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Abstract

We consider the single item, single location, continuous review inventory model with lost sales.

Demand is assumed to arrive as a Poisson process and lead times are assumed to be �xed. The

optimal policy for this system is not known. We introduce a new and simple policy: Every � time

units order an item (� is a positive number). This policy is compared to the standard base-stock

policy and is shown (numerically) to outperform it for certain parameter values. We then carry out

an asymptotic analysis for both policies as the lost sales penalty and lead time grow large. This

analysis, motivated by a conjecture based on our numerical results, provides reasonably explicit

expressions for various quantities of interest, such as optimal costs and optimal safety stock levels.

The optimal safety stock for both policies is shown to grow as the square-root of the lead time, and

may be positive or negative.



1. Introduction

Karlin and Scarf (1958) described two periodic review inventory models with �xed positive

lead times: Model I with lost sales, and Model II with backordering. In the backordering case they

proved the optimality of a base-stock policy, whereas for the lost sales model they found that the

optimal policy does not typically have a simple form. In general, the optimal policy for the lost

sales case may depend on the entire `pipeline' of items ordered but not yet delivered. Such a policy

would be diÆcult to both compute and implement. Despite its practical importance (as Karlin and

Scarf and others have noted, the lost sales model also applies to systems that employ expediting)

the lost sales model has received relatively little attention in the research literature.

Our focus in this paper is a continuous review version of Model I. Customer demand arrives as

a Poisson process. If the inventory level is positive when a demand arrives, it is satis�ed, otherwise

the demand is lost. Inventory replenishment orders arrive into inventory after a �xed lead time.

Items in inventory incur (linear) holding costs, and lost demand incurs a loss penalty. The goal is

to minimize the long run average cost of operation.

As in the periodic review case the continuous review lost sales model has no simple optimal

policy (cf. Hill 1999), and most related work has focused on simpler policies, most notably base-

stock. As recognized by Karush (1957), a base-stock policy in the continuous review lost sales model

leads to an Erlang loss system, so that for a �xed base-stock level the cost can be determined using

the celebrated Erlang B formula. (An interesting historical note: Karush credits Philip Morse for

this insight.) Furthermore, the convexity properties of the Erlang B formula give rise to a simple

search procedure for the optimal base-stock level.

Of course, the policy found by the above search is optimal among base-stock policies, but

typically not among all policies. Recognizing the apparant diÆculty of determining the optimal

policy or analyzing the performance of policies that are more complicated than base-stock, we take

a di�erent tack in this paper. We introduce an alternate policy that is easy to implement, analyze,

and optimize, and show that it sometimes (depending on the system parameters) achieves a lower

cost than the optimal base-stock policy. The policy we consider has the following simple form:

Place a replenishment order every � time units. This policy, which we call constant order interval,

or COI, leads to a D/M/1 queue for performance evaluation, and the optimal � can easily be found.

This policy is `open-loop'| the ordering `decisions' do not depend on the demand process. This

is in contrast to the base-stock policy, where orders are triggered by (successfully met) demands.
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We are not necessarily advocating the use of this policy in a real system: an open-loop policy can

lead to disaster in a context where parameters (such as demand arrival rate) change or have been

incorrectly estimated. On the other hand, if one has a system with parameters for which the best

constant order interval policy beats the best base-stock policy, then perhaps some modi�ed version

of COI, which incorporates a certain level of oversight, should be considered.

As indicated above, the performance analysis of the two policies that we consider follow from

standard results in queueing theory. The optimization within each policy type is straightforward,

but the expressions for the resulting minimum costs are not amenable to analytical comparison.

We �rst carry out a numerical comparison of the policies. This comparison (carried out in Section

3) shows that neither policy majorizes the other: there are parameter values for which the constant

order interval policy is better and others for which base-stock is better. The numerical results

also give rise to a natural conjecture on the relative minimal costs as the lost sales cost grows

large. This conjecture motivates an asymptotic analysis, which we carry out in Section 4. The

asymptotic analysis is for large lost sales cost and lead time, and veri�es the conjecture based on

the numerical results. The asymptotic analysis also provides more explicit expressions for various

quantities of interest, which in turn provide additional insights. For example, we �nd that the

'safety stock' for both policies grows as the square root of the lead time, and may be positive or

negative. Furthermore, if the parameters are such that the optimal COI policy has positive safety

stock, the optimal base-stock policy also has positive safety stock. (The converse is not true.)

