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This work considers a server that processes J classes using the
generalized processor sharing discipline with base weight vector a =
(a1,-..,a) and redistribution weight vector 8 = (f1,...,0s). The
invariant manifold M of the so-called fluid limit associated with this
model is shown to have the foorm M = {x € R] : z; = 0 for j € S},
where S is the set of strictly subcritical classes, which is identified
explicitly in terms of the vectors a and @ and the long-run aver-
age work arrival rates 7y; of each class j. In addition, under gen-
eral assumptions it is shown that when the heavy traffic condition
E;,]:I v = ijl a; holds, the functional central limit of the scaled
unfinished work process is a reflected diffusion process that lies in M.
The reflected diffusion limit is characterized by the so-called extended
Skorokhod map and may fail to be a semimartingale. This generalizes
earlier results obtained for the simpler, balanced case where v; = «;
for j = 1,...,J, in which case M = R] and there is no state-space
collapse. Standard techniques for obtaining diffusion approximations
cannot be applied in the unbalanced case due to the particular struc-
ture of the GPS model. Along the way, this work also establishes a
comparison principle for solutions to the extended Skorokhod map
associated with this model, which may be of independent interest.

1. Introduction.

1.1. Background and Motivation. Generalized Processor Sharing (GPS)
is a scheduling discipline that is used to share a single processing or transmis-
sion resource among traffic from several sources. Given a single server that
can process one unit of work per unit of time, and that is being shared by J
(1 < J < o0) sources or, equivalently, classes, the information needed to im-
plement the GPS policy is contained in the weight vector o = (aq,...,ay).
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2 K. RAMANAN AND M. REIMAN

When all classes have a backlog of work, class j is allotted a fraction a; of
the total capacity of the server. When some classes achieve no backlog by
using less than their allotted capacity, the remaining service capacity of the
server is split amongst the other classes in proportion to their o;’s. A slight
generalization of this model was considered in [17] and will be considered in
this paper as well. A more precise description of that model is given here in
Section 2. More background on GPS is available in [17] and the references
cited there.

In [17] fluid and heavy traffic diffusion limits were obtained for the GPS
model. The diffusion limits were obtained for the special “balanced case” in
heavy traffic — that is, under the assumption that for every i € {1,...,J},
«; is equal to the long-run average arrival rate «y; of work brought in by class
1 customers. In this paper we consider diffusion limits under heavy traffic
in the possibly “unbalanced case” — in which we only assume the overall
condition E;-]:l a=1= EZ'J:1 vi, without imposing any conditions on the
relation between the arrival rates and weights for each class. The main appeal
of the unbalanced case is the allowance of some degree of priority: classes
with «; > ; can be seen as receiving relatively higher priority than classes
with a; < 7;. An extreme example of this (allowed in this paper but excluded
from the heavy traffic limit in [17]) is @; = 0, where class i is served only when
some other class has no backlog. The advantage of GPS with 0 < a; < ~; is
that, while class 7 receives relatively lower priority, it cannot be completely
starved, in the sense that it always receives service with rate at least ;. For
example, as considered in [1], a “next-generation” Internet handling both
real-time traffic that requires a high quality of service, and best-effort traffic
that has less stringent delay requirements can be modeled as a GPS system
where the weight for the real-time traffic exceeds its long-run average work
arrival rate, while the opposite holds for best-effort traffic.

1.2. Relation to Prior Work. In addition to the practical motivation
given above, the unbalanced case is also interesting because, as elaborated
below, new methods need to be developed for its analysis. There are cur-
rently two main approaches to establishing diffusion approximations for mul-
ticlass queueing networks: (i) the continuous mapping approach, which is
applicable when the so-called Skorokhod map (SM), which maps the net-
put process to the corresponding unfinished work process, is well-defined
and continuous on all cadlag paths (see, for example, [4, 5, 20] and refer-
ences therein), and (ii) the general procedure outlined in the papers [2] and
[21], which is applicable when the directions of constraint (or, equivalently,
directions of reflection) satisfy the so-called completely-S condition. Both
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DIFFUSION LIMITS FOR AN UNBALANCED GPS MODEL 3

these methods lead to diffusion approximations that are semimartingales.
The present setting does not fall under either category. Indeed, neither is
the GPS SM well-defined for all continuous trajectories (as can be inferred
from Lemma 2.4(i), Theorem 3.6 and Theorem 3.8 of [16]), nor do the GPS
directions satisfy the completely-S condition (as can be deduced from the
relation (3.1)). In addition, the GPS diffusion limit is not in general a semi-
martingale.

In the balanced GPS case, this problem was circumvented in [17] by the
use of the so-called extended Skorokhod map (ESM). The ESM is a general-
ization of the SM that allows for constraining terms that are of unbounded
variation and therefore enables the pathwise construction of reflected dif-
fusions that are not necessarily semimartingales [16]. The unfinished work
process in the GPS model can be expressed as the image of the correspond-
ing netput process under the associated GPS ESM (see Theorem 4.3 and
Lemma 4.4 of [17]). Moreover, as shown in Theorem 3.6 of [16], the GPS
ESM, in contrast to the GPS SM, is well-defined and Lipschitz continuous
on all cadlag paths. In the balanced case, the fluid limit of the netput pro-
cess is identically zero and thus a continuous mapping approach using the
ESM, instead of the SM, can be applied to obtain diffusion approximations
for the balanced GPS model (see the proof of Theorem 4.14 in [17] and also
Section 5.1).

The situation in the unbalanced case is considerably more complicated
because the fluid limit of the netput process is non-zero. As a result, char-
acterization of the diffusion approximation in this case requires a better un-
derstanding of the cumulative idleness processes associated with each class.
A similar generalization was considered in the context of open single-class
queueing networks in [4]. The analysis in [4] hinged on certain properties
of the SP associated with the queueing network studied in [4], including an
explicit decomposition of the constraining term of the SP and continuity of
the mapping that takes the netput process to the cumulative idleness pro-
cess. As discussed in Sections 4.2 and 5.1, these properties are not satisfied
in the GPS model and have consequences for both the fluid and diffusion
analysis. Thus new techniques need to be developed for the analysis of the
unbalanced case.

1.3. Main Results and Outline of Paper. The first step towards estab-
lishing a diffusion limit is typically the characterization of the long-time
behavior of the fluid limit (see, for example, [2] or [4]). In Section 4.2, we ex-
plicitly identify the invariant manifold for the fluid limit of the GPS model.
The “standard definition” of an invariant manifold given, for example, in [2]
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4 K. RAMANAN AND M. REIMAN

(see also Definition 5.2 in [13]) is restricted to subcritical fluid limits. Our
definition is slightly more general in that it also applies to supercritical fluid
limits, in which case M provides information on how the fluid limit trajecto-
ries escape to infinity (see Remark 4.7 for further discussion of this issue). In
the subcritical case, our invariant manifold can equivalently be described as
the set of invariant points for the fluid limit, which coincides with the stan-
dard definition. Specifically, we show that M = {z € ]Ri cx; =0 for i € S},
where S C {1,..., J} is the set of classes for which the long-run average work
arrival rate «y; is strictly less than the available long-run average service rate
(after reallocation of service by the GPS discipline), which we refer to as
the set of strictly subcritical classes. Although it is intuitively clear that if
v; < «; then 1 € S, there may also exist ¢ € S for which v; > «; — we provide
a simple, explicit characterization of the set S. In the balanced case, this
identification is trivial (there are no strictly subcritical classes), while in the
unbalanced case, as mentioned above, the identification of S is slightly more
involved in the GPS model due to the lack of an a priori representation of
the constraining process in the SP decomposition, in terms of the individual
cumulative idleness processes. However, we show that when restricted to the
fluid limit trajectories, it is possible to identify a certain unique decomposi-
tion of the constraining term into component processes (see Lemma 3.1 and
Lemma 4.4(i)). As shown in Theorem 4.6, this turns out to be the correct
decomposition for the identification of the strictly subcritical classes and the
invariant manifold M (see also Remark 4.5).

If the convergence of the fluid limit to M is sufficiently fast, one expects
that M would also precisely characterize the state-space collapse that oc-
curs in the heavy traffic limit. Indeed, the next main step involves proving
that the strictly subcritical classes vanish in the diffusion limit, and then
characterizing the behavior of the remaining, critical, classes. The lack of
a simple representation for the individual cumulative idleness processes (in
constrast to the networks considered in []) once again complicates this anal-
ysis. Nevertheless, we overcome this difficulty using two key ideas — namely
a comparison principle for the GPS ESM (Theorem 3.2), which may be of
independent interest, and the introduction of the so-called reduced SP (see
Theorem 5.6). This culminates in our heavy traffic limit theorem (Theorem
5.7), which is the main result of this paper. The philosophy behind our diffu-
sion approximation is explained in greater detail in Section 5.1. We believe
that our general approach is likely to be more broadly applicable to other
models that do not satisfy the so-called completely-S condition such as, for
example, networks of stations using the GPS discipline [9] or other disci-
plines that involve a “complete sharing” of service between classes (such as,
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DIFFUSION LIMITS FOR AN UNBALANCED GPS MODEL )

for example, commonly used work-conserving round-robin disciplines).

This paper is organized as follows. In the remainder of this section we
describe our notational conventions. Section 2 contains a detailed description
of the GPS discipline, a characterization of the unfinished work process,
and definitions of the SP and ESP, culminating in a representation of the
unfinished work process in terms of a SP. The fluid limit of the unbalanced
GPS model is investigated and a simple characterization of the fluid limit is
obtained in Section 4. Finally, Section 5 contains the statement and proof of
the heavy traffic limit theorem for the unbalanced GPS model. The proofs
of the results in Sections 4 and 5 rely on some basic properties of the GPS
SP that are presented in Section 3.

