve [8] for more details on stochastic calculus. Using Ito’s
formula [8, p. 149] we can rigorously show the following result obtained through
formal manipulations
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d
(
Q(1)(t)

T ·Q(1)(t)
)

= dQ(1)(t)
T ·Q(1)(t) + Q(1)(t)

T · dQ(1)(t) + dQ(1)(t)
T · dQ(1)(t)

=
(
Λα(0)

t

(
Q(0)(t); Q(1)(t)

)
+α(1)

t

(
Q(0)(t)

))T ·Q(1)(t) dt

+
∑
i∈I

√
α(0)
t (Q(0)(t), i)vT

i ·Q(1)(t) dB∗i (t)

+ Q(1)(t)
T ·
(
Λα(0)

t

(
Q(0)(t); Q(1)(t)

)
+α(1)

t

(
Q(0)(t)

))
dt

+
∑
i∈I

√
α(0)
t (Q(0)(t), i)Q(1)(t)

T · vidB∗i (t) +
∑
i∈I

α(0)
t

(
Q(0)(t), i

)
vT
i · vi dt.

Taking expectations, the Brownian motion differential terms disappear and we get

d
dt

E
[
Q(1)(t)

T ·Q(1)(t)
]

= E
[(

Λα(0)
t

(
Q(0)(t); Q(1)(t)

)
+α(1)

t

(
Q(0)(t)

))T ·Q(1)(t)
]

+ E
[
Q(1)(t)

T ·
(
Λα(0)

t

(
Q(0)(t); Q(1)(t)

)
+α(1)

t

(
Q(0)(t)

))]
+
∑
i∈I

α(0)
t

(
Q(0)(t), i

)
vT
i · vi, (10.23)

for almost all t. Using the derivative of (10.21), we obtain

d
dt

E
[
Q(1)(t)

]T · E
[
Q(1)(t)

]
=
(
E
[
Λα(0)

t

(
Q(0)(t); Q(1)(t)

)]
+α(1)

t

(
Q(0)(t)

))T · E
[
Q(1)(t)

]
+ E

[
Q(1)(t)

]T · E[Λα(0)
t

(
Q(0)(t); Q(1)(t)

)
+α(1)

t

(
Q(0)(t)

)]
. (10.24)

Subtracting (10.24) from (10.23) gives us (2.32).
If Λα(0)

t (Q(0)(t); ·) is a linear operator for almost all t, then let At be the matrix
that represents its action on V or

Λα(0)
t

(
Q(0)(t); Q(1)(t)

)
= Q(1)(t)At. (10.25)

If |At| is the bounded linear operator norm of At, then by (2.18) and theorem 3.1 we
have

|At| =
∥∥Λα(0)

t

(
Q(0)(t); ·

)∥∥ 6 ∥∥α(0)
t

∥∥, (10.26)

and so by theorem 2.2, |At| is a locally integrable function of t.
We can then rewrite (10.21) as

E
[
Q(1)(t)

]
= E

[
Q(1)(0)

]
+

∫ t

0
E
[
Q(1)(s)

]
As ds+

∫ t

0
α(1)
s

(
Q(0)(s)

)
ds (10.27)
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and observe that by (2.6)∣∣α(1)
t

(
Q(0)(t)

)∣∣ 6 ∥∥α(1)
t

∥∥(1 +
∣∣Q(0)(t)

∣∣). (10.28)

Since we know that ‖α(1)
t ‖ is a locally integrable function of t by theorem 2.3, then

we need only prove that sup06s6t |Q(0)(s)| is finite for all t to show that |α(1)
t (Q(0)(t))|

is a locally integrable function of t. From this and theorem 11.4, the uniqueness of
the solution to the integral equation (10.27) immediately follows.