We remark brie
y on some related references. The recent text of Zipkin (1999), and the

surveys of Porteus (1990) and Lee and Nahmius (1993) contain discussion of the lost sales model

and related previous work. In addition to the previously mentioned paper of Karush (1957), a key

reference for us is Smith (1977), who also considers the base-stock policy for the continuous review

lost sales model. He provides a characterization of the optimal base stock level that proves to be

very useful. Smith also carries out an asymptotic analysis under large lost sales cost and lead time.

As described in more detail in Section 4, our asymptotic analysis is a re�nement of his.

There are also papers that consider sub-optimal policies that are more complicated than base-

stock. In the discounted periodic review case Morton (1969) provided monotonicity results for the

value function as well as upper and lower bounds on the optimal order quantity and cost. Using

this upper bound, Morton (1971) presented a myopic approximation for the optimal order quantity.

For continuous review Hill (1999) showed that given a base-stock policy with base stock level S � 2,

there is some Æ > 0 such that the `modi�ed base-stock' policy that also uses base-stock level S but
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waits at least Æ time units between orders will have lower cost than the base-stock policy. (Thus

no base-stock policy with S � 2 can be optimal.) Based on Hill (1999), but for the periodic review

case, Johansen (2001) introduced a modi�ed base-stock policy speci�ed by the pair (S; t). Here

again S is the base-stock level, and t is the minimum number of periods that must elapse between

orders. All of these policies are more diÆcult to analyze, optimize and implement than the two

simple policies considered in this paper.

The rest of the paper is organized as follows. In Section 2 the mathematical model is more

precisely speci�ed and the analysis (and optimization) of the two policies is presented. A numerical

comparison of the two policies is provided in Section 3. Section 4 contains an asymptotic analysis

under large loss penalty (and large lead time) for both policies.

2. The Mathematical Model

Customer demand arrives as a Poisson process with rate �. Let I(t) denote the number of

items in inventory at epoch t. If I(t�) > 0 at the moment of a demand arrival, that demand is

met, and I(t+) = I(t�)� 1. If I(t�) = 0, the demand is lost and a loss cost of b > 0 is incurred

by the system. The replenishment lead time is L > 0. Thus, if a replenishment order is placed at

epoch t, it will arrive at t+ L. A linear holding cost of h per unit of inventory per unit of time is

also charged. The goal is to minimize the long run average cost per unit of time.

2.1. Base-Stock Policy

Let O(t) denote the number of orders that have been placed with the supplier, but not yet received,

at epoch t. Consider the following base-stock policy: for some integer s > 0, place orders to keep

N(t) = O(t) + I(t) equal to s. Note that, aside from a possible initial transient period if N(0) > s,

this policy will yield N(t) = s for all t. If N(0) > s, then no orders are placed until N(t) falls

below s. If N(0) < s, an order of size s�N(0) is placed at epoch 0. Otherwise, an order of size 1

is placed whenever a demand is met, and no orders are placed otherwise.

The steady-state behavior of the above system (which is all that we need for determination

of long run average costs) is equivalent to the following Erlang B system. There are s servers.

Customers arrive as a Poisson process of rate �. When an arriving customer �nds an idle server

it enters service, otherwise the customer is lost. Service times are all equal to L. (Idle servers

correspond to items in inventory. Customer arrivals correspond to demand arrivals. Busy servers

correspond to orders in the pipeline.) Let OBS denote the steady-state number of busy servers in
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this system. Then

pn � PfOBS = ng =
(�L)n

n!Ps
l=0

(�L)l

l!

; 0 � n � s :

The fraction of customers lost is given by ps. To avoid confusion when we vary s, �, and L we let

B(n; a) =
an=n!Pn
l=0 a

l=l!

for n > 0 and a > 0. This is the Erlang loss function. (The Erlang loss function gives the loss

probability for any lead time distribution with �nite mean, see e.g. Wol� 1989.) The average

number of idle servers, IBS , can be found using Little's Theorem. The average number of busy

servers, OBS , is given by (using Little's Theorem)

OBS = �L(1�B(s; �L))

so that

IBS = s� �L(1�B(s; �L)) :

Let CBS(s) denote the long run average cost using base-stock level s. Then

CBS(s) = h [s� �L(1�B(s; �L))] + �bB(s; �L) : (1)

With a held �xed, B(�; a) is a decreasing function of its �rst argument: B(n+ 1; a) < B(n; a)

for n � 0. Karush (1957) showed that B(�; a) satis�es the convexity property

B(n; a)�B(n+ 1; a) < B(n� 1; a)�B(n; a) : (2)

(The bene�t, in terms of reduced blocking, of adding an additional server, is decreasing in n.)