1.4. Notation. We now collect together some of the notational conven-
tions used in this paper. The set of nonnegative reals, nonnegative inte-
gers and positive integers are denoted by R, Z, and N respectively. Given
a,b € R, a A b denotes the minimum of ¢ and b and a V b denotes the max-
imum of @ and b. Vector inequalities are to be interpreted componentwise.
The standard orthonormal basis in R’ is represented by {e;,i = 1,...,J},
and the J-dimensional nonnegative orthant R is equal to {z € R/ : z > 0}.
Let Z denote the set {1,...,J}. Given E C R/, D([0,00) : E) repre-
sents the space of E-valued right continuous functions with left limits and
D,([0,00) ; R”) represents the subspace of piecewise constant functions with
a finite number of jumps. Unless indicated otherwise, we will assume that
D([0,00) : E) and D.([0,00) ; R’) are equipped with the topology of uni-
form convergence on compact sets (frequently abbreviated to u.o.c.). For
f € D([0,00) : E), as usual f(t—) = limgy f(s). For t € [0,00), |f|(t) de-
notes the total variation of f on [0,%] with respect to the Euclidean norm
|- | on R/. The composition of two functions f and g is as usual denoted
by f o g. The identity function ¢ : [0,00) — [0, 00) is such that «(t) = ¢ for
all t € [0,00). Given a set A C R, 1;4; represents the indicator function of
the set A, which is defined on R/ and is equal to 1 on A and is 0 elsewhere.
In addition, co[A] denotes the closure of the convex hull of A, cone[A] is the
cone generated by A and A° is the interior of A. Given a matrix D we use
D' to denote its transpose. If X", n € N, and X are processes with sample
paths in D([0, 00) : E) we write X™ = X to denote weak convergence of the
measures induced by X" on D([0,00) : E) to the measure induced by X.

2. Model Description. In this section we provide a detailed descrip-
tion of the GPS discipline, introduce our assumptions on the workload arrival
process, characterize the unfinished work process, and define the Skorokhod
and extended Skorokhod problems.
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6 K. RAMANAN AND M. REIMAN

2.1. The GPS Discipline. We consider a single server queueing system
with J customer classes, where 1 < J < oo. Each customer arriving into
the system brings in a certain amount of work that is measured in terms of
the amount of time required to process it using the server’s total processing
capacity, which is assumed without loss of generality to be 1. The server
processes the incoming work using the GPS scheduling discipline, which is
described below. The work of class ¢ customers is stored in the class ¢ buffer,
which is assumed to have infinite capacity. For i € Z and t € [0, 00), U;(t) is
defined to be the amount of work of class ¢ that is in the system at time £.

We now describe the GPS discipline. For E C Z we define of to be
the fraction of the capacity of the server that is given to class ¢ when the
set of empty buffers is equal to E. We assume that the processor is work
conserving, so that ZigEalE =1 when E # T. In this paper, we focus on the
case when the fractions a” are determined in the following manner by two
weight vectors o € [0,1]7 and 8 € (0,1]” that satisfy Y ;c7 i = Y ;e 6 = 1.
Given the weight vectors, for E = () (i.e. when no queue is empty) we define
a? = oy, and for £ C T we let

Bi .
o; + > fori & E,
af - > Bi \jer J
J¢E
0 otherwise.

Foral E C I, of > o fori € T\ E and Ygpaf = Yz = 1.
Thus «; represents the minimum guaranteed rate assigned to class i. Any
excess capacity is split among the remaining classes in proportion to the
corresponding components of the vector 8. The vectors a and 8 will be
referred to as the basic and redistribution weight vectors, respectively. The
condition B; > 0 for each ¢ € 7 is required to ensure that the processor is
work conserving. On the other hand, we allow a; = 0 for some ¢ € Z. This
represents the case when the ith class is of relatively low priority and only
receives service when one of the high priority classes (with a; > 0) does not
require all of its assigned capacity. More discussion on the relation between
GPS and priority is contained in [17] (p. 104).

2.2. Characterization of the Unfinished Work Process. In this section we
first introduce the primitive cumulative work arrival process associated with
the GPS model and then present a characterization of the unfinished work
process.

We assume that all processes are measurable functions defined on the
probability space (2, F, P). Let H be the D([0,00) : R{)-valued process
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DIFFUSION LIMITS FOR AN UNBALANCED GPS MODEL 7

such that H;(t) represents the cumulative work brought into the system by
class 4 in the interval [0,t]. We suppose that the cumulative work arrival
process H and initial conditions satisfy the following properties.

ASSUMPTION 2.1. 1. U(0) e R].

2. H € D([0,00) : R]) is nondecreasing and piecewise constant with
H(0)=0.

3. H has a finite number of jump points in every finite interval, almost
surely.

Under this assumption, it was shown in Lemma 2.2 of [17] that the set of
equations (2.1) below uniquely characterizes the set of processes (U, Ig, E C
T), where, for E C Z, Ig(t) denotes the amount of time in [0, ¢] that the set
of empty buffers is equal to E. For i € Z,

Ui(t) = Ui(0)+H;(t)— > ofIg(t)
ECZ:i¢E

t
(2-1) and IE(t) = /1{E(s):E‘}dS fOI‘EgI,
0

where  E(s) = {ie€Z:U(s)=0}

The busy time process T; defined by

ECTH¢E

represents the cumulative amount of service given to class ¢. Note that in the
definition and characterization of the unfinished work process, no assump-
tion is made as to how the service allocated to a class is divided amongst
the customers present in that class.

The ultimate assumptions that we require on the primitive processes are
quite weak: H must satisfy a functional strong law of large numbers (see
Assumption 4.1) and a functional central limit theorem (see Assumption
5.1). The simplest concrete example where this happens is when the J com-
ponent processes of H form compound renewal processes (see, for example,
[19, Lemma 2]).

2.3. Definition of the Skorokhod and Extended Skorokhod Problems. The
GPS model for @ = g with stochastic fluid inputs was analyzed in [7]. It
was shown there that the mapping taking the so-called netput process to the
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8 K. RAMANAN AND M. REIMAN

unfinished work can be represented in terms of a Skorokhod problem. Below,
in Lemma 2.5, we recall the similar representation that was derived in [17]
for the unfinished work process U associated with the slight generalization
of the GPS model described in Section 2.1. First, we need to recall the
definitions of the Skorokhod and extended Skorokhod problems associated
with the GPS model.

Roughly speaking, given the closure G of a domain in R’ a set of allowable
directions of constraint d(z) associated with each point z € 0G and a path
1), the solution to the associated Skorokhod problem defines a constrained
version ¢ of 1 that is restricted to lie in G by a constraint mechanism ¢ — 1)
that is of bounded variation and acts in the direction of one of the vectors in
d(p(s)) using the “least effort” required to keep ¢ in G. The solution to the
extended Skorokhod problem is a generalization of the Skorokhod problem
introduced in [16], which relaxes the bounded variation requirement on the
constraint mechanism.

The domain of the GPS Skorokhod and extended Skorokhod problems
is G = R{ and the directions of constraint (sometimes also referred to as
directions of reflection) are characterized in the following manner by the
redistribution weight vector 8 € (0,1)7, which satisfies YierBi = 1. Let
diq1 = Dier e;/v/J and define

(2.3) di =e; — Z fji forieT.

jengy 1P
The set of allowable directions of constraint at any point £ on the boundary
0G is then given by

(2.4) d(z) = { Z a;d; :a; >0fori € I(z)} ,

i€l(x)

where, for z € R_Ji_, we define

{ieZTizi=0 if ¥ ;>0
(2.5) I(z) = JeL
ZU{J+1} if > z;=0.
J€z
The set of directions of constraint on the boundary dG of the domain de-
scribes how service is reallocated when one or more classes have no backlog.

Since this reallocation is determined solely by the redistribution weight vec-
tor 3, the description of the GPS Skorokhod problem only depends on (3
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DIFFUSION LIMITS FOR AN UNBALANCED GPS MODEL 9

(and not on the basic weight vector «). Thus, even though our model is
more general than the one considered in [7, 8, 16], the results from [8, 16]
can still be applied here. For more intuition on the relation between the di-
rections of constraint and the reallocation mechanism of the GPS discipline,
the reader is referred to [7, 17].

We now provide the rigorous definition of the GPS Skorokhod problem.
Let d'(z) = d(z)N{z € R’ : |z| = 1} and recall that for n € D(]0, 00) : R/),
|n|(T") denotes the total variation of n on [0, 7] with respect to the Euclidean
norm on R”.

DEFINITION 2.2. (Skorokhod Problem) Let 1) € D([0,00) : R?) with
1(0) € R] be given. Then (p,n) solves the GPS Skorokhod problem (SP) for
P if (0) = (0), and if for all t € [0,00), the following five properties hold.

o(t) = ¥(t) +n(t);

2. p(t) e RY;

3. |n|(t) < oo;

4l = [ Toreony)dinl();

5. There exists a measurable v : [0,00) = R’ such that y(t) € d*(p(t))
(d|n|-almost everywhere), and

~

o) = [ Al

Note that ¢ is constrained to remain within ]Ri, and that n changes only
when ¢ is on the boundary BR_JI_, in which case the change points in one
of the directions in d(p). If (p, ¢ — 1)) solve the SP for 1, then we denote
¢ =T'(¢), and refer to I" as the GPS Skorokhod map (SM).

The values of 9 € D([0,00) : R’) for which there exists ¢ € D([0,0) :
R ) such that ¢ = ['(¢)), is called the domain dom(T") of the SM T'. Theorems
1.3, 3.6 and 3.8 of [16], together, show that the domain dom(I") is a strict
subset of D([0,00) : R’) that does not include certain paths of unbounded
variation. Since diffusion paths are almost surely of unbounded variation,
the SM is thus inadequate for constructing reflected diffusions associated
with the GPS model. This necessitates the introduction of the so-called
extended Skorokhod map, first introduced in [16]. Recall that for A C R,
co[A] represents the closure of the convex hull of the set A.

DEFINITION 2.3. (Extended Skorokhod Problem) Let vy € D([0, c0) :
R7) with ¢(0) € R] be given. Then (¢, n) solves the GPS extended Skorokhod
problem (ESP) for v if p(0) = 1(0), and if for all t € [0, 00),
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10 K. RAMANAN AND M. REIMAN

1. (t) = 9(t) +n(t);
2. ¢(t) € RY;
3. For every s € [0,1],

(26) n(t) = n(s) € @ [Upe(sgdlo(w)] ;

n(t) —n(t—) € o [d(p(1))] -

Theorem 3.6 of [16] shows that there exists a unique solution to the GPS
ESP for all ¢ € D([0,00) : R7). Analogous to the GPS SM, if (¢, — %)
solve the GPS ESP for v, then we denote ¢ = T'(+), and refer to T as the
GPS extended Skorokhod map (ESM).

REMARK 2.4. Lipschitz continuity of the GPS SM and GPS ESM (with
respect to the u.o.c. topology) on D([0,00) : R7) was established in The-
orem 3.8 of [¢] and Theorem 3.6 of [10], respectively. In particular, these
results imply that solutions to the GPS SM and ESM are unique. Moreover,
Theorem 1.3 of [16] shows that T'(1)) = T'(3) for every v € dom(T).

In order to state the Skorokhod representation for the unfinished work
process, define

(2.7) Xi(t) = Ui(0) + Hi(t) — ot
and
(2.8) Yi(t) = a;t — T;(t)

where, as in (2.2), recall that

T = Y ofIp0).

