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A critically loaded multirate link with trunk reservation
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We consider a loss system model of interest in telecommunications. There is a single
service facility with N servers and no waiting room. There are K types of customers,
with type i customers requiring Ai servers simultaneously. Arrival processes are Poisson
and service times are exponential. An arriving type i customer is accepted only if there
are Ri (> Ai) idle servers. We examine the asymptotic behavior of the above system in
the regime known as critical loading where both N and the offered load are large and al-
most equal. We also assume that R1, . . . ,RK−1 remain bounded, while RNK → ∞ and
RNK/
√
N → 0 as N → ∞. Our main result is that the K dimensional “queue length”

process converges, under the appropriate normalization, to a particular K dimensional dif-
fusion. We show that a related system with preemption has the same limit process. For
the associated optimization problem where accepted customers pay, we show that our trunk
reservation policy is asymptotically optimal when the parameters satisfy a certain relation.
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1. Introduction and summary

In this paper we consider a stochastic service system model of interest for
telecommunication systems. The system we model consists of several traffic streams
with possibly different bandwidths sharing a link, with a trunk reservation mechanism
used for call admission control. The model is of interest for both multirate circuit
switching and broadband packet switching systems analyzed using the notion of ef-
fective bandwidth (cf. [20]). The link is assumed to consist of N circuits, which we
model as a single service facility with N servers and no additional waiting room.
There are K types of calls (corresponding to the customers in our model), with type i
calls arriving in a Poisson process of rate λi. Type i calls require Ai servers (Ai is an
integer) for the entire duration of the call, which has an exponential distribution with
mean µ−1

i . An arriving type i call is accepted if there are at least Ri > Ai idle circuits
at the moment of its arrival. The integer quantities Ri are referred to as trunk reserva-
tion parameters. Any arriving call that is not accepted is blocked from the system and
never returns (this is a loss model).

The above model gives rise to a finite state, K-dimensional Markov process.
Solving for either transient or steady state performance characteristics of this system
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becomes prohibitive as N becomes large. Systems with N large are of practical
interest, motivating the examination of asymptotics as N → ∞. Suppose we let
N → ∞, with λNi → ∞ as N → ∞, 1 6 i 6 K. We hold µi and Ai fixed,
1 6 i 6 K. Let

ρ(N ) = N−1
K∑
i=1

Aiλ
N
i /µi

denote the normalized offered load on the link. Suppose that ρ(N ) → ρ as N → ∞.
There are three regimes to consider: ρ < 1, known as underloaded; ρ > 1, known
as overloaded (also called heavy traffic); and ρ = 1, known as critically loaded.
Roughly speaking, the blocking probabilities in underloaded, critically loaded, and
overloaded systems respectively are exponentially small in N , O(N−1/2) and O(1).
From a practical point of view, the blocking probabilities in underloaded systems are
typically too small (there is too much idleness, corresponding to wasted resources),
while the blocking probabilities in overloaded systems are too large (unacceptable
service quality). Our focus in this paper is on the critically loaded regime. Results for
a multirate link with trunk reservation in the overloaded regime are available in [2,3,8].

In the “homogeneous” case, where Ai = Aj and µi = µj , for 1 6 i, j 6 K,
the analysis of this model can be carried out using a one-dimensional birth-death
process (and we can, without loss of generality, assume that Ai = 1, 1 6 i 6 K,
achieving this effect by taking the number of servers to be bN/Aic). This is because
once a customer has been admitted into the system, its type becomes irrelevant to the
further evolution of the system. It is known that a policy of the above form with
A1 = R1 6 R2 6 · · · 6 RK (known as a trunk reservation policy) is optimal for
the control of this system if the objective is to maximize the long run average reward
earned, where accepted type i customers pay ri, with r1 > r2 > · · · > rK [16].
With Ai 6= Aj , there are counterexamples showing that there sometimes is no trunk
reservation policy that is optimal [21].

The behavior of the optimal trunk reservation level for the homogeneous case
with K = 2, Ai = 1 and r1 > r2 under critical loading was examined in [19]. There
it was assumed that µ = 1 (which, in this case, is without loss of generality) and

λNi = αiN + βi
√
N , i = 1, 2,

where critical loading is equivalent to α1 + α2 = 1. If 0 < α1,α2 < 1, it was
shown in [19] that R∗1(N ) = 1 and R∗2(N )/ logN → −1/(2 logα1), where R∗i (N ) are
optimal trunk reservation parameters in the N th system. Let bi(N ) denote the blocking
probability of type i customers in the N th system. With no trunk reservation (R1 =
R2 = 1) b1(N ) = b2(N ) ≡ b(N ), and it is known [10] that

√
Nb(N )→ h(β), where h

is the hazard rate of a standard normal distribution and β = β1 + β2. Straightforward
asymptotics on the birth–death process stationary distribution can be used to show that,
if RN1 = 1, RN2 →∞, and RN2 /

√
N → 0 as N →∞, then

√
Nb1(N )→ 0 and

√
Nb2(N )→ α−1

2 h(β).
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This corresponds to a transfer of all type 1 blocking to type 2 with no increase in
average blocking (to order N−1/2). On this scale, with error o(N−1/2), this is the
same as would be achieved by the following infeasible scheme that gives preemptive
priority to type 1 calls. Admit all calls if there is an idle server. When a type 1
call arrives to find no idle server, it preempts a type 2 call. We interpret b2 here as
the fraction of type 2 calls that are either blocked on arrival or preempted while in
service.

The purpose of this paper is to generalize, to a certain extent, the above results
for the homogeneous case to the heterogeneous case, where Ai 6= Aj and/or µi 6= µj .
Although trunk reservation may not be optimal, we restrict our attention to trunk
reservation controls because trunk reservation is simple to implement and analyze. Our
main result is that an appropriately normalized K-dimensional queue length process
for the system with trunk reservation converges in distribution to a reflected diffusion
process on a K-dimensional half-space when RNK →∞ and RNK/

√
N → 0 as N →∞.

We show that the same process arises as the limit in a system that gives preemptive
priority to all but type K calls. Thus, just as in the homogeneous case, the limit
behavior of the systems with trunk reservation and preemption are identical. When the
parameters satisfy a certain relation (equation (2.11)) we prove that trunk reservation
is asymptotically optimal.

The results of this paper indicate a substantial robustness in the system behavior
to variation in trunk reservation parameters. All that is needed to obtain the limit
diffusion process is RNK → ∞ and RNK/

√
N → 0. Thus the choice of RNK does not

need to depend on the values of β1, . . . ,βK or α1, . . . ,αK as long as α1+· · ·+αK = 1.
In addition to the references indicated above, there are a few papers related to

loss systems and/or trunk reservation that deserve mention. A survey of some work
on loss networks is contained in [13]. Asymptotics for product form loss networks are
provided in [7,11], with the former focusing on the critically loaded case. The model
of the present paper without trunk reservation (Ri = Ai, 1 6 i 6 K) is a product form
loss system; asymptotics under critical load are provided in [18]. The need for trunk
reservation in telephone networks is described in [1]. Some mathematical models and
results related to trunk reservation are given in [12,14].

The rest of the paper is organized as follows. In section 2 we provide a con-
struction of the stochastic processes of interest to us in a manner that facilitates our
proofs. We also state our main theorems. In section 3 we prove some properties of
the reflection mapping that we use. Some preliminary results are proved in section 4.
Sections 5–8 contain, respectively, the proofs of theorems 1–4.

2. Statement of main results

Consider an N -server queue with K types of customers and no additional waiting
room. The customers of type i, i = 1, . . . ,K, arrive in a Poisson process of rate
λNi , have exponentially distributed service times with mean µ−1

i , require Ai servers
simultaneously for their entire service, and are accepted if the number of idle servers
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at their arrival time is not less than RNi > Ai. (Preemption of customers in service is
not allowed.) For type i customers, we denote by BN

i (t) the number of arrivals by t;
DN
i (t), the number of service completions by t; and QNi (t), the number in the system

at t. We assume that all the processes under consideration are right-continuous with
left limits.

The queue-length processes satisfy the equations

QNi (t) = QNi (0) +

∫ t

0
1

(
K∑
j=1

AjQ
N
j (s−) 6 N −RNi

)
dBN

i (s)−DN
i (t),

1 6 i 6 K, (2.1)

where QNj (s−) denotes the left-hand limit. By hypothesis, BN
i = (BN

i (t), t > 0), i =

1, 2, . . . ,K, are Poisson processes with rate λNi . For the DN
i we use the representation

DN
i (t) =

bN/Aic∑
j=1

∫ t

0
1
(
QNi (s−) > j

)
dSi,j(s), i = 1, 2, . . . ,K, (2.2)

where Si,j = (Si,j(t), t > 0), j = 1, 2, . . . , bN/Aic, i = 1, 2, . . . ,K, are independent
Poisson processes with respective rates µi, i = 1, 2, . . . ,K.

We assume that QN (0) = (QN1 (0), . . . ,QNK(0)), BN
i , Si,j , i = 1, 2, . . . ,K, j =

1, . . . , bN/Aic, are mutually independent. Also we assume that

Aiλ
N
i

µi
= αiN + βi

√
N , i = 1, 2, . . . ,K, (2.3)

with some αi and βi such that

K∑
i=1

αi = 1, αi > 0, i = 1, . . . ,K, (2.4)

and −∞ < βi <∞, 1 6 i 6 K, and denote

β =
K∑
i=1

βi. (2.5)

With an infinite number of servers, the expected number of type i calls in the system
in equilibrium is λNi /µi. With these quantities used for centering, we next introduce

XN
i (t) =

Ai√
N

(
QNi (t)− λNi

µi

)
, i = 1, 2, . . . ,K,

(2.6)
XN (t) =

(
XN

1 (t), . . . ,XN
K (t)

)
, XN =

(
XN (t), t > 0

)
.