Let

s� = max

8<: arg min
s � 0

CBS(s)

9=; :

(When there is more than one minimizing s for CBS(s) the largest such s is chosen for s�.)

A useful characterization of s� was provided by Smith (1977) (in equation (7.4)). Translated

into our notation and using our largest arg min de�nition, it is

B(s�; �L)�B(s� + 1; �L) <
h

�(b+ Lh)
� B(s� � 1; �L)�B(s�; �L) : (3)

This provides a simple way to �nd s�, and also provides a simple suÆcient condition for s� � 1.

Note that B(0; �L) = 1 and B(1; �L) = �L=(1 + �L). Thus, if

1

1 + �L
� h

�(b+ Lh)
; (4)
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then (3) assures that s� � 1. The condition (4) is equivalent to

�b � h : (5)

It is straightforward to check the necessity of (5) by comparing the cost with s = 0 and s = 1: We

have CBS(0) = �b and CBS(1) = (h + �2bL)=(1 + �L). It is easy to verify that if �b < h, then

CBS(0) < CBS(1). It is clear that, since B(s; �L)! 0 as s!1, (3) always has a solution as long

as (5) holds. The minimum cost achievable using a base-stock policy is

C�BS = min
s�0

CBS(s) = CBS(s
�) :

The following result, whose proof is given in the appendix, provides some insight on the e�ect

of the lead time L on the optimal cost.

Lemma 1. With h, b, and � held �xed, C�BS is a continuous and strictly increasing function of L.

2.2. Constant Order Interval Policy

We propose the following policy: For � > 0 (we impose � > ��1 below for stability), place a

replenishment order every � time units. After the system has been in operation for L time units,

the pipeline is `�lled' and orders are delivered into inventory every � time units. Thus fI(t); t � Lg
behaves as the number-in-system process in a D/M/1 queue. (Customer demand arrivals correspond

to service completions. Demands arriving when I(t) = 0 do not change the state of the system.)

Let � denote the traÆc intensity of this D/M/1 queue. Then � = (��)�1. This system will have a

steady-state distribution if and only if � < 1, which corresponds to � > ��1. If � � ��1 the average

inventory level will be in�nite, which will correspond to an in�nite long run average cost. So we

impose the condition � > ��1. We also assume, as we did for the base-stock policy, that �b � h.

By PASTA (the Poisson `arrivals' here correspond to demand arrivals) the fraction of lost

demands is 1 � �. The average number-in-system (= inventory level) ICOI is obtained from the

standard GI/M/1 analysis (c.f. Wol� 1989):

ICOI =
�

1� �(�)
; (6)

where �(�) is the unique root in (0; 1) of

z = R(�; z) ; (7)

with

R(�; z) = e�(1�z)=� : (8)
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Let CCOI(�) denote the long run average cost using constant order interval � . Then, for

� > ��1,

CCOI(�) = hICOI([�� ]
�1) + �b(1� [�� ]�1) :

It is easier to work with � than � , and then translate: � = [��]�1. Let

f(�) = hICOI(�) + �b(1� �) :

From (6),
dICOI
d�

(�) =
1� �(�) + ��0(�)

[1� �(�)]2
; (9)

where �0(�) = d�
d� (�). Using (7) we can write

d�

d�
(�) =

@R

@�
(�; �(�)) +

@R

@z
(�; �(�))

d�

d�
(�) : (10)

Di�erentiating (8) yields
@R

@�
(�; z) =

1� z

�2
R(�; z)

and
@R

@z
(�; z) =

1

�
R(�; z) :

Substituting these into (10), and noting that �(�) = R(�; �(�)), we obtain

d�

d�
(�) =

[1� �(�)]�(�)

�[�� �(�)]
: (11)