ECT:i¢FE

Note that by (2.1), we have U = X + Y.
The following result is Lemma 3.4 of [17].

LEMMA 2.5. Let X be as defined in (2.7) and let T be the GPS SM
associated with the weight vector 8 € (0,1]7. If (U,Ig, E C I) satisfy (2.1),
then U =T'(X).
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DIFFUSION LIMITS FOR AN UNBALANCED GPS MODEL 11

3. Some Properties of the GPS Skorokhod Map. In this section,
we collect properties of the GPS directions of constraint that are used for
both determining the long-time behavior of the fluid limit in Section 4, as
well as for identifying the diffusion limit in Section 5. A characterization of
the geometry of the GPS directions of constraint is provided in Section 3.1,
and a comparison principle is established in Section 3.2.

3.1. Geometry of the Directions of Constraint. The main reason that the
GPS SM is not defined on all continuous functions is because the directions
of constraint d;,7 € Z, are not linearly independent (see Lemma 5.3 for one
important ramification of this property and [16] for further discussion of this
issue). Indeed, the directions of constraint satisfy

J
(3.1) > Be(1— Br)dy, =0,

k=1

which is easily verified by direct substitution. Nevertheless, as shown in
Lemma 3.1, the GPS directions of constraint do exhibit a reasonable degree
of regularity. This lemma is used to enable a simple description of the action
of the SM on affine trajectories in Lemma 4.4, and is also used in Theorem
5.6 to establish a certain reduced representation for the GPS SM.

LEMMA 3.1. (Geometry of the GPS Directions of Constraint)
For every j € I, the vectors {d1,...,ds} \ {d;} span the hyperplane H =

{:1: ER’ :(zx,dj1) = 0}. Moreover, the following two properties hold.

(i) H=UJ_,C;, where Cj = {3]_, j+; Oxdi : 0 > 0} for j € .
(ii) Given any w € H, there ezists a unique vector € R such that 8; = 0
for at least one j € Z and

J

(3.2) w =:§£:9jdy.

=1

In addition, w admits the representation

0
(33) ’LU] - 1 _/B] - IBJJ
for j € I, where, for any set E such that {k € Z:6;, >0} CE CZ,
: Oy Ok Y jer Wj
(3.4) 0<o= > —— =3 = = .
E:05>0 1= B keE 1=Fr  1=Xjerb;
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12 K. RAMANAN AND M. REIMAN

PROOF. The first statement of the lemma follows from the proof of Lemma
3.1 of [8]. In turn, this statement implies that U‘J-Ilej C H and that given
any w € H there exist 0 € R, k € {2,...,J}, such that w = Y7_, Ody. If
0 > 0 for every k € {2,...,J}, then it automatically follows that w € Cj.
Otherwise, choose | € {2,...,J} such that

I i i
= arg min e,

R T (1 — Br)
define #; = 0 and, using relation (3.1), eliminate d; in the representation of
w to obtain ;

Br(1 — 5k))
w= O — 0————— | di.
k:;k# ( A1 - B1)

In this case, by the choice of [, §; < 0 and all the coefficients of di, k # [,
in the above decomposition are non-negative. This shows that w € Cj. So,
in both cases, we have shown that w € U‘]-IZIC]-. Since this holds for every
w € H, we conclude that H C U}-IZIC]-, which when combined with the
reverse inclusion, establishes property (i).

For property (ii), fix w € H and first observe that the existence of § € Ri
satisfying (3.2) follows immediately from property (i). Now suppose that
there exist 1,5 € Z, 0 € ]R;]L with §;, =0 and 0 € ]Ri with 6; = 0 such that

J J
(3.5) w = Z dek: Z é}cdk.

k=1,k#i k=1,k#]

If 4 = j, then the linear independence of the vectors dg,k € Z \ {i} shows

that 8 = 0. Now suppose that i # j. Then, since relation (3.1) implies that

1 J
di = ———— 1—6)d

substituting this equality into the first representation for w in (3.5) yields

J J
w= > Ody = Y Okdp+06d;
k=1,k#i k=1,kg{i,j}
J
Br(1 _ﬁk)] Bi(1—35;)
= 0, —0,————| dp, — 0,——————d;.
k—l%{i,j} [ ' Bi(1 = 5)) 7B;(1—5)
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DIFFUSION LIMITS FOR AN UNBALANCED GPS MODEL 13

Comparing the last display with the second representation for w in (3.5),
the linear independence of the vectors di,k € Z \ {j}, implies that

o Bl —By) for .

i — 0y 05](1 5) orkeZ\{i,j}
BO-B) . .
075](1 5) for k = 1.

The fact that 6; > 0, 6; > 0 and Bi(1 - 3;)/[B;(1 — B;)] > 0 together imply
that ; = 0, 6; = 0 and hence that 6, = 6y for k € T\ {i,5}. This establishes
uniqueness of the vector 0 satisfying (3.2).

Lastly, using the definition of the directions of constraint and the first
property of (ii), we obtain

0 7]
w;j = ﬁ]—ﬁj P

k:0,>0 1 _/Bk

for j € Z, which proves (3.3) with o as defined in the first equality of (3.4).
The second equality follows trivially since 8y = 0 for k € E\ {k : 6, > 0}.
Summing the last display over all j such that 6; > 0, we obtain

0
> wi= (1— > ﬁj) ( > 1_kﬁ)’
§:0;>0 5:0;>0 k:0,>0 k

which proves the third equality in (3.4) when E = {j : ; > 0}. Since (3.3)
shows that for every j with §; = 0, w; = o3}, this now shows that the third
equality in (3.4) holds for any E2 C Z that contains {j : 6; > 0}. O

3.2. A Comparison Principle. The main result of this section is a com-
parison principle for the GPS ESM, which may be of more general inter-
est. Analogous comparison results for the one-dimensional SM on [0, c0)
and the two-sided SM on [0,a] can be found in [22] and [14], respectively.
The statement of the comparison principle involves the projection operator
TR > ]Ri associated with the GPS SP, which is characterized by the
property that

m(z) =z ifz € R]
(3.6)

m(z) € OR] and n(z) — z € d(v(z)) ifz ¢ R].
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14 K. RAMANAN AND M. REIMAN

The existence, uniqueness and Lipschitz continuity of the GPS projection
operator was established in Theorem 3.8 of [8]. The comparison principle of
Theorem 3.2 is used in Theorem 4.6 to provide uniform bounds (with respect
to initial conditions in a compact set) on the time at which the fluid limit
of the GPS model reaches the invariant manifold. It is also used in Section
5.2 to establish “state space collapse” for the diffusion limit (see Theorem
5.6).

THEOREM 3.2. (A Comparison Principle) Let 7 be the GPS projec-
tion operator and T be the GPS ESM. If v < v, then

(3.7) (D) < w(v).

Moreover, if for 1, € D([0,00);R’), there ezists a coordinate-wise non-

decreasing function A with A(0) > 0 such that ¥(t) = ¥ (t) + A(t) for every
t €[0,00), then

(3.8) T(W)(t) <T()(t) for every t € [0,00).

In the following lemma, we first show how (3.8) can be deduced from (3.7)
for a general class of ESPs.

LEMMA 3.3. Let m be the projection operator associated with an ESP
that has a uniformly continuous ESM defined on D([0,00);R’). Suppose
that o < v implies ©(0) < w(v). Then, for ¢, € D([0,00);R’) such that
there exists a coordinate-wise non-decreasing function A with A(0) > 0 and
P(t) = p(t) + A(t) for every t € [0,00), (3.8) holds. Moreover, if the SM is
uniformly continuous and well-defined on D([0,00);R”), then (3.8) holds

with the ESM replaced by the SM.

PROOF. When 9,1 € D([0,00) ; R’) (recall that D.([0,00);R’) is the
subspace of D([0,00);R’) that has piecewise constant trajectories with
a finite number of jumps), this can be proved using induction. Indeed, if
0 =1ty <t <ty <ty are the union of the jump points of ) and 1, it follows

that T'(1)(0) = w(1(0)),T())(0) = 7()(0)) and for k=1,...,n— 1,
T()(tky1) = 7 (T) () + $ltisn) — (k)

and likewise for T(¢)) (t;11) (see, for example, (28) of [6] for this construction
for the SM T' - it is easy to see that the same construction also holds for
the ESM T'). Now suppose T'(¢)(tx) < T(4)(t). By the assumption on A,

we have (tx1) — ¥(tk) < Y(tg+1) — ¥(tg), and thus (3.7) implies that

imsart-aap ver. 2006/10/13 file: finalapr30.tex date: April 30, 2007



DIFFUSION LIMITS FOR AN UNBALANCED GPS MODEL 15

() (tgs1) < T(3)(tps1)- Since A(0) > 0, (3.7) ensures that T'(¢))(tg) <
(1)(to) and thus, by induction, (3.8) holds whenever v, 4 € D.([0, ) R7Y).
In order to extend the result to general 1,1, A in D([0,00) ;R) that
satisfy the assumptions of the lemma, we need only use the fact that ¥, ¥, A
can each be approximated in the uniform norm by corresponding sequences
{9}, {4} and {A™} of piecewise constant trajectories with a finite
number of jumps such that ™ = ™ + A where A™(0) = 0 and
A" ig coordinate-wise non-decreasing. Indeed, consider the sequence [, =
{0 =1 <t <...,<t; ,kn € N} of partitions of [0,00), such that the
nth partition contains all points at which 7 or 4’ has a jump of magnitude
greater than 1/n and the mesh size max;—; g, [t} —t ;| = 0 as n = oco.
Define

r
r

f(n)(t) = f(ti—l) for ¢ € [tz 1t ) 1=1,... akna

for f € {¢,1, A}. Then for every n € N, f® — f w.o.c. for f € {1, A}
and (™ = ™ + A1) with A™(0) =0, A > 0 and A™ coordinate-wise
non-decreasing. Thus the inequality (3.8) is satisfied with 1, ¢ replaced by
™ and ™ respectively, for every n € N. Taking limits as n — oo, the
uniform continuity of T' then ensures that the inequality (3.8) also holds for
1, 1. If the SM is defined and uniformly continuous on D([0,00) ;R7), then
the last statement of the lemma follows due to exactly the same argument
as that used for the ESM. This completes the proof of the lemma. O

Before presenting the proof of the theorem, it will be convenient to in-
troduce the following notation. Recall that the one-dimensional Skorokhod
mapping, I'; : D([0,00) : R) = D([0,0) : R), is given explicitly by