In the theorems below convergence in distribution for processes is understood
as weak convergence of their laws in an appropriate Skorohod space. A sequence of
processes is called C-tight if the sequence of their laws is tight and any limit point is
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a law of a continuous process [9]. The Skorohod space of right-continuous functions
with left limits taking values in RK is denoted by D([0,∞),RK ). Let (Wi(t), t > 0),
i = 1, . . . ,K, be independent standard Brownian motions.

Using (2.3)–(2.6) a bit of algebra yields that

K∑
i=1

AiQ
N
i (t) 6 N is equivalent to

K∑
i=1

XN
i (t) + β 6 0.

Let

Θ =

{
x = (x1, . . . ,xK) ∈ RK :

K∑
i=1

xi + β 6 0

}
,

and let ∂Θ denote the boundary of Θ.

Theorem 1. Suppose that RNi /
√
N → 0 as N → ∞, 1 6 i 6 K. Assume that

the random vectors XN (0) converge in distribution to random vector X0 = (X1,0,
. . . ,XK ,0) ∈ Θ. Then the sequence {XN , N > 1} is C-tight in D([0,∞),RK), and
if X = ((X1(t), . . . ,XK (t)), t > 0) is a limit point in distribution of {XN , N > 1},
then P -a.s.

Xi(t) = Xi,0 − µi
∫ t

0
Xi(s) ds+

√
2AiαiµiWi(t)− φi(t), i = 1, . . . ,K,

X(t) =
(
X1(t), . . . ,XK(t)

)
∈ Θ,

φi(t), i = 1, . . . ,K, are nondecreasing and continuous, φi(0) = 0,

φi(t) =

∫ t

0
1
(
X(s) ∈ ∂Θ

)
dφi(s), i = 1, . . . ,K.

The above equations do not completely specify the process X. In particular, the
boundary “reflection” terms φi(·) are not uniquely determined. Loosely speaking, any
inward pointing “direction of reflection” is allowed above (even one that is time and
state dependent). The next theorem introduces additional conditions that define X
uniquely.

Theorem 2. Suppose that

sup
N
RNi <∞, i = 1, . . . ,K − 1, lim

N→∞
RNK =∞ and lim

N→∞
RNK/

√
N = 0.

Assume that the random vectors XN (0) converge in distribution to the random vector
X0 = (X1,0, . . . ,XK ,0) ∈ Θ. Then the sequence {XN , N > 1} converges in distrib-
ution in D([0,∞),RK ) as N → ∞, to the process X = ((X1(t), . . . ,XK(t)), t > 0)
defined by

Xi(t) = Xi,0 − µi
∫ t

0
Xi(s) ds+

√
2AiαiµiWi(t), 1 6 i 6 K − 1, (2.7)
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XK (t) = XK ,0 − µK
∫ t

0
XK (s) ds+

√
2AKαKµKWK(t)− φK(t), (2.8)

X(t) =
(
X1(t), . . . ,XK (t)

)
∈ Θ,

φK (t) is nondecreasing and continuous, φK (0) = 0,

φK (t) =

∫ t

0
1
(
X(s) ∈ ∂Θ

)
dφK (s).

The limit process X can also be described as a (multidimensional) diffusion
process with instantaneous reflection on the half-space Θ characterized by a state-
dependent drift vector whose ith component, di(x), 1 6 i 6 K, is given by di(x) =
−µixi, a diagonal infinitesimal covariance matrix whose ith component is 2Aiαiµi,
and a constant reflection direction −eK (where eK ∈ RK is a unit vector in direction
K). As shown in the proof of theorem 2, the reflection direction that arises here is
actually due to a “boundary-layer” effect as opposed to simply the behavior of the
process on the boundary. The latter is more typical in queueing applications. The
boundary layer consists of a narrow strip (whose width converges to zero) with a large
drift (that grows unboundedly).

Let

Y N (t) = −
K∑
i=1

XN
i (t)− β, (2.9)

and Y N = (Y N (t), t > 0). With µi = µ, 1 6 i 6 K, the above result simplifies, with
the limit process being one-dimensional.

Corollary 1. Under the assumptions of theorem 2, and with the additional condition
that µi = µ, 1 6 i 6 K, the sequence {Y N , N > 1} converges in distribution
in D([0,∞),R) as N → ∞ to the process Y = (Y (t), t > 0) defined by Y0 =
−
∑K

i=1 Xi,0 − β and

Y (t) = Y0 − µ
∫ t

0
Y (s) ds− µβt−

K∑
i=1

√
2AiαiµiWi(t) + φK(t), Y (t) > 0,

φK(t) is nondecreasing and continuous, φK (0) = 0,

φK(t) =

∫ t

0
1
(
Y (s) = 0

)
dφK (s).

The limit process Y arising here is a (one-dimensional) diffusion process with
instantaneous reflection on the half-line [0,∞) characterized by a state-dependent drift
d(x) = −µx and an infinitesimal variance

∑K
i=1 2Aiαiµi. This is in fact a reflected

Ornstein–Uhlenbeck process. The stationary distribution of this process is straightfor-
ward to obtain [17].

We next consider the preemptive-priority-to-type-i-calls scheme. All calls are
admitted if there are enough idle servers. When a type i, i = 1, . . . ,K − 1, call
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arrives to find an insufficient number of idle servers, it preempts as many type K calls
as is required to have at least Ai idle servers. We assume that type K calls are not
preempted for an arriving type i call if the number of idle servers plus the number
serving type K calls is less than Ai.

For this system, we use the same assumptions as above for arrival and service
processes. Let Q

N
i (t), 1 6 i 6 K, denote the number of type i calls in the system

at t, and let

X
N
i (t) =

Ai√
N

(
Q
N
i (t)− λNi

µi

)
, i = 1, . . . ,K,

X
N

(t) =
(
X
N
1 (t), . . . ,X

N
K(t)

)
, X

N
=
(
X
N

(t), t > 0
)
.

Theorem 3. Assume that the random vectors X
N

(0) converge in distribution to the
random vector X0 = (X1,0, . . . ,XK ,0) ∈ Θ. Then the sequence {X

N
, N > 1} con-

verges in distribution in D([0,∞),RK ) as N →∞ to the process X of theorem 2.

For a certain subset of parameter values we prove that the trunk reservation pol-
icy considered in theorem 2 is asymptotically optimal. In order to discuss the issue
of optimality we need to first introduce costs into our model. Although our result
is only for a subset of cases, we develop the cost formulation for the general case.
Suppose that each time a type i call is blocked we incur a cost of ci. Fix a sequence
of trunk reservation policies that satisfy the hypotheses of theorem 2, and let CN (t)
denote the total cost incurred up to time t by the N th policy. We compare this to
CπN ,N (t), the total cost incurred up to time t by the policy πN ∈ Π(N ). (The set of
policies we consider, Π(N ), is defined in section 8.) Let ĈN (t) = N−1/2CN (t)
and ĈπN ,N (t) = N−1/2CπN ,N (t). We assume that the costs c1, . . . , cK are such
that

cKµK
AK

6 ciµi
Ai

, 1 6 i < K. (2.10)

Intuitively, this condition makes type K the least expensive to block. We prove
asymptotic optimality under a more restrictive condition, namely,

cK
AK
6 ci
Ai

, 1 6 i 6 K, (2.11a)

and

µK 6 µi, 1 6 i 6 K. (2.11b)

Note that if µi = µ, 1 6 i 6 K, then (2.11) holds when (2.10) holds. The following
result is proved in section 8.
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Theorem 4. If (2.11) holds, and XN (0) converges in distribution to X0, then for every
nondecreasing, bounded and continuous function f :R+ → R+, limN→∞Ef (ĈN (t))
exists, and

lim
N→∞

Ef
(
ĈπN ,N (t)

)
> lim

N→∞
Ef
(
ĈN (t)

)
.

Although we prove theorem 4 under the conditions (2.11), we conjecture that our
sequence of trunk reservation policies is asymptotically optimal (possibly in a weaker
sense than that of theorem 4) whenever (2.10) holds.

3. Properties of the reflection mapping

The following lemma is proved in the same manner as in [6, lemma 1].

Lemma 3.1. For given functions z(t) and a(t), where 0 6 a(t) < ∞, suppose that a
continuous function φ(t) with φ(0) 6 z(0)∨0, satisfies for all 0 6 s 6 t, the inequality

φ(t)− φ(s) 6
∫ t

s
a(u)1

(
φ(u) 6 z(u)

)
du.

Then for 0 6 t <∞,

φ(t) 6 sup
s6t

z(s) ∨ 0.

Lemma 3.2. For given functions xn(t), fn(t), and εn(t) let the functions yn(t) satisfy
the equation

yn(t) = xn(t) + φn(t), (3.1)

with

φn(t) = n

∫ t

0
fn(s)1

(
yn(s) < εn(s)

)
ds.