Using the integral equation for the fluid approximation of theorem 2.2, we have

1 +
∣∣Q(0)(t)

∣∣= 1 +

∣∣∣∣Q(0)(0) +

∫ t

0
α(0)
s

(
Q(0)(s)

)
ds

∣∣∣∣ (10.29)

6 1 +
∣∣Q(0)(0)

∣∣ +

∫ t

0

∣∣α(0)
s

(
Q(0)(s)

)∣∣ds (10.30)

6 1 +
∣∣Q(0)(0)

∣∣ +

∫ t

0

∥∥α(0)
s

∥∥(1 +
∣∣Q(0)(s)

∣∣)ds, (10.31)

where the second step is an application of (2.6). Applying Gronwall’s inequality, we
have

1 + sup
06s6t

∣∣Q(0)(s)
∣∣ 6 (1 +

∣∣Q(0)(0)
∣∣) · exp

(∫ t

0

∥∥α(0)
s

∥∥ds

)
(10.32)

and so (10.28) for all t, gives us∫ t

0

∣∣α(1)
s

(
Q(0)(s)

)∣∣ds6 ∫ t

0

∣∣α(1)
s

∣∣ · (1 +
∣∣Q(0)(s)

∣∣)ds
6
(
1 + sup

06s6t

∣∣Q(0)(s)
∣∣) · ∫ t

0

∥∥α(1)
s

∥∥ds

6
(
1 +

∣∣Q(0)(0)
∣∣) · exp

(∫ t

0

∥∥α(0)
s

∥∥ds

)
·
∫ t

0

∥∥α(1)
s

∥∥ds

<∞.

Finally, observe that

Cov
[
Q(1)(t), Λα(1)

t

(
Q(0)(t); Q(1)(t)

)]
= Cov

[
Q(1)(t), Q(1)(t)

]
At (10.33)

for almost all t, and so the integral equation for the covariance matrix is

Cov
[
Q(1)(t), Q(1)(t)

]
= Cov

[
Q(1)(0), Q(1)(0)

]
+

∫ t

0

{
Cov
[
Q(1)(s), Q(1)(s)

]
As

}
ds

+

∫ t

0

∑
i∈I

α(0)
s

(
Q(0)(s), i

)
vT
i · vi ds. (10.34)

Uniqueness then follows by a similar argument as for the mean vector. �
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11. Appendix: Ordinary differential equations

The existence and uniqueness of the fluid and diffusion approximations for our
service network processes rely heavily on the theory of non-linear ordinary differential
equations. In this section, we provide a self-contained summary of these results. More
details can be found in books by Hale [3] or Hochstadt [5].

Lemma 11.1 (Gronwall, cf. [2,3], or [8]). Let x, y, and z be measurable, non-negative
functions on the reals. If y is bounded and z is integrable on [0,T ] and for all
0 6 t 6 T ,

x(t) 6 z(t) +

∫ t

0
x(s)y(s) ds, (11.1)

then

x(t) 6 z(t) +

∫ t

0
z(s)y(s) exp

(∫ t

s
y(r) dr

)
ds. (11.2)

Proof. If we multiply both sides of (11.1) by y, then

x(t)y(t)−
(∫ t

0
x(s)y(s) ds

)
y(t) 6 z(t)y(t). (11.3)

Now if we multiply both sides by exp(−
∫ t

0 y(s) ds) we obtain

x(t)y(t) exp

(
−
∫ t

0
y(s) ds

)
−
(∫ t

0
x(s)y(s) ds

)
y(t) exp

(
−
∫ t

0
y(s) ds

)
6 z(t)y(t) exp

(
−
∫ t

0
y(s) ds

)
. (11.4)

Simplifying the left side of the inequality as the derivative of a product of absolutely
continuous functions, we have

d
dt

[(∫ t

0
x(s)y(s) ds

)
exp

(
−
∫ t

0
y(s) ds

)]
6 z(t)y(t) exp

(
−
∫ t

0
y(s) ds

)
. (11.5)

Integrating both sides yields(∫ t

0
x(s)y(s) ds

)
exp

(
−
∫ t

0
y(s) ds

)
6
∫ t

0
z(s)y(s) exp

(
−
∫ s

0
y(r) dr

)
ds,

(11.6)
which is equivalent to∫ t

0
x(s)y(s) ds 6

∫ t

0
z(s)y(s) exp

(∫ t

s
y(r) dr

)
ds. (11.7)

Combining (11.1) to (11.7) gives us (11.2). �
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Corollary 11.2. If x, y, and z satisfy the same hypotheses as above, then

sup
06t6T

x(t) 6 sup
06t6T

z(t) · exp

(∫ T

0
y(t) dt

)
. (11.8)