For the D/M/1 queue, �(�) < � (cf. Rogozin 1966, Theorem 1), so �0(�) > 0. Substituting (11)

into (9) yields
dICOI
d�

(�) =
�

[1� �(�)][� � �(�)]
: (12)

Di�erentiating (12) and using (11) we determine that (after some cancellation)

d2ICOI
d�2

(�) =
�(�)

[�� �(�)]3
: (13)

Recall that �(�) < �, so d2ICOI
d�2

(�) > 0, and ICOI is a strictly increasing, strictly convex function

of �. By the de�nition of f
df

d�
(�) = h

dICOI
d�

(�)� �b :

Let �� denote the unique root of
df

d�
(�) = 0 : (14)
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We show that (14) always has a root (for �b � h) by showing that �(�)=� ! 0 as � ! 0 and

�(�)! 1 as �! 1. The uniqueness of the root follows from convexity of f . Because �(�) < �,

R(�; �(�)) � e(��1)=� :

Since e(��1)=�=�! 0 as �! 0, �(�)=� ! 0 as �! 0. To show that �(�)! 1 as �! 1 we use the

heavy traÆc limit for the D/M/1 queue. The classical heavy traÆc result of Kingman (1962) (see

also e.g. Wol� 1989) for the GI/G/1 queue can be applied here. Specialized to the D/M/1 queue,

this result states that

(1� �)ICOI(�)! 1

2
as �! 1 : (15)

Thus
(1� �)�

1� �(�)
! 1

2
as �! 1 : (16)

From (16) we see immediately that �(�)! 1 as �! 1.

Thus, de�ning �� = [���]�1 we have

�� = arg min
� > 0

fCCOI(�)g ;

and C�COI = CCOI(�
�) = f(��).

3. Comparison of the Two Policies

The preceding analysis does not provide any hint of the comparative performance of the optimal

base-stock policy and the optimal constant order interval policy. So we begin this section by

presenting a numerical comparison.

For all of our numerical results we set � = 1 and h = 1. This is without loss of generality:

Setting � = 1 �xes the time unit, and setting h = 1 �xes the monetary unit. We are left with two

parameters, b and L. Recall that C�COI does not depend on L. In Figure 1 we plot C�COI(b) and

C�BS(b; L) vs. b for 1 < b � 20 and L = 1; 10; 100. (Here and in other places below we explicitly

indicate the dependence of C�COI and C
�
BS on some parameters. Precise use will vary and should be

clear from the context.) This �gure clearly indicates that it is possible to have C�COI(b) < C�BS(b; L)

for some (b; L): The optimal constant order interval policy sometimes provides a lower cost than the

optimal base-stock policy. (The �gure also indicates that, for some (b; L), C�COI(b) > C�BS(b; L).)

Now that we have established that neither policy majorizes the other, it would be nice to

determine, for any given (b; L), which policy provides a lower cost. Lemma 1 provides a key step
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in this comparison. Because C�COI does not depend on L, by Lemma 1 for each b > 1 there is an

L�(b) such that C�BS(b; L) < C�COI(b) for L < L�(b) and C�BS(b; L) > C�COI(b) for L > L�(b). In

Figure 2 we plot L�(b) vs. b for 1 < b � 20. There are two immediate observations one can make

from the �gure: L�(b) is not monotone in b, and for large b L�(b) appears to be nearly linear in b.

The latter observation is shown to be true, in an asymptotic sense, in Section 4: We show there

that

lim
b!1

b�1L�(b) = 
� ; (17)

where 
� is approximately 0.69787.

It is worth pondering, at least momentarily, what a reasonable relationship is between b and

L, especially given (17). This topic appears to be worthy of further study. Such a study is beyond

the scope of this paper, so we provide some simple observations. If the lead time is purely due to

transportation, and the holding cost during transport is borne by the decision-maker, then we must

have b � hL. Indeed, if b < hL then it would be cheaper to expedite all orders. The picture is a bit

murkier when the lead time is caused by production, and the `holding' costs during production are

borne by the producer. We can imagine an item going through a series of production steps, each of

which adds some value. We can also imagine that the holding cost (certainly the �nancial piece)

is proportional to the current total value V (t). Then the holding cost incurred by the producer

is proportional to
R L
0 V (s)ds. If value is added in a reasonably linear fashion (i.e. not all in the
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interval [L � �; L]) then the expediting cost should grow proportionally with L. (Again, if it does

not, the producer would always use the expediting mode.) Another view of expediting cost | the

cost to the producer of the disruption to other production caused by expediting, would require a

deeper analysis of the entire production process and all demands placed on it.