If for every T > 0,

lim
n→∞

inf
t6T

fn(t) > 0, lim
n→∞

sup
t6T

∣∣εn(t)
∣∣ = 0, (3.2)

lim
n→∞

sup
t6T

∣∣xn(t)− x(t)
∣∣ = 0, (3.3)

where x(t) is a continuous function with x(0) > 0, then, for every T > 0,

lim
n→∞

sup
t6T

∣∣yn(t)− y(t)
∣∣ = 0,

lim
n→∞

sup
t6T

∣∣φn(t)− φ(t)
∣∣ = 0,
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where (y(t),φ(t), t > 0) is the solution of the Skorohod problem for (x(t), t > 0)
with reflection at 0, i.e.,

y(t) = x(t) + φ(t), y(t) > 0,

φ(t) is nondecreasing, continuous, φ(0) = 0,

φ(t) =

∫ t

0
1
(
y(s) = 0

)
dφ(s).

Proof. We proceed along the lines of the proof of theorem 2 in [6].
We first prove that for 0 < T < 1

lim
n→∞

inf
t6T

yn(t) > 0. (3.4)

Denote

φ̄n(t) = n

∫ t

0
fn(s)1

(
yn(s) > εn(s)

)
ds.

Then, since

yn(t) = xn(t) + n

∫ t

0
fn(s) ds− φ̄n(t), (3.5)

we have that

φ̄n(t) = n

∫ t

0
fn(s)1

(
φ̄n(s) 6 xn(s) + n

∫ s

0
fn(u) du− εn(s)

)
ds,

hence, by lemma 3.1, for n large enough,

φ̄n(t) 6 sup
s6t

(
xn(s) + n

∫ s

0
fn(u) du− εn(s)

)
∨ 0, t 6 T ,

so, again with the use of (3.5),

yn(t)> xn(t) + n

∫ t

0
fn(u) du − sup

s6t

(
xn(s) + n

∫ s

0
fn(u) du

)
∨ 0

− sup
s6t
|εn(s)|, t 6 T. (3.6)

Since xn(t) is bounded in n on [0,T ] and inft6T fn(t) > 0 for n large, we have that,
for any δ > 0 and n large,

xn(t) + n

∫ t

0
fn(u) du > sup

s6(t−δ)∨0

(
xn(s) + n

∫ s

0
fn(u) du

)
∨ 0, t 6 T.

Hence, by (3.6), for n large enough,

yn(t) > inf
(t−δ)∨06s6t

(
xn(t)− xn(s) + n

∫ t

s
fn(u) du

)
∧ 0− sup

s6t

∣∣εn(t)
∣∣, t 6 T.
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Therefore,

inf
t6T

yn(t) > − sup
|s−t|6δ
06s,t6T

∣∣xn(t)− xn(s)
∣∣− sup

t6T

∣∣εn(t)
∣∣.

The right-hand side goes to 0 as n→∞ and δ → 0 by (3.3) and (3.2). Inequality (3.4)
is proved.

We now check that the sequence {φn(·), n > 1} is compact for the local uniform
topology, i.e., check the conditions of Arzelà–Ascoli’s theorem:

lim
δ→0

lim
n→∞

sup
|s−t|<δ
s,t6T

∣∣φn(t)− φn(s)
∣∣ = 0. (3.7)

Since for t > s > t0,(
φn(t)− φn(t0)

)
−
(
φn(s)− φn(t0)

)
= n

∫ t

s
fn(u)1

(
φn(u)− φn(t0) < εn(u)− xn(u)− φn(t0)

)
du,

lemma 3.1 yields

φn(t)− φn(t0)6 sup
t06s6t

(
εn(s)− xn(s)− φn(t0)

)
∨ 0

6
(
− xn(t0)− φn(t0)

)
∨ 0 + sup

s6t

∣∣εn(s)
∣∣+ sup

t06s6t

∣∣xn(s)− xn(t0)
∣∣.

Since −xn(t0)− φn(t0) = −yn(t0), we obtain that

sup
|s−t|6δ
s,t6T

∣∣φn(t)− φn(s)
∣∣ 6 − inf

t6T

(
yn(t) ∧ 0

)
+ sup
t6T

∣∣εn(t)
∣∣+ sup

|s−t|6δ
s,t6T

∣∣xn(t)− xn(s)
∣∣.

The right-hand side goes to 0 as n → ∞ and δ → 0 by (3.4) and the hypotheses.
Convergence (3.7) is proved.

Let (n′) be a subsequence such that φn
′
(·)→ φ̃(·) uniformly on bounded intervals

for some continuous increasing function φ̃ = (φ̃(t), t > 0), φ̃(0) = 0. Equation (3.1)
and limit (3.3) imply that

lim
n′→∞

sup
t6T

∣∣yn′(t)− ỹ(t)
∣∣ = 0, T > 0,

where ỹ(t), t > 0, is a continuous function, equal to x(0) at 0, and

ỹ(t) = x(t) + φ̃(t).

It is left to show that ỹ(·) is the reflection of x(·) at 0. The fact that ỹ(·) is nonnegative
follows by (3.4). So the proof is completed by checking that φ̃ increases only when
ỹ(t) = 0, i.e.,

φ̃(t) =

∫ t

0
1
(
ỹ(s) = 0

)
dφ̃(s). (3.8)
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This is done as in [6]. Indeed, by the hypotheses,

φn(t) =

∫ t

0
1
(
yn(s) 6 εn(s)

)
dφn(s),

hence since εn(·)→ 0 uniformly on bounded intervals,

φn(t) 6
∫ t

0
1
(
yn(s) 6 ε

)
dφn(s), t 6 T ,

for any ε > 0 and all n large enough. Furthermore, since yn
′
(·) → ỹ(·) uniformly on

bounded intervals,

lim
n′→∞

φn
′
(t) 6 lim

n′→∞

∫ t

0
1
(
ỹ(s) 6 2ε

)
dφn

′
(s), t 6 T ,

and the latter is not greater than
∫ t

0 1(ỹ(s) 6 2ε) dφ̃(s) since φn
′
(·)→ φ̃(·) and the set

{s 6 T : ỹ(s) 6 2ε} is closed. Hence

φ̃(t) 6
∫ t

0
1
(
ỹ(s) 6 2ε

)
dφ̃(s),

which implies by the arbitrariness of ε that

φ̃(t) 6
∫ t

0
1
(
ỹ(s) = 0

)
dφ̃(s),

proving (3.8). The lemma is proved. �

Lemma 3.3. 1. Suppose that (x(t), t > 0) is real-valued, nonnegative, nondecreasing,
and right continuous. If a function (y(t), t > 0) satisfies the equation

y(t) = x(t)− a
∫ t

0
y(s) ds,

where a > 0, then y(t) > 0, t > 0.
2. Suppose that the real-valued functions (x(t), t > 0) and (x′(t), t > 0) are right

continuous with left hand limits, and (φ(t), t > 0), (φ′(t), t > 0) are nondecreasing
and right continuous with φ(0) = φ′(0) = 0. Suppose in addition that (y(t), t > 0)
and (y′(t), t > 0) are nonnegative and satisfy the equations

y(t) = x(t)− a
∫ t

0
y(s) ds+ φ(t), y′(t) = x′(t)− a

∫ t

0
y′(s) ds+ φ′(t),

where a > 0. If the function (x(t) − x′(t), t > 0) is nonnegative and nondecreasing,
and

φ(t) =

∫ t

0
1
(
y(s) = 0

)
dφ(s), t > 0,

then φ′(t) > φ(t), t > 0.
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Proof. Part 1 follows by the fact that

y(t) = e−atx(t) + ae−at
∫ t

0

(
x(t)− x(s)

)
eas ds.

For part 2, introduce ŷ(t), t > 0, by

ŷ(t) = x(t)− a
∫ t

0
ŷ(s) ds+ φ′(t). (3.9)

We prove that

ŷ(t) > y(t), t > 0, (3.10)

which implies the claimed relationship because we can write

φ′(t)− φ(t) = ŷ(t)− y(t) + a

∫ t

0

[
ŷ(s)− y(s)

]
ds.

Suppose the contrary, i.e., that ŷ(t0) < y(t0) for some t0 > 0 and let

t1 = inf
{
t < t0: ŷ(s) < y(s) for all s ∈ [t, t0]

}
.

Since

φ(t) = −
[

inf
s6t

(
x(s)− a

∫ s

0
y(u) du

)
∧ 0

]
, t > 0,

the function φ(t) does not jump when x(t) jumps upwards which easily implies that
positive jumps of y(t) are not greater than the respective jumps of ŷ(t), hence t1 < t0.
Next, since y′(t) 6 ŷ(t) by (3.9) and part 1 of the lemma, the latter function is
nonnegative, so since y(t) > ŷ(t) on (t1, t0], we conclude that y(t) is positive for these
t, therefore, by the definition of φ(t), it follows that φ(t1) = φ(t0). Also, it can be seen
as follows that ŷ(t1) = y(t1). When t1 = 0, ŷ(t1) = y(t1) by the hypotheses. If t1 > 0
and ŷ(t1) < y(t1), then y(t1) > 0, so ∆y(t1) = ∆x(t) 6 ∆ŷ(t), which contradicts the
definition of t1. Putting all these facts together, we can write

ŷ(t0) = ŷ(t1) +
(
x(t0)− x(t1)

)
− a

∫ t0

t1

ŷ(s) ds+
(
φ′(t0)− φ′(t1)

)
>y(t1) +

(
x(t0)− x(t1)

)
− a

∫ t0

t1

y(s) ds+
(
φ(t0)− φ(t1)

)
= y(t0).