Proof. Using (11.2), we have for all 0 6 t 6 T ,

x(t) 6 sup
06t6T

z(t) +

∫ T

0
z(t)y(t) exp

(∫ T

t
y(s) ds

)
dt, (11.9)

which in turn gives us

sup
06t6T

x(t)6 sup
06t6T

z(t) +

∫ T

0
z(t)y(t) exp

(∫ T

t
y(s) ds

)
dt (11.10)

6 sup
06t6T

z(t) + sup
06t6T

z(t)
∫ T

0
y(t) exp

(∫ T

t
y(s) ds

)
dt (11.11)

6 sup
06t6T

z(t) + sup
06t6T

z(t)

(
exp

(∫ T

0
y(t) dt

)
− 1

)
(11.12)

6 sup
06t6T

z(t) exp

(∫ T

0
y(t) dt

)
, (11.13)

and this completes the proof. �

Lemma 11.3. Let {x(n) | n > 0} be a sequence of bounded, non-negative functions
on the interval [0,T ] and let y be a non-negative, integrable function on [0,T ]. If we
have for all n > 0 and 0 6 t 6 T

x(n+1)(t) 6
∫ t

0
x(n)(s)y(s) ds, (11.14)

then we have for all 0 6 t 6 T ,

x(n)(t) 6 1
n!

(∫ t

0
y(s) ds

)n
sup

06s6t
x(0)(s). (11.15)

Proof. Since x(0)(t) 6 sup06s6t x
(0)(s), then (11.15) follows from induction on n. �

Now we state and prove the result that is referred to in Hochstadt (see [5, p. 204])
as the fundamental existence and uniqueness theorem for nonlinear ordinary differential
equations.
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Theorem 11.4. If for all t in [0,T ], the function ft :V → V is Lipschitz such that∥∥ft
∥∥ is integrable over [0,T ], then the integral equation

X(t) =

∫ t

0
fs
(
X(s)

)
ds (11.16)

has a unique bounded solution X : [0,T ]→ V.

Proof. For all n > 0, let

X(n+1)(t) ≡
∫ t

0
fs
(
X(n)(s)

)
ds (11.17)

and

x(n)(t) ≡ sup
06s6t

∣∣X(n+1)(s)− X(n)(s)
∣∣. (11.18)

This gives us

x(n+1)(t)6 sup
06s6t

∣∣X(n+2)(s)− X(n+1)(s)
∣∣

6 sup
06s6t

∣∣∣∣ ∫ s

0

[
fr
(
X(n+1)(r)

)
− fr

(
X(n)(r)

)]
dr

∣∣∣∣
6
∫ t

0

∣∣fs(X(n+1)(s)
)
− fs

(
X(n)(s)

)∣∣ds
6
∫ t

0
‖fs‖

∣∣X(n+1)(s)− X(n)(s)
∣∣ds

6
∫ t

0
‖fs‖x(n)(s) ds,

which by the previous lemma means that

x(n)(t) 6 1
n!

(∫ t

0

∥∥fs
∥∥ ds

)n
sup

06s6t
x(0)(s). (11.19)

For all m > n, we then have

sup
06t6T

∣∣X(m)(t)− X(n)(t)
∣∣

6
m−1∑
i=n

sup
06t6T

∣∣X(i+1)(t)− X(i)(t)
∣∣ (11.20)

6
m−1∑
i=n

1
i!

(∫ T

0
‖ft‖ dt

)i
· sup

06t6T

∣∣X(1)(t)− X(0)(t)
∣∣ (11.21)
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=

( ∞∑
i=n

1
i!

(∫ T

0
‖ft‖ dt

)i
−
∞∑
i=m

1
i!

(∫ T

0
‖ft‖ dt

)i)
· sup

06t6T

∣∣X(1)(t)− X(0)(t)
∣∣,

which gives us

lim
m,n→∞

sup
06t6T

∣∣X(m)(t)− X(n)(t)
∣∣ = 0, (11.22)

and makes {X(n)(·) | n > 0} a Cauchy sequence.
Now let X(·) ≡ limn→∞X(n)(·). It follows that X is a bounded solution to the

integral equation (11.16). Moreover, it is unique. If X̂(·) is some other bounded
solution to (11.16), we then have∣∣X(t)− X̂(t)

∣∣ =

∣∣∣∣ ∫ t

0
fs
(
X(s)

)
− fs

(
X̂(s)

)
ds

∣∣∣∣ 6 ∫ t

0
‖fs‖

∣∣X(s)− X̂(s)
∣∣ds (11.23)

and by Gronwall’s inequality, X = X̂. �

12. Appendix: Scalable Lipschitz derivatives

In this section, we provide all the proofs for the theorems about scalable Lipschitz
differentiability stated in section 3.