4. The Large Loss Penalty Limit

In this section we examine the behavior of �� and s� as b ! 1, with a particular focus on

determining the behavior of L� as b!1. As a byproduct we also obtain long lead time asymptotics

(L!1) for s�.

4.1. The Constant Order Interval Policy

We begin with an analysis of the constant order interval policy. We consider the limit b!1
with � and h held �xed. Thus we explicitly indicate the dependence of various quantities on b. (As

indicated earlier, L plays no role in this policy.)

Before stating and proving Theorem 1, which provides the asymptotic behavior of the COI

policy as b!1, we �rst provide a heuristic derivation of the results. Intuitively, as b!1 we want

to have the lost sales fraction shrink to zero. This corresponds to �� ! 1: heavy traÆc. (Recall

that we introduced the heavy traÆc limit for the D/M/1 queue in Section 2.2.) Anticipating the

10



behavior of ��(b) we assume that

p
b(1� ��(b))! r�; 0 < r� <1 : (18)

One might reasonably guess this behavior as follows. With ��(b) satisfying (18) the average inven-

tory holding cost rate, hICOI(�
�(b)), satis�es

b�1=2hICOI(�
�(b))! h

2r�
as b!1 : (19)

The lost sales cost rate, �b(1� ��(b)), satis�es

b�1=2�b(1� ��(b))! �r� as b!1 : (20)

Thus, with ��(b) satisfying (18) the holding and lost sales costs are of the same order of magnitude.

Recall that ��(b) is the unique solution of

��(b)

[1� �(��(b))][��(b)� �(��(b))]
=
�b

h
: (21)

Assuming (18), and using (16) we obtain

��(b)

b[1� �(��(b))][��(b)� �(��(b))]
! 1

2(r�)2
;

so that, by (21), r� =
q

h
2� . Combining this with (19) and (20) yields

b�1=2C�COI(b)!
p
2h� :

Parts (i) and (ii) of the following theorem provide a rigorous justi�cation for the above heuris-

tically derived results. Part (iii) of the theorem shows the asymptotic optimality of a natural

approximation to ��(b) based on (18). Solving (18) for ��(b) we obtain

��(b) � 1� r�p
b
:

Using the value of r� obtained above, it is natural to propose the use of

�̂(b) = 1�
r

h

2�b
;

or �̂(b) = [��̂(b)]�1 in a system with parameters h, � and b. Part (iii) of Theorem 1 shows that, to

leading order (the optimal cost and cost under �̂(b) both grow to in�nity), the cost under �̂(b) is

the same as the cost under ��(b).

Theorem 1. With h and � held �xed, the following hold:

11



(i) ��(b)! 1 as b!1 with

p
b(1� ��(b))!

r
h

2�
as b!1 : (22)

(ii)

b�1=2C�COI(b)!
p
2h� as b!1 : (23)

(iii) Let �̂(b) = 1�
q

h
2�b and �̂(b) = [��̂(b)]�1.

Then
CCOI(�̂ (b))

C�COI(b)
! 1 as b!1 :

Proof. We �rst show that ��(b) ! 1 as b ! 1. As b ! 1, the left-hand side of (21) must grow

to 1 as well. The numerator is clearly bounded, so we must have the denominator converge to 0

as b!1. This can only occur if ��(b)! 1 as b!1.

We rewrite (16) as

1� �(�) = 2(1� �) + Æ(�)(1 � �) (24)

where Æ(�)! 0 as �! 1. Using (24) we can write

1� �(��(b)) = 2(1 � ��(b)) + Æ2(b)(1 � ��(b)) (25)

with Æ2(b) ! 0 as b ! 1. (We have Æ2(b) = Æ(��(b)); Æ(��(b)) ! 0 as b ! 1 since ��(b) ! 1

as b! 1.) Let D(b) denote the denominator of the left-hand side of (21). Substituting (25) into

D(b) yields

D(b) = (2 + Æ2(b))(1 + Æ2(b))(1 � ��(b))2;

so that

[1� ��(b)]�2D(b)! 2 as b!1 :

Combining this with (21) yields

p
b(1� ��(b))!

r
h

2�
as b!1 ;

and completes the proof of (i).