The contradiction proves (3.10) and, hence, the lemma. �

4. Preliminary results

Let FN (t) be the σ-field generated by QNi (0), BN
i (s), Si,j(s), i = 1, . . . ,K,

j = 1, . . . , bN/Aic, s 6 t, and the family of P -null sets, and let FN = (FN (t), t > 0)
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be the corresponding filtration (note that it is right continuous since BN
i and Si,j are

piecewise constant [5]). For i = 1, . . . ,K, let

MN
i,B(t) =

Ai√
N

(
BN
i (t)− λNi t

)
, (4.1)

MN
i,D(t) =

Ai√
N

(
DN
i (t)− µi

∫ t

0
QNi (s) ds

)
, (4.2)

MN
i,A(t) =

∫ t

0
1

(
K∑
j=1

XN
j (s−) 6 −β − RNi√

N

)
dMN

i,B(s). (4.3)

With this notation and (2.3)–(2.6), the equations (2.1) take the form

XN
i (t) =XN

i (0)− µi
∫ t

0
XN
i (s) ds

+MN
i,A(t)−MN

i,D(t)−
√
NγNi

∫ t

0
1

(
K∑
j=1

XN
j (s) > −β − RNi√

N

)
ds, (4.4)

where γNi = Aiλ
N
i /N . Note that by our assumptions

γNi → αiµi > 0, i = 1, . . . ,K. (4.5)

For the results from martingale theory used in the rest of the paper, we refer the reader
to [9,15].

Lemma 4.1. The processes MN
i,A = (MN

i,A(t), t > 0) and MN
i,D = (MN

i,D(t), t > 0),
i = 1, . . . ,K, are FN -locally square integrable martingales that are pairwise orthogonal
and have respective predictable quadratic variation processes

〈
MN
i,A

〉
(t) =A2

i

λNi
N

∫ t

0
1

(
K∑
j=1

XN
j (s) 6 −β − RNi√

N

)
ds,

〈
MN
i,D

〉
(t) =A2

iµi

∫ t

0

QNi (s)
N

ds.

Proof. The Poisson processes BN
i and Si,j , i = 1, . . . ,K, j = 1, . . . , bN/Aic, have

the respective FN -compensators (λNi t, t > 0) and (µit, t > 0). Since by (2.2)
and (4.2)

MN
i,D(t) =

Ai√
N

bN/Aic∑
j=1

∫ t

0
1
(
QNi (s−) > j

)
d
(
Si,j(s)− µis

)
,

and the processes BN
i , Si,j , i = 1, . . . ,K, j = 1, . . . , bN/Aic, are mutually inde-

pendent, we derive by the property of quadratic variation processes [9,15] and using
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also (4.1) that MN
i,D and MN

i,B = (MN
i,B(t), t > 0), i = 1, . . . ,K, are locally square

integrable martingales with〈
MN
i,D

〉
(t) =A2

iµi

∫ t

0

QNi (s)
N

ds,
〈
MN
i,B

〉
(t) = A2

i

λNi
N
t,〈

MN
i,D,MN

j,B

〉
(t) = 0,

〈
MN
i,D,MN

j,D

〉
(t) = 0,

〈
MN
i,B ,MN

j,B

〉
(t) = 0, i 6= j.

The formula for the quadratic variation of MN
i,A and the pairwise orthogonality of MN

i,A,
MN
i,D, i = 1, . . . ,K, follows by (4.3). �

In the sequel, we repeatedly use the following version of the Lenglart–Rebolledo
inequality [9, lemma I.3.30; 15, theorem I.9.3].

Lemma 4.2. Let M = (M (t), t > 0) be a locally square integrable martingale defined
on a stochastic basis (Ω,F ,F,P ) with M (0) = 0 and let 〈M〉 = (〈M〉(t), t > 0) be
its predictable quadratic variation process. Then, for any finite F-stopping time τ and
any a > 0, b > 0,

P
(

sup
t6τ

∣∣M (t)
∣∣ > a) 6 b

a2 + P
(
〈M〉(τ ) > b

)
.

Lemma 4.3. The sequences {MN
i,A, N > 1}, {MN

i,D, N > 1}, i = 1, . . . ,K, are
C-tight.

Proof. Tightness in D follows in a standard manner by Aldous’s condition [9,15]
if we apply the Lenglart–Rebolledo inequality (lemma 4.2), lemma 4.1, (2.3) and the
fact that QNi (t) 6 N , i = 1, . . . ,K. The C-tightness follows since the jumps of MN

i,A,

MN
i,D are of size Ai/

√
N , i = 1, . . . ,K [9]. �

By (2.9) and (4.4),

Y N (t) = Y N (0) +
K∑
i=1

µi

∫ t

0
XN
i (s) ds +MN

D (t)−MN
A (t) + φN (t), (4.6)

where

MN
D (t) =

K∑
i=1

MN
i,D(t), (4.7)

MN
A (t) =

K∑
i=1

MN
i,A(t), (4.8)

and

φN (t) =
√
N

N∑
i=1

γNi

∫ t

0
1
(
Y N (s) <

RNi√
N

)
ds. (4.9)
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The Ito-type formula given by the next lemma plays a major part in the proof of
theorem 2. It can be derived by using general results for semimartingales [9,15], but
we find a direct approach to be more appropriate.

Lemma 4.4. The process Y N is nonnegative and if f (x), x > 0, is a real-valued Borel
function, then

f
(
Y N (t)

)
= f

(
Y N (0)

)
+
√
N

K∑
i=1

µi
Ai

∫ t

0

[
f

(
Y N (s) +

Ai√
N

)
− f

(
Y N (s)

)]
XN
i (s) ds

+
K∑
i=1

λNi

∫ t

0

[
f

(
Y N (s) +

Ai√
N

)
− f

(
Y N (s)

)]
1
(
Y N (s) <

RNi√
N

)
ds

+
K∑
i=1

λNi

∫ t

0

[
f

(
Y N (s) +

Ai√
N

)
+ f

(
Y N (s)− Ai√

N

)
−2f

(
Y N (s)

)]
1
(
Y N (s) > RNi√

N

)
ds

+
K∑
i=1

√
N

Ai

∫ t

0

[
f

(
Y N (s−) +

Ai√
N

)
− f

(
Y N (s−)

)]
dMN

i,D(s)

+
K∑
i=1

√
N

Ai

∫ t

0

[
f

(
Y N (s−)− Ai√

N

)
− f

(
Y N (s−)

)]
dMN

i,A(s).

Proof. The fact that Y N (t) is nonnegative follows by (2.3)–(2.6), (2.9) and the in-
equality

N∑
i=1

AiQ
N
i (t) 6 N.

Next, since Y N (t) is piecewise constant and right continuous,

f
(
Y N (t)

)
= f

(
Y N (0)

)
+
∑

0<s6t

(
f
(
Y N (s)

)
− f

(
Y N (s−)

))
.

By (4.6)–(4.9) and (4.1)–(4.3), the jumps of Y N are

∆Y N (t)≡ Y N (t)− Y N (t−) = ∆MN
D (t)− ∆MN

A (t)

=
K∑
i=1

Ai√
N

∆DN
i (t)−

K∑
i=1

Ai√
N

1
(
Y N (t−) > RNi√

N

)
∆BN

i (t).

Since the jumps of DN
i and BN

i are of size 1 and are disjoint, we get
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f
(
Y N (t)

)
= f
(
Y N (0)

)
+

K∑
i=1

∫ t

0

[
f

(
Y N (s−) +

Ai√
N

)
− f

(
Y N (s−)

)]
dDN

i (s)

+
K∑
i=1

∫ t

0

[
f

(
Y N (s−)− Ai√

N

)
− f

(
Y N (s−)

)]
× 1
(
Y N (s−) > RNi√

N

)
dBN

i (s). (4.10)

If we take into account that by (4.1) and (4.2),

BN
i (t) = λNi t+

√
N

Ai
MN
i,B(t), i = 1, . . . ,K,

DN
i (t) = µi

∫ t

0
QNi (s) ds +

√
N

Ai
MN
i,D(t), i = 1, . . . ,K

and by (2.6),

QNi (t) =
λNi
µi

+

√
N

Ai
XN
i (t),

and use also (4.3) and (2.9), equation (4.10) assumes the form required by the lemma.
The lemma is proved. �

5. Proof of theorem 1

We denote below by
d→ convergence in distribution, and by

P→ convergence in
probability. We prove first that

lim
a→∞

lim
N→∞

P
(

sup
t6T

∣∣XN
i (t)

∣∣ > a
)

= 0, T > 0, i = 1, . . . ,K. (5.1)

By (2.9) and (4.6)–(4.9), we have that, for 0 6 s 6 t,

φN (t)− φN (s)6
√
N

N∑
i=1

γNi

∫ t

s
1
(
Y N (u) <

max16i6K RNi√
N

)
du

=
√
N

N∑
i=1

γNi

∫ t

s
1
(
φN (u) < −Y N (0)−

K∑
i=1

µi

∫ u

0
XN
i (v) dv

−MN
D (u) +MN

A (u) +
max16i6K RNi√

N

)
du.