(3.9) L1(f)(@) = f() + sup [—f(s)] VO

s€[0,¢]
Also, given j € Z, define PU) to be the matrix whose ith column is d; for
i # j, and whose jth column is the unit vector e;. Let Q) = T — P( 9.
Then it follows 1mmed1ately from the definition (2.3) of d; that Q
for i,k € T, ZzeIQ = 0 and for every k € T\ {j}, ZzeIQm = 1

We now claim that (Q(J)) is the transition matrix of a transient J-state
sub-Markov chain, where the chain ’dies’ after entering state j. To see that
it is transient, note that for i # 7, (Q(j))gj = Bj/(1 — Bi) > 0 (since, by
assumption, minjez 3; > 0). Thus (Q))’ is strictly substochastic and hence
has spectral radius o(QY)) < 1. We now describe the SP associated with the
matrix P{). Roughly speaking, it has domain Ri and direction of constraint
in the relative interior of the ith boundary face, {z € ]Ri : z; = 0}, given
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16 K. RAMANAN AND M. REIMAN

by the ith column of P{). More precisely, for j € Z, define the set-valued
function d\9)(-) on ORY as follows:

_ d(x) ifz; >0
49 (z) = /

{ajej + Xicq@n\yy} @idi s a; > 0 fori € J(z)} ifz; =0,

where, for 7 € RY, J(z) = {i € T : 3 = 0}. Also, let d9' (z) = d9 (z)n{v €
R’ : |v| = 1}. The SP associated with PU) is defined as in Definition 2.2,
but with d*(-) replaced by d@'’ (-). Let ') be the corresponding SM, and let
79 be the corresponding projection operator, characterized by the relations
(3.6), but with d(-) replaced by d\9)(-). SPs of this kind were introduced in
[11], the results of which show that the properties of PU) described above
guarantee that TY) and (/) are well-defined on D([0,00); R’) and R’ re-
spectively (see also the discussion in Section 2.3 of [3]).

We now present the proof of Theorem 3.2.

PROOF. In order to prove the first property, fix 7, € R’ such that & < v
and define & = 7(¥) and k = w(v). Then the definitions of 7 and the GPS
directions of constraint show that

(3.10) Yo <0 = —ped0) = w()=0.
1€

Since 7(v) > 0, this proves the result when ), 77 < 0. We shall consider
two cases with ;7 7; > 0.

Case 1. ) ;7 V; > 0 and there exists j € Z such that &; > 0 and x; > 0.

In this case, we first claim that w(v) = 7()(v). Indeed, this is a direct
consequence of the definition and uniqueness of the projection operators m
and 7U), and the fact that x; > 0 implies d¥) (k) = d(k). Since &; > 0, the
same argument also shows that 7(2) = 7()(#). From the definition of the SP
and the projection operator it is easy see that I'¥) (1) = 7(9) (v)i. Moreover,
the comparison principle proved in Theorem 4.1 of [18] guarantees that
T (1)(t) < TW(wi)(t) for ¢ € [0,00), and so, substituting ¢ = 1 we obtain
the inequality 71 () < 7()(v). Thus 7() = 70) () < 70) (v) = = (v), and
so the theorem is true in this case.

Case 2. Y jcrv; >0and {j €T :k5; =0} ={j € Z: k; > 0}.

We shall argue by contradiction to show that this case cannot occur when
7 <wv.Forve R, let EW) = {j € T:k; =0} Note that the first
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DIFFUSION LIMITS FOR AN UNBALANCED GPS MODEL 17

condition of Case 2 implies that —& ¢ d(0) and hence & # 0 or, equivalently,
E(p) # I. Next, suppose £(v) = Z. Then we have k = 0 and so, by the
definition of 7, > ;.7 v; < 0. When combined with the ordering 7 < v, this
contradicts the first assumption of the case. Now consider the remaining
possibility when £(v) C Z and £(P) C Z. Then, by the definition of 7 and
Lemma 3.1, w = k — v € d(k) = cone[d;,j € £(v)] C H. This means, in
particular, that if § € R/T! is the unique vector in (3.2) then 67,1 = 0 and
{j :0; > 0} C E(v). Thus, using (3.2)—(3.4) and the fact that v; = —w; for
j € E(v), we observe that

(3.11) Zyj:—ij:—(l—Zﬂ,)ago.
)

jeEW) jeEw JjeEW)

Since £(7) # I, an analogous argument also shows that > ce;) 7 < 0.
Moreover (3.11), along with the fact that 7 < v, implies that

> %< Yy <0

JEE(V) JEE(V)

On the other hand, since £¢(v) = £(7) due to the second condition of Case

2, we also have
> 7= %<0
jege(v) Je&(®)
Together, the last two relations imply that 3 ;-7 7 < 0, which contradicts
the first assumption of the case. This completes the proof of (3.7).
Since the GPS ESM is Lipschitz continuous, the second assertion of the
theorem follows from the first due to Lemma, 3.3. O

4. Long-Time Behavior of the Fluid Limit. In this section we con-
sider a sequence of GPS systems with an associated sequence { H"} of cumu-
lative work arrival processes defined on (€2, F, P) that satisfy Assumption
2.1. Let U™ and T™ be the associated unfinished work and busy time pro-
cesses uniquely characterized by equations (2.1) and (2.2). We also consider
the associated sequences {X"} and {Y"}, where X™ and Y" are defined by
the relations (2.7) and (2.8), respectively, with U;(0), H; and T; replaced by
U0), H and T}, respectively. Assume F is complete with respect to P
and for n € N, let {F*} be complete filtrations such that H" is adapted to

{F'}-
In Section 4.1, we state the characterization of the fluid limit of the se-
quence of unfinished work processes that was obtained in [17]. In Section

4.2, we identify the invariant manifold for the fluid limit — this constitutes
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18 K. RAMANAN AND M. REIMAN

the first step towards establishing the heavy-traffic diffusion approximation
in Section 5.

4.1. Characterization of the Fluid Limit of the Unfinished Work Process.
Given a sequence {f"} C D([0,00) : R’), we define the associated fluid
scaled sequence {f" '} C D([0,00) : R’) by

(a.) 7 = )

From Definition 2.2 and the fact that the GPS SM I is Lipschitz con-
tinuous on its domain (see Remark 2.4), it is easy to verify that I' is non-
anticipatory in the sense that I'(X)(¢) depends only on {X(s),s < t}. Since
H", and therefore X", is adapted to the filtration {}'} and since U™ is right
continuous and U™ =I'(X"™) by Lemma 3.4 of [17], this implies that U" is
progressively measurable with respect to the filtration {F}'} (see Proposi-
tion 1.13 of [12]). We now assume that the primitive processes satisfy a
functional strong law of large numbers. Recall that the abbreviation u.o.c.

for ¢ € [0, 00).

represents uniform convergence on compact time intervals.

ASSUMPTION 4.1. 1. There ezxists u € Ri such that a.s.
n
lim vt (0) = .
n—oo N

2. For each n € N there exists y" € ]Ri such that a.s.

H™(mt
i 0 ny
m—o0 m

where the convergence is u.o.c.
3. There exists y € ]Ri such that

.
kT =7
Recall that +: Ry — Ry is the identity map. Define
(4.2) v=y—a,

and note that for j € Z, —v; represents the amount of nominal service
capacity allocated to class j that is in excess of its mean arrival rate. Also,
let

(4.3) X=u+wm, U=IX), Y=U-X
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and

(4.4) T=aw-Y=yw+u—-U.
The following result was established in [17].

THEOREM 4.2. (Fluid Limits for the GPS Model) Suppose Assump-
tions 2.1 and 4.1 hold, and let U and Y be given by (4.3). Then P a.s., as
n—oo, U —UY" =Y andT" — T w.o.c. Moreover, if E{Zl v =1
and =0, then U =0 and T = 1.

PROOF. The first statement is Theorem 4.3 of [17]. The condition 37, v; =
1 implies that E;']:1 v; = 0 and thus the second statement follows from
Lemma 4.4(2) of [17]. O

REMARK 4.3. In Theorem 4.2, the fluid limit of the unfinished work is
represented in terms of the GPS SP: U = I'(X). As shown in [7], it is also
possible to equivalently represent the fluid limit as the unique solution to a
system of coupled differential equations. While the latter may in some sense
provide a more intuitive description of the fluid limit, it does not extend to
more general continuous inputs, as is required for the heavy traffic analysis.
In contrast, the use of the GPS SP (ESP) provides a unified framework in
which to study the pre-limit, fluid limit and diffusion limit. It is therefore
natural and more convenient to work throughout with the SP formulation.
Indeed, this level of abstraction allows one to better understand the con-
nection between the nature of reallocation of service (as embodied in the
directions of constraint) and the continuity and monotonicity properties of
the map that are used in establishing the limit theorems. As a result, we
expect that this approach may be more readily generalizable to other situa-
tions, including those in which a simple differential equation characterization
of the fluid limit is not available.

4.2. The invariant manifold of the fluid limit. The goal of this section is
to identify the so-called invariant manifold of the fluid limit. We first con-
sider the task of identifying the set of strictly subcritical classes, namely the
sources whose long-run average arrival rate -y; is strictly less than the long-
run average service rate available to them (after redistribution of service by
the GPS discipline) for all sufficiently large ¢. For SPs associated with other
queueing networks that have been studied in the literature (see, for exam-
ple, [4] or [21]), the linear independence of the associated constraint direc-
tions helps simplify this task. For example, in the study of open single-class
queueing networks in [4], the associated unfinished work U* is represented
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20 K. RAMANAN AND M. REIMAN

as the image of the corresponding netput process X* under the associated
SMI'™: U* =T*(X*) = X* + Y™, where Y* now admits the decomposition
Y* = D&, where D = (I — P') is a non-singular matrix, I is the identity
matrix, P is the so-called routing matrix of the network, the ith column of
D represents the direction of constraint associated with the face {z; = 0},
and £* is the component-wise non-decreasing process that characterizes the
cumulative idle time or excess capacity at each station (note that, somewhat
unfortunately, the term £* here is denoted by the letter Y in [4]). The fluid
limit £&* of the vector of cumulative idleness admits the explicit expression
& = D7Y*, where Y* = U* — X*, with U* = I'*(X*) being a continu-
ous functional of X* that is identically zero under the overall heavy traffic
condition (the bar quantities here all refer to the fluid limits of the original
quantities). In this case, the set of strictly subcritical classes is precisely the
set of classes j for which 67 = df_; /dt is strictly positive for all sufficiently
large t. Since 0} can be explicitly recovered from X*, which is itself known
explicitly in terms of the primitives, this simplifies the determination of the
strictly subcritical classes.