We have

C�COI(b) = f(��(b)) =
h��(b)

1� �(��(b))
+ �b(1� ��(b)) :
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Using (22) and (25),
p
b[1� �(��(b))]!

p
2h=� as b!1 : (26)

Thus (using (22) for the second term of f(��(b))) we obtain

b�1=2C�COI(b)!
r
h�

2
+

r
h�

2
as b!1 ;

which is (ii).

With �̂(b) = 1�
q

h
2�b and �̂(b) = [��̂(b)]�1,

CCOI(�̂ (�)) = f(�̂(b)) =
h�̂(b)

1� �(�̂(b))
+ �b(1� �̂(b)) :

Using (24) we can write

1� �(�̂(b)) = [2 + Æ(�̂(b))]

r
h

2�
;

so that

b�1=2CCOI(�̂ (b))!
p
2h� : (27)

Combining (23) and (27) yields

CCOI(�̂(b))

C�COI(b)
! 1 as b!1 ;

which is (iii).

4.2. The Base-Stock Policy

We now undertake an asymptotic analysis of the base-stock policy as b ! 1. As in the

analysis of the constant order interval policy we hold � and h �xed. In contrast to the constant

order interval policy, however, the performance of the base-stock policy, as well as the choice of s�,

depend on L. Motivated by the desire to prove the asymptotic linearity of L� in b, we let Lb = 
b

for 0 < 
 <1. (Other scalings for Lb vs. b are commented on below, in Section 4.3.)

As in the previous section, we begin with a heuristic derivation of the asymptotic behavior of

s�(b) and C�BS(b) as b!1. As for the COI policy, intuitively, as b!1 we want to have the lost

sales fraction shrink to zero. The fraction of lost sales is B(s�(b); �b
). Although it seems clear

that we want s�(b)!1 as b!1, it is not immediately clear how s�(b) should relate to b as both

grow large.

A key role in our analysis is played by an asymptotic result for B(n; a) due to Jagerman (1974),

which states that, if �a ! � as a!1 with �1 < � <1, then

lim
a!1

p
aB

�ba+ �a
p
ac; a� =  (��) ; (28)
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where

 (x) =
�(x)

1� �(x)
; �1 < x <1 ;

�(x) = e�x
2=2=

p
2�, and �(x) =

R x
�1

�(z)dz.

The limit (28) provides us with the key to determining how s(b) needs to grow to have the

holding and lost sales costs be of the same order. In particular, if s(b) = b�b
 + �
p
�b
c for some

� 2 (�1;1), then the average inventory holding cost rate h[s(b)� �b
(1�B(s(b); �b
))] satis�es

b�1=2h [s(b)� �b
(1�B(s(b); �b
))]! h
p
�
(� +  (��)) as b!1 : (29)

The lost sales cost rate �bB(s(b); �b
) satis�es

b�1=2�bB(s(b); �b
)!
s
�



 (��) : (30)

Combining (29) and (30) we obtain

b�1=2CBS(s(b))! h�
p
�
 +

s
�



(h
 + 1) (��) � g(�) as b!1 : (31)

It was shown by Morrison and Ramakrishnan (2003) that  is strictly increasing and strictly convex.

Thus g is also convex. A simple calculation yields

 0(x) � d 

dx
(x) =  (x)[ (x) � x]; �1 < x <1 :

Di�erentiating (31),

g0(�) = h
p
�
 �

s
�



(h
 + 1) 0(��) ;

so that g0(�) = 0 if and only if

 0(��) = h


1 + h

: (32)

The following lemma, which is proved in the appendix, veri�es that (32) has a unique solution.

Lemma 2. For any y 2 (0; 1) there exists a unique w�(y) such that

 0(w�(y)) = y :

Let

�� = �w�
�

h


1 + h


�
: (33)

The above derivation indicates that

s�(b)� �b
p
�b


! �� as b!1

14



and

b�1=2C�BS(b)! g(��) as b!1 :

These two limits, as well as the asymptotic optimality of the base-stock level

ŝ(b) = b�b
 + ��
p
�b
c

are shown in Theorem 2.