By lemma 3.1,

φN (t)

6 sup
s6t

[
max16i6K RNi√

N
− Y N (0)−

K∑
i=1

µi

∫ s

0
XN
i (u) du−MN

D (s) +MN
A (s)

]
∨ 0
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6 max16i6K RNi√
N

+
∣∣Y N (0)

∣∣+
K∑
i=1

µi

∫ t

0

∣∣XN
i (u)

∣∣ du
+ sup

s6t

∣∣MN
D (s)

∣∣+ sup
s6t

∣∣MN
A (s)

∣∣, t > 0. (5.2)

Since by (4.4), (2.9) and (4.9),∣∣XN
i (t)

∣∣ 6 ∣∣XN
i (0)

∣∣ + µi

∫ t

0

∣∣XN
i (s)

∣∣ ds+
∣∣MN

i,A(t)
∣∣+
∣∣MN

i,D(t)
∣∣+ φN (t),

i = 1, . . . ,K,

we then obtain by (5.2), using also (2.9), (4.7) and (4.8), that

K∑
i=1

∣∣XN
i (t)

∣∣6 2
K∑
i=1

∣∣XN
i (0)

∣∣+
max16i6K RNi√

N
+ |β|+ 2

K∑
i=1

sup
s6t

∣∣MN
i,A(s)

∣∣
+ 2

K∑
i=1

sup
s6t

∣∣MN
i,D(s)

∣∣+ 2 max
16j6K

µj

∫ t

0

K∑
i=1

∣∣XN
i (s)

∣∣ ds.
Gronwall’s inequality then yields

K∑
i=1

∣∣XN
i (t)

∣∣6(2
K∑
i=1

∣∣XN
i (0)

∣∣+
max16i6K RNi√

N
+ |β|+ 2

K∑
i=1

sup
s6t

∣∣MN
i,A(s)

∣∣
+ 2

K∑
i=1

sup
s6t

∣∣MN
i,D(s)

∣∣) e2 max16i6K µit,

implying (5.1) in view of lemma 4.3, the hypothesis that RNi /
√
N → 0, and the

convergence XN (0)
d→ X0.

By (5.1), (2.9), (4.6) and lemma 4.3, we have that

lim
a→∞

lim
N→∞

P
(
φN (t) > a

)
= 0, (5.3)

so that by (4.9) and (4.5)∫ t

0
1
(
Y N (s) <

RNi√
N

)
ds

P→ 0, i = 1, . . . ,K. (5.4)

The latter yields by lemma 4.1, (2.9) and (2.3)〈
MN
i,A

〉
(t)

P→ Aiαiµit, i = 1, . . . ,K. (5.5)

Also (5.1) implies, by (2.3) and (2.6), that AiQNi (t)/N
P→ αi, hence by lemma 4.1

and Lebesgue’s dominated convergence theorem〈
MN
i,D

〉
(t)

P→ Aiαiµit, i = 1, . . . ,K. (5.6)
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Since by lemma 4.1 the locally square integrable martingales MN
i,A, MN

i,D, i =

1, . . . ,K, are pairwise orthogonal and have jumps not greater than max16i6K Ai/
√
N ,

we obtain from (5.5) and (5.6) (see, e.g., [15]) that(
MN
i,A,MN

i,D

)
16i6K

d→
(√

AiαiµiWi,A,
√
AiαiµiWi,D

)
16i6K ,

where Wi,A, Wi,D, 1 6 i 6 K, are independent standard Brownian motions. There-
fore, (

MN
i,A −MN

i,D

)
16i6K

d→
(√

2AiαiµiWi

)
16i6K , (5.7)

and, in view of the notation (4.7) and (4.8),

MN
D −MN

A
d→
√

2
∑K

i=1AiαiµiW , (5.8)

where W is a standard Brownian motion. Let

ZN (t) = Y N (0) +
K∑
i=1

µi

∫ t

0
XN
i (s) ds+MN

D (t)−MN
A (t).

By (2.9), (5.1) and (5.8), the sequence {ZN , N > 1}, with ZN = (ZN (t), t > 0), is
C-tight. By (4.6) we also have that

Y N (t) = ZN (t) + φN (t).

Note that by (4.9)

φN (t) =
√
N

∫ t

0

[
K∑
i=1
i6=i0

γNi 1
(
Y N (s) <

RNi√
N

)
+γNi0

]
1
(
Y N (s) <

max16i6K RNi√
N

)
ds,

where RNi0 = max16i6K RNi . The term in brackets is not less than min16i6K γNi , and
by (4.5)

lim
N

min
16i6K

γNi > 0.

So we can apply lemma 3.2 to Y N , ZN , φN to get by Prohorov’s theorem and
Skorohod’s embedding, in view of the C-tightness of {ZN , N > 1}, that the sequence
{(Y N , ZN , φN ), n > 1} is weakly relatively sequentially compact with continuous
limits. Furthermore, if (Z,Y ,φ) with Z = (Z(t), t > 0), Y = (Y (t), t > 0) and
φ = (φ(t), t > 0) is a limit point in distribution of {(ZN ,Y N ,φN ), N > 1}, then
P -a.s.

Y (t) = Z(t) + φ(t), Y (t) > 0,

φ(t) is nondecreasing and continuous, φ(0) = 0, (5.9)

φ(t) =

∫ t

0
1
(
Y (s) = 0

)
dφ(s).
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The weak relative sequential compactness with continuous limits of {φN , N > 1}
implies, by Prohorov’s theorem and (4.9), that the sequence {(φN1 , . . . ,φNK ), N > 1}
is C-tight, where

φNi (t) =
√
NγNi

∫ t

0
1
(
Y N (s) <

RNi√
N

)
ds. (5.10)

Then by (4.4), (5.1), (5.7) and the convergence XN (0)
d→ X0, the sequence {(XN

1 ,
. . . ,XN

K ,φN1 , . . . ,φNK ), N > 1} is C-tight and any limit point in distribution (X1, . . . ,
XK ,φ1, . . . ,φK ) satisfies P -a.s.

Xi(t) = Xi,0 − µi
∫ t

0
Xi(s) ds+

√
2AiαiµiWi(t)− φi(t), i = 1, . . . ,K,

where φi(t) are nondecreasing and continuous, φi(0) = 0. Since by (2.9), −X1−X2−
· · · −XK − β is a limit point in distribution of {Y N , N > 1} and as we have seen,
Y (t) > 0 for any such point, we conclude that (X1, . . . ,XK) ∈ Θ.

Finally, since φ1 + · · · + φK is a limit point in distribution of φN by (4.9)
and (5.10), we derive from (5.9) that∫ t

0
1
((
X1(s), . . . ,XK(s)

)
∈ Θ \ ∂Θ

)
dφi(s)

6
∫ t

0
1
(
Y (s) > 0

)
d(φ1 + · · ·+ φK )(s) = 0.

The theorem is proved. �

6. Proof of theorem 2

We first prove that, in the notation of theorem 1,

φNi (t)
P→ 0 as N →∞, t > 0, i = 1, . . . ,K − 1, (6.1)

after which the proof is straightforward. The proof of (6.1) is carried out with the use
of the Ito formula of lemma 4.4. Let RN = RNK − 1−max16i6K Ai, and p > 0 to be
chosen later. We assume that N is large enough so that

RN > 2 max
16i6K

Ai and RN > max
16i6K−1

RNi .

Also, let kN (x), x > 0, be a continuous function with values in [0, 1], such that
kN (0) = 1, and kN (x) = 0, for x > 1/

√
N . Define the function hN by

hN (x) = e−p
√
Nx, 0 6 x 6 RN√

N
,

hN (x) = e−pR
N − p

√
N e−pR

N

(
x− RN√

N

)
+ p2N e−pR

N

∫ x

RN/
√
N

∫ y

RN /
√
N
kN

(
z − RN√

N

)
dz dy, x >

RN√
N
.
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It is easy to see that hN is twice differentiable and∣∣h′N (x)
∣∣ 6 (p2 + p

)√
N e−p(RN−2 max16i6K Ai),

x > RN − 2 max16i6K Ai√
N

, (6.2)

∣∣h′′N (x)
∣∣ 6 p2N e−pR

N
, x > RN√

N
, (6.3)

h′′N (x) = 0, x > RN + 1√
N

. (6.4)

We now estimate the terms in the Ito formula of lemma 4.4 with f = hN . Since Y N

is tight by theorem 1 and (2.9), and hN grows at most linearly,

hN (Y N (t))√
N

P→ 0,
hN (Y N (0))√

N

P→ 0. (6.5)

Next, denote the terms on the right of the Ito formula starting from the second by I1,
I2, I3, I4 and I5, respectively.

Since RN →∞ and the XN
i are tight by theorem 1, estimate (6.2) implies that∫ t

0

[
hN

(
Y N (s) +

Ai√
N

)
− hN

(
Y N (s)

)]
XN
i (s)1

(
Y N (s) >

RN −Ai√
N

)
ds

P→ 0,

i = 1, . . . ,K. (6.6)

Next, since hN is bounded in N on [0,RN/
√
N ], the XN

i are tight and by (5.4),∫ t

0
1
(
Y N (s) <

RNK√
N

)
ds

P→ 0,

we have that∫ t

0

[
hN

(
Y N (s) +

Ai√
N

)
− hN

(
Y N (s)

)]
XN
i (s)1

(
Y N (s) 6 RN −Ai√

N

)
ds

P→ 0,

i = 1, . . . ,K,

which, by (6.6), yields

I1√
N

P→ 0. (6.7)

We now prove that

I4√
N

P→ 0,
I5√
N

P→ 0. (6.8)
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By the Lenglart–Rebolledo inequality (lemma 4.2) and since the predictable quadratic
variation process of MN

i,D is continuous by lemma 4.1, for η > 0, ε > 0,

P

(∣∣∣∣ ∫ t

0

[
hN

(
Y N (s−) +

Ai√
N

)
− hN

(
Y N (s−)

)]
dMN

i,D(s)

∣∣∣∣ > η

)
6 ε

η2 + P

(∫ t

0

[
hN

(
Y N (s) +

Ai√
N

)
− hN

(
Y N (s)