Proof of theorem 3.1. Let Λ̂fx be another scalable Lipschitz function such that

lim
y→0

|f(x + y)− f(x)− Λ̂fx(y)|
|y| = 0. (12.1)

We then have for all y that∣∣Λfx(y)− Λ̂fx(y)
∣∣= lim

λ↓0

|Λfx(λy)− Λ̂fx(λy)|
λ

6 lim
λ↓0

|f(x + λy)− f(x)− Λfx(λy)|
λ

+ lim
λ↓0

|f(x + λy)− f(x)− Λ̂fx(λy)|
λ

= 0,

and so Λfx = Λ̂fx.
To show that the property of scalable Lipschitz differentiability is closed under

composition, we must show that

lim
y→0

|g ◦ f(x + y)− g ◦ f(x) − (Λgf(x) ◦ Λfx)(y)|
|y| = 0. (12.2)
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We have

|g ◦ f(x + y)− g ◦ f(x)− (Λgf(x) ◦ Λfx)(y)|
|y|

6 |g(f(x + y)− f(x) + f(x)) − g(f(x)) − Λgf(x)(f(x + y)− f(x))|
|y|

+
|(Λgf(x) ◦ Λfx)(y)− Λgf(x)(f(x + y)− f(x))|

|y| (12.3)

6 1{f(x+y)6=f(x)}
|g(f(x + y)− f(x) + f(x))− g(f(x)) − Λgf(x)(f(x + y)− f(x))|

|y|

+ ‖Λgf(x)‖
|f(x + y)− f(x) − Λfx(y)|

|y| (12.4)

6 1{f(x+y)6=f(x)}
|g(f(x + y)− f(x) + f(x))− g(f(x)) − Λgf(x)(f(x + y)− f(x))|

|f(x + y)− f(x)|

× |f(x + y)− f(x)|
|y| + ‖Λgf(x)‖

|f(x + y)− f(x)− Λfx(y)|
|y| (12.5)

6 1{f(x+y)6=f(x)}
|g(f(x + y)− f(x) + f(x))− g(f(x)) − Λgf(x)(f(x + y)− f(x))|

|f(x + y)− f(x)|

× |f(x + y)− f(x) − Λfx(y)|
|y| + 1{f(x+y)6=f(x)}

|Λfx(y)|
|y|

× |g(f(x + y)− f(x) + f(x)) − g(f(x)) − Λgf(x)(f(x + y)− f(x))|
|f(x + y)− f(x)|

+ ‖Λgf(x)‖
|f(x + y)− f(x) − Λfx(y)|

|y| (12.6)

6 1{f(x+y)6=f(x)}
|g(f(x + y)− f(x) + f(x))− g(f(x)) − Λgf(x)(f(x + y)− f(x))|

|f(x + y)− f(x)|

× |f(x + y)− f(x) − Λfx(y)|
|y| + 1{f(x+y)6=f(x)}

∥∥Λfx
∥∥

× |g(f(x + y)− f(x) + f(x)) − g(f(x)) − Λgf(x)(f(x + y)− f(x))|
|f(x + y)− f(x)|

+ ‖Λgf(x)‖
|f(x + y)− f(x) − Λfx(y)|

|y| , (12.7)

and this proves (12.2).
Finally, if O is an open subset of V1 and x ∈ O, then for all y1 and y2 in V1,

there exists a positive scalar λ0 such that

x + λy1 ∈ O and x + λy2 ∈ O (12.8)
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for all 0 6 λ 6 λ0. Since it follows from the definition of scalable Lipschitz differen-
tiability at x that for all y ∈ V1

lim
λ↓0

f(x + λy)− f(x)
λ

= Λx(y), (12.9)

we then have

|Λfx(y1)− Λfx(y2)|= lim
λ↓0

|f(x + λy1)− f(x + λy2)|
λ

6 ‖f‖O · |y1 − y2|, (12.10)

which completes the proof. �

Proof of theorem 3.2. Combining the uniqueness result (statement 1) of theorem 3.1
with the fact that all linear operators are scalable and Lipschitz, we see that any
differentiable function with Jacobian matrix Df(x) is scalable Lipschitz differentiable
with