In contrast, as shown in (3.1), the GPS directions of constraint are lin-
early dependent and thus such a simple linear algebraic relation between the
netput and the cumulative idle time processes no longer holds in general.
Nevertheless, using the geometric properties established in Lemma 3.1, we
show below in Lemma 4.4 that an analogous decomposition into component
processes is possible for fluid trajectories. However, it is important to note
that this decomposition does not hold for arbitrary trajectories (see Lemma
5.3), thus necessitating a more careful analysis of the diffusion limit (see
Section 5.1).

LEMMA 4.4. (A Representation Lemma) Givenu € R] andv € R/,
there exists € > 0 and x € R such that

T(u+ve)(t) =+ xt for t € [0,¢).
Moreover the following two properties are satisfied.

i) There exists a unique vector @ € Rt that satisfies
q +

J+1
(45) XZV—f—Zakdk
k=1
and
(46) I#{kEI:9k>0}g{k’EI:’ak:Xk:O}.

Moreover, 8511 > 0 if and only if u = x =0 and E]J:1 v; < 0.
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(ii) If u = 0, then x = w(v), € can be chosen to be oo and [E}:l Xl =
[ZJJ:1 VJ] V0.
(iii) If Ejzl vj >0, then

P — D k0,0 Vk
(4.7) 0< = Tk
k:§>0 1-— ﬁk‘ 1-—- Zk:0k>0 /319

and, for every j € T,

0; +ﬁj<_2k:9k>ol/k> if0;>0

(4.8) v; = 1-5; 1= 2 k0,50 Ok
. ! - Zk:9k>0 Vi .
xj + Bj 1= 0fr if 0; = 0.

PROOF. Fix v € RY and let £ = {k € T : 1, = xx = 0}. The existence
of x € R/ and € > 0 results from the fact that images of affine trajectories
under the GPS SM are piecewise affine (which was proved in Lemma 4.4
of [17]). Next, note that for all ¢ € (0,¢), the definition of the GPS SP
(in particular the relation (2.4) and properties 4) and 5) of Definition 2.2)
implies that x is the unique vector that satisfies
(4.9)

1 cone [d;,j € &] ifEAT
X—v= ;[F(ﬂ—kw)(t) —u—vt] €

cone[d;,j € Z,dyy1] ifE=1T.

This immediately ensures the existence of a vector 8 € ]Rf’l that satisfies
(4.5) and (4.6). To show uniqueness of 0, first taking inner products of (4.5)
with dj;1 shows that

(4.10) (X:dyy1) = (v, dyy1) + 6541

If £ # 7, then (4.9) and Lemma 3.1 show that x—v € H, and so 8541 = 0 by
(4.10). On the other hand, if £ = Z, then (4.10) uniquely determines 61,
0741 >0ifand only if }°;c7v; <0and x —v—0;41d;41 € H. The last two
statements, when combined with Lemma 3.1(ii), establish uniqueness of the
representation (4.5) and the condition on 6741, thus proving property (i).
Now suppose that u« = 0. Then a simple consequence of the definition
(3.6) of the GPS projection is that (). solves the SP for ve. Therefore,
by uniqueness of solutions to the GPS SP, x = n(v) € R{r and ¢ can be
chosen to be co. The second relation in property (ii) can be deduced in a
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straightforward manner from the fact that x = m(v) € R] and the last
statement of property (i). The latter also shows that when ZJJ':1 vj > 0,
0711 = 0 and w = x — v € H. When combined with (3.3) and (3.4) of
Lemma 3.1, elementary algebra immediately yields property (iii). O

Recall from (4.2) that v = y—a. When 3°, .7 v; <0, it is intuitively clear
that all classes will be strictly subcritical. The interesting case is thus when
> jerVj > 0. Suppose, in addition, that 4 = 0, and note that by Lemma
4.4(ii), in this case x = 7(v) € R]. Let § € R} be the unique vector in
the representation (4.5) for x = w(v). With reference to the discussion prior
to Lemma 4.4, it is natural to introduce the following definition:

(4.11) 80(1/) = {j €Tl: 9j > 0}

REMARK 4.5. We now present an alternative characterization of Sy(v)
that may appear more intuitive to some readers. When } ;c7v; > 0, we
claim that the set Sp(v) defined in (4.11) also admits the following alterna-
tive characterization: Sy(v) is the unique set S that satisfies

(4.12) > (e —75) >0

jeS
and

Bj

(413)  yj<ojt—ot
T 1—2195551@,;

(g — k) if and only if j € S.

Since the strictly subcritical classes receive no extra capacity from the other
classes, a necessary condition for the set S to be strictly subcritical is that
the sum of the nominal capacities available to all classes in S is strictly larger
than the sum of the mean arrival rates of classes in S — this leads to the first
condition (4.12). Moreover, it is precisely this excess that is redistributed to
the remaining classes, with class j receiving a fraction proportional to (;,
for j ¢ S. This leads naturally to the “only if” part of the condition (4.13),
which simply states that for any class that is not strictly subcritical, the
total (reallocated) service capacity available to it is no greater than its mean
(long-run) arrival rate. The “if” part of (4.13) is not as straightforward to
justify a priori. Nevertheless, as shown below, it turns out to be the correct
additional condition that uniquely characterizes Sp(v).

To see that (4.12) and (4.13) uniquely characterize Sy(v), let S be any set
satisfying (4.12) and (4.13). Since 37 vj = 3 ;e7(7j — ;) > 0, the relation
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(4.12) ensures that S # Z and thus the relation (4.13) is well-defined. Now,
the two conditions above are equivalent to the relations

— 2 jes Vi
(4.14) rs = z >0
1 Ejes ﬁj
and
(4.15) ;—’ <rs iffjeSs.

We now show that uniqueness of the set S is essentially equivalent to unique-
ness of the representation (4.5). Suppose that we are given a set S # T
satisfying (4.14) and (4.15). Define

éj = —(1 — ,Bj)l/j + ,5]'(1 — ,5]')7‘5 for j € S.

Then elementary algebra shows that (4.14) and (4.15) imply that éj > 0 for
j €8, and that 8 =v + 3¢ 0,.d) satisfies & = m(v). However, uniqueness
of 7 dictates that & = k. Uniqueness of the representation (4.5) then shows
that § = 0, with 6 as in (4.11), and hence that § = Sy(v).

Now, let the sources be ordered so that

V1 V2 vy
4.16 —>=>...> =
(4.16) B~ BT T By
It then follows immediately from Remark 4.5 — in particular, relation (4.15)
— that when 3 .7 vj > 0 either Sp(v) = 0 or So(v) has the form {j.,..., J}
for some j, € Z. Given v € R’, we now define the set of strictly subcritical
classes to be

(4.17) sm—{ T TEenst
So(v) if ez Vi 2 0,
and let M(v) be defined as follows:
(4.18) M) = {z € R] : z; = 0 for every i € S(v)}.
Note that M(v) = {0} is O-dimensional if 3" ;.7 v; < 0 and M(v) = R] is

J-dimensional if ng v; > 0 and min; v; > 0. The next result shows that
M(v) acts as an invariant manifold for the fluid limit.
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THEOREM 4.6. (Invariant Manifold for the Fluid Limit) Given
veR andu €R], let s = n(v), U =T(u+we), and let S(v) and M(v) be
defined as in (4.17) and (4.18), respectively. Then the following properties
are satisfied.

(i) If u € M(v) then U(t) = 4 + kt € M(v) for all t € (0,00);

(ii) Given any compact set G C ]Ri, there ezists T = T(G) < oo such that
for every u € G, U(t) € M(v) for allt > T;

(iii) There exists 4 € M(v) such that U;(t) > 0 for every t € (0,00) and
i€ Z\S(v);

(iv) When 3 v; <0, M(v) admits the equivalent representation

JET

(4.19) M(v) = {ﬂ €R] :T(u+w)(t) =u for all t €0, oo)} ;

(v) Furthermore, if 3 v; =0 and minjezv; < 0, then there exists j. € 1

such that <

(4.20) ;—j:% forj <j« and S(u):{jEI:;—i<%}.
Also,

(4.21) _ Pilesw ) g S).

V. =
T 1= Yhesw) Br

PROOF. Fix v € R’. When ¥ ;.7 v < 0, S(v) = Z, M(v) = {0} and so
the first two statements of the theorem follow directly from Lemma 4.4 of
[17] (also see the results of [3]), and the third statement holds trivially. For
the case when ), 7 v; > 0 and min;ezv; > 0, the first two statements of
the theorem are a trivial consequence of the fact that M(v) = R{ and the
third statement is satisfied by any @ with @; > 0 for all 4 € Z, since for such
a, I'(a +vt) = a+ ve.

Therefore, for the rest of the proof of properties (i)-(iii), we shall assume
that 3 ;7 v > 0 and minezv; < 0, in which case S(v) = Sy(v). We start
by proving property (ii). Given any compact set G C ]Ri, let u* € ]RJJr be
such that for every i € Z, &} = maxgeg U; and let U* = I'(@* + v1). The
comparison principle in Theorem 3.2 then guarantees that for any u € G,
Ui(t) < Ur(t) for every i € I, where U = T'(@ + ). Thus, in order to
establish (ii), it suffices to show that there exists a finite 7' < oo such that
U; (t) = 0 for every j € So(v) and t > T'. By the monotonicity property of
the GPS SM established in Lemma 4.4 of [17], we know that

(422) {i€eZ:Uft)=0}C{i€Z:U(t+s)=0} foralls,t>0.
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As a result, there must exist £ C Z and T < oo such that
(4.23) E={jeT:U;(t)=0} forallt>T.

Since U} is piecewise affine, this implies that the slope of U*(t) for all t > T
is well-defined and equal to x, where x satisfies x; = 0 for j € £ and x; > 0
for j € £. On the other hand, by uniqueness of the SM, it is easy to see that
for s > 0,

(4.24) U*(T + s) =T(@* +v)(T + s) = T(U*(T) + vi)(s) = U*(T) + xs.
From the definition of the SP, the last equality implies that for every s > 0,
(x —v) € d({U*(T) + xs) = cone[d;,i € £] C d(x)-

Since x € Ri, by uniqueness of the projection m, this shows that x = k =
m(v). The definition (4.11) of Sp(r) and relation (4.6) of Lemma 4.4 then
shows that Sy(v) C &, which completes the proof of property (ii).

The definition of Sy(v) implies that k—v € cone[d; : i € Sp(v)] C cone[d; :
ki = 0]. If & € M(v), then this implies that k — v C cone[d; : k; = @; = 0],
and thus, by (4.5) and (4.6) of Lemma 4.4, U(t) = I'(@ + vi)(t) = 4 + st
for all sufficiently small ¢ (and, in fact, for all ¢ since x € RY). The above
argument also shows that if 2 € M(v) with @; > 0 for every j & So(v),
Uj(t) = uj + kit > 0 for all t > 0 and j & So(v). This establishes properties
(1) and (iii).