)]2

d
〈
MN
i,D

〉
(s) > ε

)
,

i = 1, . . . ,K. (6.9)

The form of 〈MN
i,D〉 in lemma 4.1 and the fact that AiQNi (s)/N 6 1, yield, by the

argument used when proving (6.7),∫ t

0

[
hN

(
Y N (s) +

Ai√
N

)
− hN

(
Y N (s)

)]2

d
〈
MN
i,D

〉
(s)

P→ 0, i = 1, . . . ,K,

which by (6.9) implies the first convergence in (6.8). The second one is proved
similarly, with the use of the form of 〈MN

i,A〉 in lemma 4.1.
Convergences (6.5), (6.7) and (6.8) imply that

I2 + I3√
N

P→ 0. (6.10)

We represent the latter sum as

I2 + I3 = I ′1 + I ′2 + I ′3 + I ′4, (6.11)

where

I ′1 =
K−1∑
i=1

λNi

∫ t

0

[
hN

(
Y N (s) +

Ai√
N

)
− hN

(
Y N (s)

)]
1
(
Y N (s) <

RNi√
N

)
ds

+ λNK

∫ t

0

[
hN

(
Y N (s) +

AK√
N

)
− hN

(
Y N (s)

)]
× 1
(
Y N (s) <

min16i6K−1R
N
i√

N

)
ds,

I ′2 =

∫ t

0

(
K−1∑
i=1

λNi

[
hN

(
Y N (s) +

Ai√
N

)
+ hN

(
Y N (s)− Ai√

N

)
− 2hN

(
Y N (s)

)]

× 1
(
Y N (s) > RNi√

N

)
+ λNK

[
hN

(
Y N (s) +

AK√
N

)
− hN

(
Y N (s)

)]
× 1
(
Y N (s) > min16i6K−1R

N
i√

N

))
1
(
Y N (s) <

RN −max16i6K Ai√
N

)
ds,
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I ′3 =

∫ t

0

(
K−1∑
i=1

λNi

[
hN

(
Y N (s) +

Ai√
N

)
+ hN

(
Y N (s)− Ai√

N

)
− 2hN

(
Y N (s)

)]

+ λNK

[
hN

(
Y N (s) +

AK√
N

)
− hN

(
Y N (s)

)])

× 1
(
RN −max16i6K Ai√

N
6 Y N (s) <

RNK√
N

)
ds,

I ′4 =
K∑
i=1

λNi

∫ t

0

[
hN

(
Y N (s) +

Ai√
N

)
+ hN

(
Y N (s)− Ai√

N

)
− 2hN

(
Y N (s)

)]
× 1
(
Y N (s) > RNK√

N

)
ds.

By (6.4) and since RNK −Ai > RN + 1,

I ′4 = 0. (6.12)

Consider I ′3. By (6.2), we have that

√
N

∣∣∣∣ ∫ t

0

[
hN

(
Y N (s) +

AK√
N

)
− hN

(
Y N (s)

)]
× 1
(
RN −max16i6K Ai√

N
6 Y N (s) <

RNK√
N

)
ds

∣∣∣∣
6
(
p2 + p

)(
γNK
)−1

AK e−p(RN−max16i6K Ai)φN (t),

where φN (t) is defined in (4.9).
By (4.5), (5.3) and the convergence RN →∞ as N →∞, we conclude that

√
N

∫ t

0

[
hN

(
Y N (s) +

AK√
N

)
− hN

(
Y N (s)

)]
× 1
(
RN −max16i6K Ai√

N
6 Y N (s) <

RNK√
N

)
ds

P→ 0.

A similar argument shows that

√
N

∫ t

0

[
hN

(
Y N (s) +

Ai√
N

)
+ hN

(
Y N (s)− Ai√

N

)
− 2hN

(
Y N (s)

)]
× 1
(
RN −max16i6K Ai√

N
6 Y N (s) <

RNK√
N

)
ds

P→ 0,

so that recalling (2.3)

I ′3√
N

P→ 0. (6.13)
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Turning to I ′2, we have, by the definition of hN , that

I ′2 =N

∫ t

0
e−p
√
NY N (s)

[
K−1∑
i=1

λNi
N

(
e−pAi + epAi − 2

)
1
(
Y N (s) > RNi√

N

)

+
λNK
N

(
e−pAK − 1

)]
1
(
Y N (s) > min16i6K−1R

N
i√

N

)
× 1
(
Y N (s) <

RN −max16i6K Ai√
N

)
ds. (6.14)

By (2.3), as N →∞,

K−1∑
i=1

λNi
N

(
e−pAi + epAi − 2

)
+
λNK
N

(
e−pAK − 1

)
→

K−1∑
i=1

αiµi
Ai

(
e−pAi + epAi − 2

)
+
αKµK
AK

(
e−pAK − 1

)
. (6.15)

Since the sum over i on the right is of order p2 for small p and (e−pAK −1) is negative
and of order p, the limit in (6.15) is negative for all p small enough. Hence, for these p,
and N large enough, the term in brackets in the integral in (6.14) is negative, so that
I ′2 6 0. This and (6.10)–(6.13) imply, for suitable p > 0, that for all N large enough

I ′1√
N
> δN , (6.16)

where δN
P→ 0 as N →∞.

By the definition of hN , for N large, all the integrals in the expression for I ′1 are
nonpositive, so (6.16) and the definition of hN yield

λNi√
N

∫ t

0
e−p
√
NY N (s)(1− e−pAi

)
1
(
Y N (s) <

RNi√
N

)
ds

P→ 0, i = 1, 2, . . . ,K − 1,

which is equivalent to (6.1) by (5.10), (2.3), (4.5) and boundedness of the RNi .
By (6.1) and theorem 1, any limit point in distribution of {XN , N > 1} satisfies

Xi(t) = Xi,0 − µi
∫ t

0
Xi(s) ds+

√
2AiαiµiWi(t), i = 1, . . . ,K − 1,

XK (t) = XK ,0 − µK
∫ t

0
XK (s) ds+

√
2AKαKµKWK(t)− φK (t),

X(t) =
(
X1(t), . . . ,XK(t)

)
∈ Θ,

φK (t) is continuous, increasing, φK (0) = 0,

φK (t) =

∫ t

0
1
(
X(s) ∈ ∂Θ

)
dφK (s).
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The theorem would follow if this specified X(t) uniquely. Note that

Y (t) = −
K∑
i=1

Xi(t)− β,

so that

Y (t) =−
K∑
i=1

Xi,0 − β +
K−1∑
i=1

(µi − µK)
∫ t

0
Xi(s) ds− µK

∫ t

0
Y (s) ds− βµKt

−
K∑
i=1

√
2AiαiµiWi(t) + φK(t), (6.17)

Y (t) > 0, and

φK (t) =

∫ t

0
1
(
Y (s) = 0

)
dφK (s),

so that (X1(t), . . . ,XK−1(t), Y (t)) is a solution of a semimartingale problem of diffu-
sion type with normal reflection in the domain RK−1×R+ [15, chapter 10, section 2].
It has a unique solution by [15, theorem 10.2.2]. The theorem is proved. �

Proof of corollary 1. As a consequence of theorem 2, we have Y N d→ Y , where Y
is defined in (6.17). When µi = µ, 1 6 i 6 K, we can write (6.17) as

Y (t) = Y (0)− µ
∫ t

0
Y (s) ds− µβt−

K∑
i=1

√
2AiαiµiWi(t) + φK(t).

7. Proof of theorem 3

The proof proceeds along the lines of the proof of theorem 1, so we omit some
details. The equations for the queue-length processes are easily seen to be

Q
N
i (t) = Q

N
i (0) +

∫ t

0
1

(
K−1∑
j=1

AjQ
N
j (s−) 6 N −Ai

)
dBN

i (s)−DN
i (t),

i = 1, . . . ,K − 1, (7.1)

Q
N
K (t) = Q

N
K(0) +

∫ t

0
1

(
K∑
j=1

AjQ
N
j (s−) 6 N −AK

)
dBN

K (s)− D̂N
K (t), (7.2)

where

D
N
i (t) =

bN/Aic∑
j=1

∫ t

0
1
(
Q
N
i (s−) > j

)
dSi,j(s), i = 1, . . . ,K,
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D̂N
K (t) = D

N
K(t) +

K−1∑
j=1

∫ t

0
`Nj (s−)1

(
K∑
r=1

ArQ
N
r (s−) > N −Aj

)

× 1

(
K−1∑
r=1

ArQ
N
r (s−) 6 N −Aj

)
dBN

j (s),

`Nj (s) =

⌈∑K
r=1ArQ

N
r (s)− (N −Aj)
AK

⌉
∨ 0, (7.3)

and dxe is the smallest integer that is not smaller than x. Introducing

M
N
i,A(t) =

Ai√
N

∫ t

0
1

(
K−1∑
j=1

AjQ
N
j (s−) 6 N −Ai

)(
dBN

i (s)− λNi ds
)
,

i = 1, . . . ,K − 1,

M
N
K ,A(t) =

AK√
N

∫ t

0
1

(
K∑
j=1

AjQ
N
j (s−) 6 N −AK

)(
dBN

K (s)− λNK ds
)
,

M
N
i,D(t) =

Ai√
N

(
D
N
i (t)− µi

∫ t

0
Q
N
i (s) ds

)
, i = 1, . . . ,K,

we reduce (7.1) and (7.2), in analogy with (4.4) to

X
N
i (t) =X

N
i (0)− µi

∫ t

0
X
N
i (s) ds+M

N
i,A(t)−MN

i,D(t)