Λfx(y) = y ·Df(x). (12.11)

Define Df(x; y) to be the radial derivative of f at x with respect to y, namely

Df(x; y) = lim
λ↓0

f(x + λy)− f(x)
λ

. (12.12)

It follows immediately that Df(x;λy) = λDf(x; y) for all λ > 0. To show that Df(x; ·)
is Lipschitz, we use the same proof as for theorem 3.1 to derive∣∣Df(x; y1)−Df(x; y2)

∣∣ 6 ‖f‖O · |y1 − y2|. (12.13)

Finally, we show that Df(x; y) satisfies (2.20), hence it is the scalable Lipschitz
derivative of f at x. We do this by observing that the surface of the unit ball defined
by some norm | · | for Rm is compact. It follows that any sequence {yn | n > 0} in
Rm converging to zero must have some subsequence {zn | n > 0} converging to zero
with

lim
n→∞

zn
|zn|

= ẑ, (12.14)

where |ẑ| = 1. Assuming that zn 6= 0 for all n > 0, if we define ẑn ≡ zn/|zn|, then

lim
n→∞

|f(x + zn)− f(x)−Df(x; zn)|
|zn|

6 lim
n→∞

|f(x + zn)− f(x + |zn|ẑ)|
|zn|

+ lim
n→∞

|Df(x; zn)−Df(x; |zn|ẑ)|
|zn|

+ lim
n→∞

|f(x + |zn|ẑ)− f(x)−Df(x; |zn|ẑ)|
|zn|

6 2‖f‖O · lim
n→∞

|ẑn − ẑ|+ lim
n→∞

∣∣∣∣ f(x + |zn|ẑ)− f(x)
|zn|

−Df(x; ẑ)

∣∣∣∣
= 0.
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Since ẑ is arbitrary, then (2.20), with Df(x; y) replacing Λf(x; y), must hold for all
sequences that converge to zero, which proves statement 2 of the theorem. �

Proof of theorem 3.3. We write out the proof for the case for the maximum of two
functions. All of the proofs for the other statements in this theorem are done in a
similar manner, applying the composition formula for scalable Lipschitz derivatives in
statement 2 of theorem 3.1, as well as statement 1 of theorem 3.2 when it applies.

Let m :R2 → R equal the maximum function, so that m(x) = x1 ∨ x2 where
x = (x1,x2). We then have∣∣m(x + y)−m(x)− 1{x1>x2}y1 − 1{x1<x2}y2 − 1{x1=x2}y1 ∨ y2

∣∣
=
∣∣(x1 + y1) ∨ (x2 + y2)− x1 ∨ x2 − 1{x1>x2}y1 − 1{x1<x2}y2 − 1{x1=x2}y1 ∨ y2

∣∣
= 1{x1>x2}

∣∣(x1 + y1) ∨ (x2 + y2)− (x1 + y1)
∣∣

+ 1{x1<x2}
∣∣(x1 + y1) ∨ (x2 + y2)− (x2 + y2)

∣∣
+ 1{x1=x2}

∣∣(x1 + y1) ∨ (x1 + y2)−
(
x1 + (y1 ∨ y2)

)∣∣
= 1{x1>x2}

∣∣(x1 + y1) ∨ (x2 + y2)− (x1 + y1)
∣∣

+ 1{x1<x2}
∣∣(x1 + y1) ∨ (x2 + y2)− (x2 + y2)

∣∣.
If x1 > x2, then we can find sufficiently small y1 and y2 such that x1 + y1 > x2 + y2.
Since a similar argument can be made for x1 < x2, we see that

lim
y1,y2→0

∣∣m(x + y)−m(x)− y1 1{x1>x2} − y2 1{x1<x2} − y1 ∨ y2 1{x1=x2}
∣∣ = 0 (12.15)

and this expression equals zero when y1 and y2 are small but non-zero. This means
that

lim
|y|→0

|m(x + y)−m(x) − y1 1{x1>x2} − y2 1{x1<x2} − y1 ∨ y2 1{x1=x2}|
|y| = 0, (12.16)

which makes m scalable Lipschitz differentiable. By composition, f ∨ g is scalable
Lipschitz differentiable at x if f and g are and the composition formula gives us the
desired formula. �
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