Theorem 2. With h, �, and 
 held �xed, 0 < h; �; 
 <1, and Lb = 
b, the following hold:

(i) s�(b)!1 with
s�(b)� �b
p

�b

! �� as b!1 : (34)

(ii)

b�1=2C�BS(b)! h��
p
�
 +

s
�



(h
 + 1) (���) as b!1 : (35)

(iii) Let

ŝb = b�b
 + ��
p
�b
c : (36)

Then
CBS(ŝb)

C�BS(b)
! 1 as b!1 :

Proof. We use the following standard identity for B(�; �): For 1 � s <1 and 0 < a <1,

B(s� 1; a)�B(s; a) = B(s� 1; a)

�
1� a

s+ aB(s� 1; a)

�
: (37)

We can write (28) as

B
�
b�b
 + �a

p
�b
c; �b


�
=
 (��) + Æ3(b)p

�b

; (38)

where Æ3(b)! 0 as b!1. Let � > 0. With ŝb de�ned as in (36) and using (38) on the right-hand

side of (37), we have

B
�
ŝb � 1 + b�

p
�b
c; �b


�
�B

�
ŝb + b�

p
�b
c; �b


�
=
 (��� ��) + Æ3(b)p

�b


�
��
p
�b
 +�

p
�b
 +

p
�b
( (��� ��) + Æ4(b))

�b
 + ��
p
�b
 +�

p
�b
 +

p
�b
( (��� ��) + Æ4(b))

�
� Rb(�)

�b

; (39)
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where Æ4(b) includes Æ3(b) as well as round-o� error due to b�c; Æ4 ! 0 as b ! 1. As b ! 1,

Rb(�)! R(�) with

R(�) =  (��� ��) [�� +�+  (��� ��)] =  0(��� ��) :

By the de�nition of �� and the convexity of  , R(�) < h

1+h
 . De�ne C(�) > 0 by C(�) =

h

1+h
 �R(�). Using (39) we can write

b
h
B
�
ŝb � 1 + b�

p
�b
c; �b


�
�B

�
ŝb + b�

p
�b
c; �b


�i
=

h

�(1 + h
)
� C(�)

�

+ Æ5(b) ;

(40)

where Æ5(b) ! 0 as b ! 1. For b large enough the right-hand side of (40) is strictly less than

h
�(1+h
) . From (3),

b [B(s�(b)� 1; �b
)�B(s�(b); �b
)] � h

�(1 + h
)
;

so that

ŝb + b�
p
�b
c � s�(b) : (41)

Using a similar argument on B(ŝb � 1 � b�p�b
c; �b
) � B(ŝb � b�p�b
c; �b
) (and using

R(��) > h

1+h
 ) yields

ŝb � b�
p
�b
c � s�(b) : (42)

Combining (41) and (42) we obtain that, for any � > 0,

ŝb � b�
p
�b
c � s�(b) � ŝb + b�

p
�b
c : (43)

Since � > 0 was arbitrary this implies that

s�(b)� ŝbp
�b


! 0 as b!1 ;

which, by the de�nition of ŝb, implies (i).

We prove (ii) and (iii) together. Using (1) we can write

CBS(ŝb) = h
h
b�b
 + ��

p
�b
c � �b


�
1�B(b�b
 + ��

p
�b
c; �b
)

�i
+ �bB(b�b
 + ��

p
�b
c; �b
) : (44)

Combining (44) with (38) we then have

b�1=2CBS(ŝb) = h��
p
�
 +

s
�



(h
 + 1)( (���) + Æ3(b)) + Æ6(b) ; (45)
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where Æ6(b) contains round-o� error due to b�c; Æ6(b) ! 0 as b ! 1. From (45) it is immediate

that

b�1=2CBS(ŝb)! h��
p
�
 +

s
�



(h
 + 1) (���) � C

�

BS as b!1 : (46)

Using (43) and the fact that B(n; a) is decreasing in n, we obtain, for � > 0,

B
�
ŝb + b�

p
�b
c; �b


�
� B(s�(b); �b
) � B

�
ŝ� b�

p
�b
c; �b


�
: (47)

Let

L�(b) = b�1=2h
�
ŝb � b�

p
�b
c

�
� h�


p
b+ �

p
b(h
 + 1)B

�
ŝb + b�

p
�b
c; �b


�
(48)

and

U�(b) = b�1=2h
�
ŝb + b�

p
�b
c

�
� h�


p
b+ �

p
b(h
 + 1)B

�
ŝb � b�

p
�b
c; �b


�
: (49)