−
√
NγNi

∫ t

0
1

(
K−1∑
j=1

X
N
j (s) >

√
NαK −

K−1∑
j=1

βj −
Ai√
N

)
ds,

i = 1, . . . ,K − 1, (7.4)

X
N
K(t) =X

N
K(0) − µK

∫ t

0
X
N
K(s) ds +M

N
K ,A(t)−MN

K ,D(t)

−
√
NγNK

∫ t

0
1

(
K∑
j=1

X
N
j (s) > −β − AK√

N

)
ds

−
K−1∑
j=1

√
NγNj

AK
Aj

∫ t

0
`Nj (s)1

(
K∑
r=1

X
N
r (s) > −β − Aj√

N

)

× 1

(
K−1∑
r=1

X
N
r (s) 6

√
NαK −

K−1∑
r=1

βr −
Aj√
N

)
ds+M

N
E (t), (7.5)
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where

M
N
E (t) =

K−1∑
j=1

AK√
N

∫ t

0
`Nj (s−)1

(
K∑
r=1

X
N
r (s−) > −β − Aj√

N

)

× 1

(
K−1∑
r=1

X
N
r (s−) 6

√
NαK −

K−1∑
r=1

βr −
Aj√
N

)(
dBN

j (s)− λNj ds
)
. (7.6)

Also, as in lemmas 4.1 and 4.3,

M
N
i,A =

(
M

N
i,A(t), t > 0

)
, M

N
i,D =

(
MN
i,D(t), t > 0

)
, i = 1, . . . ,K,

are pairwise orthogonal, locally square integrable martingales and the sequences
{M

N
i,A, N > 1}, {M

N
i,D, N > 1} are C-tight.

We next show that

lim
N→∞

P

(∫ t

0
1

(
K−1∑
j=1

X
N
j (s) >

√
NαK −

K−1∑
j=1

βj −
Ai√
N

)
ds > 0

)
= 0,

i = 1, . . . ,K − 1. (7.7)

Let X̃N
i (t) = X

N
i (t)/

√
N , i = 1, . . . ,K − 1. Since αK > 0, limit (7.7) would follow

by

sup
t6T

∣∣X̃N
i (t)

∣∣ P→ 0, T > 0, i = 1, . . . ,K − 1. (7.8)

By (7.4),

X̃N
i (t) = X̃N

i (0)− µi
∫ t

0
X̃N
i (s) ds+

M
N
i,A(t)−MN

i,D(t)√
N

− γNi
∫ t

0
1

(
K−1∑
j=1

X̃N
j (s) > αK −

1√
N

K−1∑
j=1

βj −
Ai
N

)
ds,

i = 1, . . . ,K − 1. (7.9)

Since {M
N
i,A, N > 1} and {M

N
i,D, N > 1} are tight,

sup
t6T

∣∣MN
i,A(t)−MN

i,D(t)
∣∣

√
N

P→ 0, i = 1, . . . ,K − 1, (7.10)

and since X
N
i (0)

d→ Xi,0, i = 1, . . . ,K − 1, we have that

X̃N
i (0)

P→ 0, i = 1, . . . ,K − 1. (7.11)
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Also since γNi → αiµi by (4.5), it is easy to see from (7.9), with the use of Gron-
wall’s inequality, that the sequence {(X̃N

1 , . . . , X̃N
K−1), N > 1} is C-tight in D([0,

∞),RK−1). For η > 0, let a subsequence (N ′) be such that

lim
N ′

P
(

sup
t6T

∣∣X̃N ′
i (t)

∣∣ > η) = lim
N
P
(

sup
t6T

∣∣X̃N
i (t)

∣∣ > η), i = 1, . . . ,K − 1, (7.12)

and (
X̃N ′

1 , . . . , X̃N ′
K−1

) d→
(
X̃1, . . . , X̃K−1

)
, (7.13)

where X̃i = (X̃i(t), t > 0), i = 1, . . . ,K − 1, are continuous processes. Let ε ∈
(0,αK/4T ). Introduce, for x(·) ∈ D([0,∞), R), the first passage times

τε
(
x(·)
)

= inf
(
t > 0:

∣∣x(t)
∣∣+ εt > αK/2

)
∧ T. (7.14)

Then τε is continuous at continuous functions (a proof can be carried out in a manner
similar to the proof in [15, theorem 6.2.3]). Denoting

X̃N ′ =
(
X̃N ′

1 , . . . , X̃N ′
K−1

)
, X̃ =

(
X̃1, . . . , X̃K−1

)
,

Ỹ N =
K−1∑
i=1

X̃N
i , Ỹ =

K−1∑
i=1

X̃i,

we derive from (7.13) that(
X̃N ′ , τε

(
Ỹ N ′)) d→

(
X̃, τε

(
Ỹ
))
. (7.15)

By (7.14), supt<τε(x(·)) |x(t)| < αK/2 for x(·) ∈ D([0,∞),R) (by convention sup∅ =
0), so

sup
t<τε(Ỹ N )

∣∣Ỹ N (t)
∣∣ < αK −

1√
N

K−1∑
j=1

βj −
Ai
N

, i = 1, . . . ,K − 1,

for N large enough. Hence by (7.9), for these N ,

X̃N
i

(
t ∧ τε

(
Ỹ N
))

= X̃N
i (0)− µi

∫ t∧τε(Ỹ N )

0
X̃N
i (s) ds

+
M

N
i,A(t ∧ τε(Ỹ N ))−MN

i,D(t ∧ τε(Ỹ N ))√
N

, i = 1, . . . ,K − 1.

Taking the latter limit along the subsequence (N ′), we obtain by (7.10), (7.11), (7.15)
and the continuity of X̃ and Ỹ , and the random time change theorem [4, section 17],
that P -a.s.

X̃i

(
t ∧ τε

(
Ỹ
))

= −µi
∫ t∧τε(Ỹ )

0
X̃i(s) ds,
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which obviously implies that

X̃i(t) = 0, t 6 τε(Ỹ ), i = 1, . . . ,K − 1. (7.16)

We now show that τε(Ỹ ) = T . Assume the contrary. Then by (7.14), |Ỹ (τε(Ỹ ))| +
ετε(Ỹ ) = αK/2. Since by the choice of ε, ετε(Ỹ ) 6 εT 6 αK/4, it follows that
|Ỹ (τε(Ỹ ))| > αK/4 > 0 which contradicts (7.16) and the fact that Ỹ =

∑K−1
i=1 X̃i.

Thus τε(Ỹ ) = T , and (7.12), (7.13), (7.16) imply that

lim
N
P
(

sup
t6T

∣∣X̃N
i (t)

∣∣ > η) = 0, i = 1, . . . ,K − 1.

completing the proof of (7.8), and hence (7.7).
Introduce, in analogy with the proof of theorem 1,

Y
N

(t) = −
K∑
i=1

X
N
i (t)− β. (7.17)

Also denote

εNi (t) =
√
NγNi

∫ t

0
1

(
K−1∑
j=1

X
N
j (s) >

√
NαK −

K−1∑
j=1

βj −
Ai√
N

)
ds,

i = 1, . . . ,K − 1, (7.18)

δNi (t) =
√
NγNi

AK
Ai

∫ t

0
`Ni (s)1

(
K∑
j=1

X
N
j (s) > −β − Ai√

N

)

× 1

(
K−1∑
j=1

X
N
j (s) >

√
NαK −

K−1∑
j=1

βj −
Ai√
N

)
ds,

i = 1, . . . ,K − 1. (7.19)

Limit (7.7) obviously implies that

sup
t6T

∣∣εNi (t)
∣∣ P→ 0, sup

t6T

∣∣δNi (t)
∣∣ P→ 0, i = 1, . . . ,K − 1. (7.20)

Also, by (7.4), (7.5), and (7.17),

Y
N

(t) = Y
N

(0) +
K∑
i=1

µi

∫ t

0
X
N
i (s) ds

+
K∑
i=1

(
M

N
i,D(t)−MN

i,A(t)
)

+
K−1∑
i=1

εNi (t)−
K−1∑
i=1

δNi (t)−MN
E (t)

+
√
N

[
K−1∑
i=1

γNi
AK
Ai

∫ t

0
`Ni (s)1

(
Y
N

(s) <
Ai√
N

)
ds
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+ γNK

∫ t

0
1
(
Y
N

(s) <
AK√
N

)
ds

]
. (7.21)

For the sequel, note that, as it follows by (7.3),

0 6 `Ni (s) 6
⌈
Ai
AK

⌉
, i = 1, . . . ,K − 1. (7.22)

Next, since by (7.6), M
N
E = (M

N
E (t), t > 0) is a locally square integrable martingale

with the predictable quadratic variation process

〈
M

N
E

〉
(t) =

K−1∑
i=1

A2
Kλ

N
i

N

∫ t

0

(
`Ni (s)

)21
(
Y
N

(s) <
Ai√
N

)

× 1

(
K−1∑
j=1

X
N
j (s) 6

√
NαK −

K−1∑
j=1

βj −
Ai√
N

)
ds, (7.23)

it is easy to see, in view of (7.22), as in lemma 4.3, that the sequence {M
N
E , N > 1}

is C-tight.