Next, note that property (ii) shows that the set of invariant points of
the fluid limit (described precisely by the right-hand side of (4.19)) must
be contained in M. If, in addition, 3° .7 v; < 0, then k = 7(v) = 0. Thus
property (i) shows that 4 € M implies U(t) = I'(@ + vi)(t) = @ for every
t € [0,00), which establishes the fourth property. In particular, this implies
that x = k = 0. Relation (4.20) is then an immediate consequence of relation
(4.8) and the fact that 1 & Sy(v) (since Sp(v) # Z). In turn, (4.20) implies
that v; = Bjv1 /P for j & So(v). Summing the last equality over j & Sp(v),
and using the fact that > .7 v, = 0 and Y, .7 B = 1, we obtain v, /6 =
— Ykesow) Vel (1= kesy(v) Br)- When combined, the last two relations yield
(4.21), thus completing the proof of the theorem. O

REMARK 4.7. Although we do not use this later in the paper, it is also
possible to provide a purely dynamical systems characterization of the invari-
ant manifold M(v) defined in (4.18). Suppose, given v € R’ an attractor
A(v) for the fluid limit is defined to be any cone in R that satisfies (a)
@ € A(v) implies U(t) = T'(z + vi)(t) € A(v) for every t € [0,00), and
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(b) @ ¢ A(v) implies limy_, o, U(t) € A(v). Then it can be shown that the
invariant manifold M(v) is the intersection of R] with the affine hull of any
attractor A(v) for the fluid limit. In the subcritical case it is easy to see
from Theorem 4.6 that the invariant manifold M(v) is the unique attractor.
Indeed, as shown in Theorem 4.6(iv), in this case the invariant manifold
M(v) can equivalently be characterized as the collection of invariant points
for the fluid limit, which is the “standard” definition of an invariant manifold
given, for example, in [2] and [13]. However, while the standard definition
is limited to the subcritical case, our definition is more general in that it
also applies to the supercritical case, where it provides information on how
trajectories escape to infinity. Indeed, in the supercritical case it is not hard
to show that a set is an attractor if and only if it is a cone contained in
M(v) that contains the ray {xt,¢ > 0} and has non-empty interior relative
to M(v). Since we do not use this property later, we omit a rigorous proof
of this statement.

5. Diffusion Approximations for the Unbalanced GPS Model.
For simplicity, we assume throughout this section that the classes are num-
bered so as to satisfy the ordering (4.16). As in the previous section, we
consider a sequence of networks with associated processes H",n € N, that
satisfy Assumptions 2.1 and 4.1. Recall the defining equations for the fluid
limit processes U, X, Y and T given in (4.3) and (4.4), and consider the
associated diffusion scaled processes defined by

H" = \/ﬁ[ﬁn—'yna], o = \/ﬁ[ﬁn—ﬁ],
(5.1) Xn o= ym[X"-X|, vro= ymlvn-v,
i o= a[T"-T].

To prove the heavy traffic limit theorem for the unfinished work process,
we first assume that the primitive sequence {H"} satisfies, in addition, a
functional central limit theorem. Let v € ]R_{ be the vector in Assumption
4.1(3) and let v = v — a.

ASSUMPTION 5.1. 1. There exists a random variable & € M(v) such
that P a.s.,

lim u (O)

n—oo \/ﬁ =

2. Asn — oo,
H" = B,
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where B is a driftless J-dimensional Brownian motion with covariance
matriz MY .
3. There exists ¢ € R’ such that
lim v/n(y" —v) =é.

n—oo

We will also assume the heavy traffic condition

J
(5.2) dvi=1
=1

REMARK 5.2.
a) Note that Assumption 5.1(3) implies, in particular, that v* — v as n —
00.
b) By the Skorokhod Representation Theorem (see, for example, Theorem
1.8 of [10]), there exists a probability space (2, F', P), on which are defined

D([0, 00) : R’ )-valued random variables H", n € N, and B such that H" 4

H", B 2 B and A" - B as. uniformly on compact sets (u.o.c). By an
abuse of notation we simply take Assumption 5.2(2) to mean that H" > B
a.s. u.o.c. Of course, what we ultimately prove is weak convergence and not
a.s. convergence, and this is reflected in the theorem statements.

In the next section, we summarize our approach to the GPS diffusion
limit, and discuss its connection with related work. This section can be
safely skipped without loss of continuity.

5.1. General Approach to the Unbalanced GPS Diffusion Limit. The fluid
limit result summarized in Theorem 4.2 shows that under the heavy traffic

condition (5.2), U = 0. By (5.1), (2.5) and basic homogeneity properties of
the SP, it then follows that

U" = vnU" =T(vVnX") = T(VnX"),

where T is the GPS ESM and the last equality follows by Remark 2.4. If
/nX™ could be shown to converge to a limit X then, since the GPS ESM is
Lipschitz continuous, the continuous mapping theorem would immediately
yield convergence of U™ to T'(X). Combining (2.7) with Assumption 5.1, it is
not hard to see that v/nX™ converges if and only if v = . This explains why
the standard continuous mapping approach works only in the balanced case
(see [17]). Indeed, in the (truly) unbalanced case, v/nX" certainly diverges
because the long-run average arrival rate -y; for at least one critical class
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must be strictly greater than its nominal capacity. This class becomes critical
(in the fluid limit) only because it receives extra service capacity from the
strictly subcritical classes. Thus the methods of [17], which carried out an
analysis of the balanced GPS model, are not sufficient to analyze the more
general, unbalanced case considered here.

A similar generalization was considered in the context of single-class
queueing networks, where the diffusion analysis in [19] (where each sta-
tion was assumed to be in heavy traffic — see condition (24) therein) was
extended in [4] to the unbalanced case. As mentioned in Section 4.2, the
unfinished work U* for the model in [4] is represented, as in this paper,
in the form U* = X* + Y*, where X* is the associated netput process,
but where Y* now admits the decomposition Y* = D¢* for a non-singular
matrix D and £* is the component-wise non-decreasing process that char-
acterizes the cumulative idle time or excess capacity at each station. The
ith column of D in [4] is analogous to the direction of constraint d; in this
paper, and the mapping from X* to U* corresponds to the SM I'* considered
here. The diffusion analysis in [4] strongly uses (i) the explicit representa-
tion Y* = D&* = Z;’Zl &fd; (see the block decompositions in the statement
of Theorem 6.1 of [4]), as well as (ii) the continuity of the mapping that
takes X™* to £*, which is referred to there as the regulator mapping (see
(3.3D)-(3.3E) and the discussions following (4.25) and (4.29) in [4]).

On the other hand, no such explicit representation is available for the GPS
SP — in fact, the directions of constraint are linearly dependent, as shown
in (3.1). Nevertheless, as shown in Lemma 4.4, an analogous decomposition
holds when the GPS SM acts on affine trajectories. Indeed, suppose 1 is
an affine trajectory, say of the form w + v for some u € R_Jl_ and v € R,
and ¢ = I'(¢), where I" is the GPS SM. Since ¢ is piecewise affine (i.e.,
with a finite number of changes of slope), from Lemma 4.4 and the property
(4.24) of the SP one can infer that there exist unique measurable functions
0:1]0,00) — ]R_Ji_+1 with the property that for a.e. s € [0, 00),

. . J+1
$(s) = p(s) + Y_ 0;(s)d;
j=1
where, for j € 7,

(5.3) {5 :05(s) >0} C{j:p;(s) =0}

and 07.1(s) > 0 implies ¢(s) = 0. Another application of the property
(4.24) shows in fact that this also holds for piecewise affine . Let £(t) =
f(f 0(s)ds for t € [0,00), and let © be the mapping defined on piecewise
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affine, continuous functions that takes ¢ to the corresponding &. In view of
the methods used in [4] discussed above, it is natural to ask whether © can
be extended to define a continuous mapping on the space of all continuous
functions. The following lemma answers this question in the negative — in
fact it shows that there is no canonical way to extend the definition of © to
all continuous trajectories. This constitutes a structural difference between
the GPS SP and other SPs considered in the literature in the context of
queueing networks.

LEMMA 5.3. The mapping © cannot be extended to define a continuous
mapping on the space of all continuous functions.

PROOF. Let T" be the 2-dimensional GPS SM, with directions of con-
straint d; = (1,—1),ds = (—1,1) and d3 = (1,1)/v/2. If there exists a
continuous extension of © to all continuous trajectories, then by the Cauchy
property, for any pair of sequences of piecewise affine continuous functions
{1} ey and {3™)},cn such that ™) — (2n) 5 0, we must have
O(yp(1m) —O(p(2™) — 0. We show that this is not the case by constructing
a counterexample. Define 1™ = 0, let 2™ (0) = 0, and let

(%dl) ift€2(m—1)27",(2m —1)27")

Qb(zan) =
(%d2) it £ € [(2m — 1)277, (2m)2~")
for m = 1,...,2""L. Then it is easy to see that
sup [ (s) — " (s)] = sup |[p*™)(s)| < V2/m,
s€[0,1] s€[0,1]

and thus (1™ — (") — 0. On the other hand, if £(1m) = @(w(l’")) and
£@2m) = (M), it is easily verified that (") = 0, while 5§2’n)(1) =2""1/n
fori =1,2 and §§2’n)(1) = 0. This implies that

lim_ [£7)(1) — ™ (1)] = oo,

n—oo
which completes the proof. O
The aim of the above discussion was to explain why the analysis of the
unbalanced GPS model does not fall into any of the previously existing

frameworks for establishing diffusion approximations of queueing networks.
We now briefly describe the approach taken in this paper to establishing
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diffusion limits, which entails first showing that there is state-space collapse,
in the sense that the strictly sub-critical classes vanish in the diffusion limit,
and then using this information to provide a nice characterization of the
behavior of the remaining, critical classes. Lemma 5.3 suggests that it would
be preferable to work, as far as possible, in the pre-limit since the GPS
mapping is better behaved on the pre-limit than on the limit functions. Thus
we first introduce a modified work arrival process in Section 5.2 and identify
the diffusion limit of the unfinished work associated with this work arrival
process. The modified work arrival process is second-order equivalent to the
original one in the sense that their diffusion limits coincide (see Theorem
5.4). However, as shown in Lemma 5.5, the advantage of working with the
modified arrival process is that the state-space collapse takes place in the
pre-limit itself. This facilitates a simple characterization of the critical classes
in terms of a certain reduced map, which is introduced in Section 5.3. The
reduced map can be characterized as a GPS SM on a lower-dimensional space
(associated with the critical classes) with appropriately modified weights and
is thus continuous. These results are finally combined with the comparison
principle of Section 3.2 in order to establish state-space collapse and obtain
an explicit characterization of the diffusion limit in Section 5.4. The diffusion
limit identifies precisely how the covariance structure of the unfinished work
of the critical classes is influenced by the variance of the cumulative work
arrival processes of the strictly subcritical classes.