Limit (7.20), tightness of {M
N
i,A, N > 1} and {M

N
i,D, N > 1}, and the conver-

gence X
N

(0)
d→ X0 imply by (7.4) that the sequences {X

N
i , N > 1}, 1 6 i 6 K−1,

are C-tight. Moreover, applying the argument of the proof of (5.1) and (5.4) in theo-

rem 1 to X
N
i , i = 1, . . . ,K, and Y

N
, and using (7.5), (7.17)–(7.22) and C-tightness

of the sequences {M
N
i,A, N > 1}, {M

N
i,D, N > 1} and {M

N
E , N > 1}, we can prove

that

lim
a→∞

lim
N
P
(

sup
t6T

∣∣XN
K(t)

∣∣ > a
)

= 0, (7.24)

and ∫ t

0
1
(
Y
N

(s) <
Ai√
N

)
ds

P→ 0, i = 1, . . . ,K. (7.25)

This, as in the proof of theorem 1, yields(
M

N
i,A −M

N
i,D

)
i=1,...,K

d→
(√

2AiαiµiWi

)
i=1,...,K . (7.26)

Also, it follows from (7.25), (7.22), (2.3) and (7.23), that 〈MN
E 〉(t)

P→ 0, and the
Lenglart–Rebolledo inequality (lemma 4.2) implies that

sup
t6T

∣∣MN
E (t)

∣∣ P→ 0, T > 0. (7.27)

An application of lemma 3.2 to (7.21) shows as in the proof of theorem 1, in view

of (7.20), (7.22), (7.24), (7.26) and (7.27), that the sequence {(X
N
1 , . . . ,X

N
K), N > 1}

is C-tight and any limit point in distribution is as in the assertion of that theorem.
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Further, the first convergence in (7.20) implies, by (7.18) and (7.4), that an analog
of (6.1) holds so that, by the argument that completed the proof of theorem 2, the limit
is the process (X1, . . . ,XK ). The result follows.

8. Asymptotic optimality

We define a policy π in terms of the “controls” {(ψπ,N
i (t), t > 0), 1 6 i 6 K}

that it generates. Let the (stochastic) control process (ψπ,N
i (t), t > 0) be defined such

that ψπ,N
i (t−) indicates if a type i arrival at time t is blocked: if ψπ,N

i (t−) = 0, then
the customer is accepted, and if ψπ,N

i (t−) = 1, the customer is blocked. We then can
write

Cπ,N (t) =
K∑
i=1

ci

∫ t

0
ψπ,N
i (s−)dBN

i (s).

In analogy with (2.1) we can write

Qπ,N
i (t) = QNi (0) +

∫ t

0

(
1− ψπ,N

i (s−)
)
dBN

i (s)−DN
i (t), 1 6 i 6 K.

Let

φπ,N
i (t) =

√
NγNi

∫ t

0
ψπ,N
i (s) ds.

Then in analogy with (4.4) we have

Xπ,N
i (t) = XN

i (0)− µi
∫ t

0
Xπ,N
i (s) ds+Mπ,N

i,A (t)−Mπ,N
i,D (t)− φπ,N

i (t), (8.1)

where

Mπ,N
i,A (t) =

∫ t

0

(
1− ψπ,N

i (s−)
)

dMN
i,B(s),

and

Mπ,N
i,D (t) =

Ai√
N

(
DN
i (t)− µi

∫ t

0
Qπ,N
i (s) ds

)
.

We are now in a position to define Π(N ), the set of policies that we consider. A policy
π ∈ Π(N ) if and only if

(i) ψπ,N
i is FN -adapted, 1 6 i 6 K, and

(ii)
∑K

i=1 X
π,N
i (t) 6 −β, t > 0.

These conditions are unrestrictive from a practical point of view. Condition (i) simply
requires that the policy not use any information about the future. Condition (ii) requires
that accepted customers must find a sufficient number of idle servers to serve them.
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Proof of theorem 4. Since easily

ĈN (t) =
K∑
i=1

ci
Ai

∫ t

0
1
(
Y N (s−) <

RNi√
N

)
dMN

i,B(s) +
K∑
i=1

ci
Ai
φNi (t),

it follows from the proof of theorem 2 that ĈN (t)
d→ (cK/Ak)φK(t), so, in particular,

for every continuity point x of the distribution of φK (t),

lim
N→∞

P
(
ĈN (t) > x

)
= P

(
cK
AK

φK(t) > x

)
. (8.2)

We thus prove that, for every x > 0,

lim
N→∞

P
(
ĈπN ,N (t) > x

)
> P

(
cK
AK

φK (t) > x

)
. (8.3)

Let (N ′) denote a subsequence that attains the lim inf in (8.3). If, for some ε > 0 and
i = 1, 2, . . . ,K,

lim
N ′→∞

P

(∣∣∣∣ ∫ t

0
ψ
πN′ ,N

′

i (s) ds

∣∣∣∣ > ε

)
> 0,

an application of the Lenglart–Rebolledo inequality (lemma 4.2) easily implies that

ĈπN′′ ,N
′′
(t)

P→∞ for a subsequence (N ′′) of (N ′) , so that (8.3) trivially holds in this
case. We now assume that for every i = 1, 2, . . . ,K∫ t

0
ψ
πN′ ,N

′

i (s) ds
P→ 0. (8.4)

Again by the Lenglart–Rebolledo inequality (lemma 4.2) we then have that, for arbi-
trary ε > 0,

lim
N→∞

P
(
ĈπN ,N (t) > x

)
> lim

N ′→∞
P

(
1√
N ′

K∑
i=1

ciλ
N ′
i

∫ t

0
ψ
πN′ ,N

′

i (s) ds > x+ ε

)
. (8.5)

We now estimate the sum in the right parentheses.
Introduce the processes (X̂πN ,N

i (t), t > 0), 1 6 i 6 K − 1, defined by

X̂πN ,N
i (t) = XN

i (0)− µi
∫ t

0
X̂πN ,N
i (s) ds +MπN ,N

i (t), 1 6 i 6 K − 1,

where MπN ,N
i (t) = MπN ,N

i,A (t)−MπN ,N
i,D (t). Since φπN ,N

i (t) is nondecreasing, by part 1
of lemma 3.3,

XπN ,N
i (t) 6 X̂πN ,N

i (t), t > 0, 1 6 i 6 K − 1. (8.6)
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Let the process (Ŷ πN ,N (t), t > 0) be nonnegative and satisfy the equation

Ŷ πN ,N (t) = Y N (0) +
K−1∑
i=1

(µi − µK)
∫ t

0
X̂πN ,N
i (s) ds

− µKβt−
K∑
i=1

MπN ,N
i (t)− µK

∫ t

0
Ŷ πN ,N (s) ds + φ̂πN ,N

K (t), (8.7)

where (φ̂πN ,N
K (t), t > 0) is nondecreasing, φ̂πN ,N

K (0) = 0, and

φ̂πN ,N
K (t) =

∫ t

0
1
(
Ŷ πN ,N (s) = 0

)
dφ̂φN ,N

K (s), t > 0. (8.8)

Existence (and uniqueness) of (Ŷ πN ,N (t), t > 0) follows by existence (and uniqueness)
of the solution to the corresponding Skorohod problem [22].

Defining

Y πN ,N (t) = −
K∑
i=1

XπN ,N
i (t)− β,

we obviously have that Y πN ,N (t) > 0 and

Y πN ,N (t) = Y N (0) +
K−1∑
i=1

(µi − µK)
∫ t

0
XπN ,N
i (s) ds

− µKβt−
K∑
i=1

MπN ,N
i (t)− µK

∫ t

0
Y πN ,N (s) ds+

K∑
i=1

φπN ,N
i (t).

Comparing the latter with (8.7), recalling that Ŷ πN ,N (t) is nonnegative and taking into
account (8.8), the inequalities (8.6) and µi > µK , 1 6 i 6 K − 1, we conclude, by
part 2 of lemma 3.3, that

φ̂πN ,N
K (t) 6

K∑
i=1

φπN ,N
i (t).

Therefore, since ci/Ai > cK/AK , 1 6 i 6 K − 1,

K∑
i=1

ciλ
N
i

∫ t

0
ψπN ,N
i (s) ds =

√
N

K∑
i=1

ci
Ai
φπN ,N
i (t) >

√
N
cK
AK

φ̂πN ,N
K (t)

so that by (8.5)

lim
N→∞

P
(
ĈπN ,N (t) > x

)
> lim

N ′→∞
P

(
cK
AK

φ̂
πN′ ,N

′

K (t) > x+ ε

)
. (8.9)
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If we define

X̂πN ,N
K (t) = XN

K (0)− µK
∫ t

0
X̂πN ,N
K (s) ds +MπN ,N

K (t)− φ̂πN ,N
K (t),

then

Ŷ πN ,N (t) = −
K∑
i=1

X̂πN ,N
i (t)− β.

In analogy with the proof of theorem 2, using (8.4) we obtain(
MπN ,N
i

)
16i6K

d→
(√

2AiαiµiWi

)
16i6K ,

so X̂πN ,N
i → X̂i, 1 6 i < K, where X̂i solves

X̂i(t) = Xi,0 − µi
∫ t

0
X̂i(s) ds+

√
2AiαiµiWi(t).

It is not difficult to deduce then, by (6.17), (8.7) and (8.8), that Ŷ πN ,N d→ Y and

φ̂πN ,N
K

d→ φK . The inequality (8.3) follows by (8.9), Fatou’s lemma and the arbitrari-
ness of ε.

As a consequence of (8.3), we have, for every nonnegative, nondecreasing,
bounded and continuous function f (x),

lim
N→∞

Ef
(
ĈπN ,N (t)

)
> Ef

(
cK
AK

φK (t)

)
,

where, in view of (8.2), equality is attained when π is the trunk reservation policy.
The theorem is proved.
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