5.2. A Modified Work Arrival Process. In this section we introduce a
sequence of modified cumulative work arrival processes {H",n € N} ob-
tained by smoothing the sequence of class j arrival process {H jan € N}
for j € S(v). In Theorem 5.4 below, we show that {#",n € N} is equal
to {H",n € N} up to second order in the sense that their diffusion limits
coincide. This is convenient because, as shown in the next section, the limit
of the sequence of unfinished work processes associated with the modified
arrival processes can be obtained by applying Theorem 5.6.

A rigorous definition of the sequence {H",n € N} is given below. Let
{en,n € N} be a sequence of positive numbers such that

(5.4) Jim e, =0 and  lim Vnen = oo.
For n € N, define
v} +e* for j € S(v),

(5.5 .
vp  for jeI\S(v)
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and 7" = 4" —a. For j ¢ S(v), let H} = H} and for j € S(v), let H} be the
departure process from a queue that is initially empty, has cumulative work
arrival process H}' and a deterministic service rate of ;. In other words, we
can write

65 o HP — Ty (HP —5)  for j € S(v)
. "=

H} for j & S(v)
where I'y is the one-dimensional SM defined in (3.9). It should be noted that
H7 does not satisfy Assumption 2.1(2). Nonetheless it plays an essential role
in proving our heavy traffic limit theorem. Let the corresponding fluid scaled
and diffusion scaled processes H" and H™ be defined as in (4.1) and (5.1),
respectively, with H replaced by /. The following theorem states a second-
order equivalence result between the sequences {H"} and {H"}.

THEOREM 5.4. (Properties of the Modified Arrival Sequence)
Suppose Assumptions 4.1 and 5.1 are satisfied. Then the sequence {H"}
satisfies the following properties.

1. ’H?(t) — ’H;L(s) < ﬁ/;‘(t — ) for any 0 < s <t and every j € S(v).
H"™ (mt)

2. HV" — 4™ w.o0.c. as m — oo, where H™" () = .
m

3. H" = B as n — o0o.

PROOF. From (5.6) and the explicit expression (3.9) for the one-dimensional
SM we see that for ¢t € [0,00) and j € S(v),

(5.7) HP () = 37 — up. (305 — H}'(s)] v 0,

from which the first property immediately follows. Next, note that by (5.6),
the definitions (5.5) of 4 and (5.1) of H™, and elementary scaling properties
of the one-dimensional SM, we have

H_?m = H_]'-lm—l"l (H_J”m —yje = &‘nl,) and ’}:1? = IST;-L—Fl (I;T]" — \/ﬁenb) )

Taking limits as m — oo in the first equation above and using the first limit
in (5.4), along with Assumption 4.1(2), the fact that I'; is continuous and
I'1(0) = 0, we obtain the second property of the theorem.

By Peterson’s ’Crushing Lemma’ ([15], Lemma 2), I'y (1':1]” — \/ﬁsnb) —
0. (Although Peterson assumes that ¢” > e > 0, his proof goes through
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with €” — 0 if \/ne™ — oo. Also, Peterson assumes mutually independent
i.i.d. sequences of interarrival and service times, but his proof goes through
under our Assumption 5.1(2).) The third property is then an immediate
consequence of Assumption 5.1(2) and Remark 5.2. O

For n € N, define
0 if j € S(v)

Ur(0) i j ¢ S)
and let X" =U"(0) + H" — aw. Moreover, let U™ =T'(X").

The next lemma identifies the property that makes the unfinished work
associated with the modified arrival sequence {H",n € N} easier to analyze
than that associated with the original arrival sequence { H",n € N}. Indeed,
it establishes state-space collapse for the pre-limit sequence of unfinished
work processes associated with the sequence of modified arrival processes.

LEMMA 5.5. Suppose Assumptions 4.1, 5.1 and the overall heavy traffic
condition (5.2) are satisfied. Then for every w € Q there exists N = N(w) <
oo such that for every n > N(w), U™(t)(w) € M(v) for all t € [0, 00).

ProOF. Fix w € Q and drop the explicit dependence on w. Recall that
7" = 4" —a, and define ®" = T'(U"(0) + ™) and ®" = T'(UY™(0) +v1). Then
Theorem 5.4(1) along with the comparison principle of Theorem 3.2 shows
that U™ (t) < ®"(t) for ¢t € [0,00). Thus to prove the lemma, it suffices to
demonstrate the existence of N < oo such that for n > N, ®"(t) € M(v)
for every t € [0,00). By Lemma 4.4 there exist 6" > 0 and x", X" € R’ such
that for ¢ € [0,0™)

(1) =U™0) +x™ and  D"(t) = U™(0) + x"t.

In addition, for every n € N, since U™(0) € M(v), Theorem 4.6 shows that
x" = k = w(v). Moreover, for n € N, let 6" € R7T! be the unique vector
in the representation (4.5) for x" and let 6 € R _|_+1 be the corresponding
unique vector in the representation (4.5) for x. Lipschitz continuity of the
GPS SM I' and the convergence 7, — v for n — oo, which is guaranteed by
Assumption 4.1(3) and the first relation in (5.4), imply X" — k as n — oo.
The uniqueness of the representation (4.5) then dictates that 6, — 0 as
n — 00. Thus there exists N < oo such that for every n > N,

So(w)={j€T:0;,>0yC{jeT:07>0}C{jeT:U0)=x}=0}
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where the first equality follows from definition (4.11) and the last inclusion
is a result of relation (4.6) of Lemma 4.4. This implies that x} = 0 for
j € So(v) = S(v), so that &J?(t) € M(v) for t € [0,6™). By the monotonicity
property of the GPS SM proved in Lemma 4.4 of [17] (which is spelled out
in (4.22)), it then follows that ®7(t) € M(v) for every ¢ € [0,00), which
completes the proof of the theorem. O

5.3. A Reduced Representation for the SM. We assume throughout this
section that S is a subset of Z, § # Z. The application of the main result,
Theorem 5.6, of this section will be to the case when § = S(v) is the set
of strictly subcritical classes associated with some v such that Z}-le v =0.
However, the results of this section are valid for an arbitrary set S C Z.
In order to formulate our reduced representation for the SM, we need the
following notation. Let £ =Z \ § and K = |K| > 1. Given a weight vector
B € (0,1)7 (with Y7, 8; = 1), let BX = (BF, k € K) be the K-dimensional
vector defined by

Bi
> B

kex

(5.8) gr = for i € K.

Also, for i € K, let €& be the K-dimensional unit vector associated with
the 7th coordinate, which has 1 at the ith coordinate and 0 for all other
coordinates in K. Since K # 0 and 3 € (0,1)7, it follows that 3cx Bk > 0.
Hence 8% is well-defined, % € (0,1)% and Yokek ﬁ,’f = 1, which shows that
BX is a K-dimensional weight vector. We now define the GPS SP associated
with the weight vector SX. First, let the directions of constraint {df,z' €
K,d¥ 41} be defined in terms of the K-dimensional weight vector A% in the
same way that the directions of constraint {d;,i € Z,d;j;1} were defined
in terms of the J-dimensional weight vector 8 in (2.3): more precisely, let
di i1 = Tiex e /VK and

(5.9) df=ef = 3 Bk g ick.
L1 —pk
ke\{z} ?

Recalling definition (5.8), for i € K we can then write

1 ifj=i
(5.10) (dX); = 8.
’ % if j € K\ {i}.

kek
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Define
A = {(z5,i € K) : z; € R for i € K},

A = {(z;,i €K) :2; >0 for i € K}

and, analogous to the definition given in (2.4), let

d*(z) = { > adf:a;>0forie I’C(a:)},

1€IX(z)

where, for z € A%, I*(z) is defined as in (2.5), but with Z replaced by K and
J by K. Similarly, let the “K-reduced” GPS SP be as described in Definition
2.2, but with R”, R_{ and d(-) replaced by A%, Af and d*(-), respectively.
Finally, let T® be the associated SM, and note that it is well-defined for
the same reasons given in Remark 2.4. We now establish a correspondence
between the original GPS SM and the K-reduced SM.

THEOREM 5.6.  Given a weight vector 8 € (0,1)7, let T be the associated
GPS ESM, let ¢ €D([0,00);R7), let ¢ = T(¢p) and for t € [0,00), let
E(t) = {i € T : ¢i(t) = 0}. Moreover, suppose there exist 0 < Tp < T < oo
and S C T such that S C E(t) for every t € [Ty, T). Then, if K =T\ S, the
vector-valued process p* = {p;,i € K} satisfies

=K
() =T (¥")(t) for t € [Ty, T),
where TV is the K-reduced GPS ESM defined above and Y~ = {yX,i € K}
s given by
(5.11) ¥ =i+ BF (Z %‘) Jorie K.
JjES

Finally, if 1 € dom(T"), then o* = TX(yX).

PROOF. Since K # 0, X and T~ are well-defined. The theorem follows
trivially if X = Z. Thus, throughout the proof, we assume that X C Z or,

equivalently, that S # (. Since~F is single-valued on its domain (see Remark
2.4), if o = T'(¢)) then ¢ = ['(¢)) for ¢ € [0, 00), where

G(t) = p(To+1t) and  P(t) = p(Th +t) — p(To) + ¢(To).

Thus we can also assume without loss of generality that Tp = 0.
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For every t € [0,T), (t) € R] and thus ¢ (¢) € A%. Define n = ¢—1) and
7 = * X It remains to show that in the interval [0,T"), (©*, 7*) satisfy
properties 3 and 4 of Definition 2.3 for the GPS ESP on AE (corresponding
to the weights §%). First, note that for i € K and t € [0,T),

@) = m@) -8F(D] 1/)1c(t)>
(5.12) hes
= mt)+65 D ﬂk(t)> :
kes

where the second equality follows from the fact that ¢i(t) = 0 for k € S
and o =9 +n.

Now, fix 0 < s < t < T. In analogy with the hyperplane H defined
in Lemma 3.1, let H* = {z € A* : 3,., z; = 0}. Recall that for every
z € RI\ {0}, d(z) C HCd(0)={zeR : 3,z >0} and, likewise, for
every z € AX \ {0F}, d*(z) ¢ H* C d*(0F) = {z € A* : iz > 0}
Also, note that for any u € [0, 7], 3 ;e ©F (u) = ez @i(u) since @;(u) = 0
for i € S, and also that (5.11) implies Y";cxc X (u) = ez ¥i(u). The last
two statements along with the fact that (p,n) satisfy property 3) shows that

(5.13) > (W) =) =D ) —mi(s) > 0

[19,¢ 1€T

©(u) # 0. This shows, in particular, that 7 (¢) -9’ (s) € d*(0*) and 7*(¢)

7 (s) € H* if for every u € (s,t], p(u) # 0. Thus this proves property (3
in the case when either ¢(u) = 0 for some u € (s,t] or when p(u) # 0 for
every u € (s,t], but o [Uue(s,t]d’C(goK(u))] = H*.

We now consider the remaining case when ¢(u) # 0 for every u € (s,1],
and to [Uue(s,t]d’C (* (u))] C HX. By Lemma 3.1, the latter relation implies
that there exists j € K such that for every u € (s,t], p;(u) = <_p§c(u) > 0.
Since (i, n) satisfy property 3 of the ESM and the vectors d;,7 € E = T\ {j},
are linearly independent, there exist unique 8, > 0, k € E, such that

with the inequality being replaced by an equality if for every u € (s,t],
)

(5.14) n(t) —n(s) = Ody
keE
and
(5.15) 0, >0 = r(u) =0 for some u € (s,1].
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Substituting n(t) — n(s) for w in (3.2)—(3.3), and using the fact that S C E,
the relation (5.14) implies that for i € Z,

(5.16)
(s = i g 0;
m(t) 7]2() 1- 6 Bi (él_ﬂj)
0; A 0; A 0;

Summing over i € S, this yields

g (5125559 (.1%)
< el es ies jems L TP

The last two relations can be combined with (5.12) to show that for i € K,

K K _ 92’ . k%sﬁk Oj
my (t) —mg(s) = Bi |1+ >

1— B kgcﬁk jeE‘\Sl_’Bj
9i ic 0;
(3t
1_ﬁz 'eE‘\Sl_'BJ
Using the definition
— gk
(5.17) or = L= 5 6; forieck
1-6i

and the fact that £\ S = E N K, the last equation can be rewritten as

cEnK

lC(t)_ ’.C(s): oF — g Z oé'c forie K
771 771 ]._/lec ] - 1_/6‘;C .

From the definition of the K-reduced directions of constraint given in (5.9),
arguments analogous to those used to obtain (5.14) and the first line of
(5.16), can be used to show that

() —n(s) = > Ody.
keENK

That property 3 of the ESP is satisfied can now be inferred from the fact
that, for k € K, (5.17) shows that 8} > 0 if and only if 6 > 0, and (5.15)
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ensures that 6y > 0 implies @i (u) = 0 (equivalently, pX(u) = 0) for some
u € (s,1].

The fourth property of the ESP can be proved in an analogous fashion,
splitting into the cases when ¢(t) = 0 and ¢(t) # 0 (in which case H #
d(p(t)) and the set {d; : @;(t) = 0} is linearly independent). The argument
is exactly analogous to the proof of property 3 and is thus omitted. Thus
we have shown that * = ™ (").

If ¢ € dom(T") then, by Theorem 1.3(2) of [16], n is of bounded varia-
tion on every compact time interval, which in turn implies that #* is of
bounded variation on every compact time interval. Since (¢*,n*) satisfy
the K-reduced ESP for 4*, once again invoking Theorem 1.3(2) of [16], this
shows that (¢*, ) in fact solve the K-reduced SP for 4", thus establishing
the last statement of the theorem. O

5.4. Heavy Traffic Approzimation for the Unfinished Work. Fix v € R/
with 37,7 v; = 0 and denote the set of strictly subcritical classes S(v) simply
by S. Recall that due to the ordering (4.16), S has the form {j,,...,J} for
some j, > 1 (with j, set to J+1if S is empty). Let K = j, —1, so that K is
the cardinality of the set L = Z\ S of critical classes. It will be convenient to
introduce the linear “projection” operators £ : D([0,o0) : R) — D([0, 00) :
RX) and L : R/ — RE defined by

jeS

[Lfli = fi+ BF (Z fj) if i € K,

for f € D([0,00) : R”) and, analogously,
JjES

for v € R/. (In all cases, the sum over an empty set is taken to be equal to
zero.) Define XX = L(@ + B + é1), and note that (since 4 € M)

XZ’C :ﬂi—i-Bi—f-éiL-l-,B;CZ(Bj +éjb).
JES

Moreover, recalling the definition of the K-reduced GPS ESM T" associated
with the weight vector B* defined in (5.8), let
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and define the J-dimensional process U = (U"C,OS), where here 0° is the

identically zero process in the space Ai = {(xj.,---,2zs) : © € R’}. In other
words, let
. Uf foriek
(5.18) U, =
0 fories.
Also, define

T=i+B-U+eé.
We now state and prove the main result of the paper.

THEOREM 5.7. Suppose Assumptions 2.1, 4.1, 5.1 and the overall heavy
traffic condition (5.2) are satisfied. Then U™ = U and T™ = T.

PROOF. For n € N, define X" = LH™ X% = cxn yfn = TR (xkn),
BX = LB and, likewise, o = La, X = Lv, ¢ = Lé¢, @ = La and oF =
Li. Note that, since Assumption 4.1(1) and Assumption 5.1(1) together
imply that @ = 0 and @ € M, it follows that @ = 0 and 4* = 4; for
i € K. By (4.20) and (4.21), we know that for i € K, v, —a; = v; =
—Bi Yjes Vil Lkex Br- By (5.2), 25:1 v; = 0. When rearranged, this shows
that X = 0 or, equivalently, that ¥* = o*. Also note that Zfil o =
Now let %™ and X*" be the fluid scaled versions of U™ and X" as
defined in (4.1), and also define X* = 0, /* = 0. Then, by Assumption
4.1(1) and the definition of U} (0) given after the proof of Theorem 5.4, we
have

n
lim 77"(0) = L ( lim 4"(0)) < L ( lim (0)) =La=a =0.
n—oo n—o0 n—,oo n

When combined with Theorem 5.4(2), Assumption 4.1(3), the linearity of the
operators £ and L and the fact that vX = 0, this shows that X" — X% =0
w.o.c. Since I'* is the SM associated with the GPS model with basic and
redistribution vectors o and B, Remark 2.4 ensures that it is Lipschitz
continuous. Since X*" and XX are of bounded variation and thus lie in the
domain of the SM, this allows us to conclude that /*" — TX(XX) = 0 =y~
u.0.C.

Now define X% HEm™ and Y*" as in (5.1), with U, X and H replaced
by U*, X% and HX, respectively. The fact that X* = X = 0, the scaling
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properties of the SM and the fact that the ESM COiIAICideS with ‘Ehe SM on
the domain of the SP (see Remark 2.4), shows that Z/*" = T (X%") and

LU™(0)
Vn
Along with Theorem 5.4(3), Assumption 5.1(1) and Assumption 5.1(3) this

shows that X% — XX w.o.c. The fact that ¢" = f’c(z’\?’c’") and the

Lipschitz continuity of the GPS ESM ™ (which follows from Remark 2.4)
then shows that %" — UK u.o.c. Now fix w € Q. Since Lemma 5.5, along
with Theorem 5.6, shows that there exists N = N(w) < oo such that for all
n > N(w),

;ﬁKLn::

+L (7:1" +Vn[v+ (" — ’)’)]L) :

) 0 ificS
Ui (w) =
% (R (w))] =t (w) ifiek,
7
we conclude that U"(w) — U(w) for every w € €.

Furthermore, since if = U = 0 and T is Lipschitz continuous, there exists
a constant C' < oo such that for any T' < oo,

A~ ~

supgejo,r] (U™ (8) —U" (1))

= VAsupe ) [U7(6) — 4" (1)
= Vasuprer [D(X") (1) = T(E™) (1)
< Cvisupepo | X7 (1) — 27(1)

ut0) U0 ‘ + Cv/nsupyepo,r) [H™(t) — H" (1))

<C

Vi vn
< JC v o) (1) —
<S manes W + Csupte[O,T] ‘H (t) — H (t)‘ .

Taking limits as n — oo, Assumption 5.1(1) and the fact that & € M
show that the first term in the last line of the display tends to zero, while
Assumption 5.1(2) and Theorem 5.4(3) show that the second term tends to
zero. When combined with the fact that U™ — U u.0.c., this shows that
or U u.0.c., as desired.

Lastly, using equations (2.1) and (2.2), for n € N and ¢ € [0,000), we can
write

T(t) = U (0) + Hi' () — U} (2)-
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Using the relation 7' = ~¢, which follows from Theorem 3.2, this implies that

wn oy Ui(0)
Jn

By Assumption 5.1 and the diffusion limit for the unfinished work just proved
above, we then have

+H () = UP (1) + V(! — 7).

(5.19) ™ T =0+B-U+a,

u.o.c. By Remark 5.2, the pathwise u.o.c. limits must be replaced by weak
convergence, and the proof of the theorem is complete. O

REMARK 5.8. 1t is also possible to introduce additional primitives to
describe the queue length Q™, sojourn time V" and waiting time W™ pro-
cesses associated with this model. Indeed, this was done in [17] where, un-
der general assumptions on the first-order properties of these primitives (see
Assumption 4.5 and Condition 4.8 of [17]), fluid limits for these processes
were established (see Theorems 4.7 and 4.11 of [17]). In particular, it was
also shown in Lemma 4.13 of [17] that when the heavy traffic condition
Zz 1% = 1 holds (and the initial conditions converge in a suitable manner
to 0), the fluid limits of all these processes are identically zero. In addition,
under general functional central limit type assumptions (see Assumptions
4.12 and 4.16 of [17]), diffusion limits for these processes were deduced from
the corresponding diffusion limits for the unfinished work and busy time
processes. Indeed, it was shown in Theorems 4.18 and 4.19 of [17] that the
diffusion limit Q for the queue length process satisfies Qi = /JZU for i € 7,
where 1/p; corresponds to the long-run average service requirement of a
class i customer, while the diffusion limits V and W for the sojourn and
waiting time processes, respectively, satisfy V; = W; = U, /v for i € T.
These diffusion results were obtained in [17] under the balanced heavy traf-
fic condition v = . However, it can be shown that these results continue to
hold even in the unbalanced case considered in this paper. Indeed, they can
be deduced from the results of Theorem 5.7 by following almost verbatim
the proofs of Theorems 4.18 and 4.19 in [17], with the only modification that
a be replaced by v in those proofs. As a consequence, we omit a detailed
exposition of these results.
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