Combining (43) and (47) yields

L�(b) � b�1=2C�BS(b) � U�(b) : (50)

In the same manner that (44) led to (46), from (48) and (49) we obtain

lim
b!1

L�(b) = C
�

BS � h�
p
�
 +

s
�



(h
 + 1) [ (��� ��)�  (���)] � L�

and

lim
b!1

U�(b) = C
�

BS + h�
p
�
 +

s
�



(h
 + 1) [ (��� +�)�  (���)] � U� :

By the continuity of  , lim�!0 L� = lim�!0 U� = C
�

BS . Since � > 0 was arbitrary,

b�1=2C�BS(b)! C
�

BS as b!1 ; (51)

which proves (ii).

Finally, combining (46) and (51) yields

CBS(ŝb)

C�BS(b)
! 1 as b!1 ;

proving (iii).

Smith (1977) considered the limit (translated to our notation, as are all of Smith's results

below) L ! 1 with bL = 
�1L. This is equivalent to the limiting regime considered here. With

s(b) = b�b
 + x
p
�b
c he used the approximation

e��b

s(b)X
n=0

(�b
)n

n!
� 1 :

17



The result of Jagerman (1974) that we use is based on the more accurate limit

e��b

s(b)X
n=0

(�b
)n

n!
! �(x) as b!1 :

One consequence of Smith's less accurate approximation is that he obtains �� > 0 for all values of

h. This contrasts with our results, since the solution to (33) can be negative. (See the discussion

on safety stock in Section 4.3.)

4.3. Comparison of the Limits

The essence of Theorems 1 and 2, from the point of view of comparing the two policies is the

following:

b�1=2C�COI(b)!
p
2h� as b!1

and

b�1=2C�BS(b)! h��
p
�
 +

s
�



(h
 + 1) (���) as b!1 :

Let

�b(h; �; 
) =
C�BS(b)

C�COI(b)
: (52)

Then Theorems 1 and 2 imply that

�b(h; �; 
)! �(h
) as b!1 ; (53)

where

�(x) = ��(x)

r
x

2
+

(1 + x) (���(x))p
2x

; (54)

and ��(x) is de�ned by (33) with h
 = x. Interestingly, the � terms cancel out in the ratio, and

h; 
 appear only via their product. By (33) and the convexity of  , �� is decreasing in x. The

following lemma, showing that � is an increasing function, is proved in the appendix.

Lemma 3. For x > 0, �0(x) > 0.

We are now ready to prove the asymptotic linearity of L�b in b as b!1. Let x� be the unique

point where

�(x�) = 1 : (55)

The uniqueness of x� satisfying (55) follows from Lemma 3. The existence of x� follows from

numerical calculation: �(0:69786) < 1 and �(0:69788) > 1. Thus 0:69786 < x� < 0:69788. By

Lemma 3, �(x) < 1 for x < x� and �(x) > 1 for x > x�.
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Theorem 3. With h and � �xed,

L�b
b
! x�

h
� 
� as b!1 : (56)

Proof. We prove that lim supb!1
L�
b

b � 
� and that lim infb!1
L�
b

b � 
�.

By (53) and the de�nition of 
�,

�b(h; �; 

�)! 1 as b!1 :

In addition, by Lemma 3, for any � > 0,

lim
b!1

�b(h; �; 

� ��) < 1

lim
b!1

�b(h; �; 

� +�) > 1 :

Thus, given any � > 0, for all b large enough,


� �� � L�b
b
� 
� +� ;

which implies

lim sup
b!1

L�b
b
� 
� +�

and

lim inf
b!1

L�b
b
� 
� �� :

Since � > 0 was arbitrary the theorem is proved.

In the above asymptotic analysis we have assumed that Lb = 
b with 0 < 
 < 1 and let

b ! 1. Although a detailed analysis is beyond the scope of this paper, we provide a quick

overview of the cases Lb
b ! 0 and Lb

b ! 1 as b ! 1. When Lb
b ! 0 as b ! 1 it can be shown

that
s�(b)� �Lbp

�Lb
!1 as b!1 :

A heuristic calculation leads us to conjecture that, with h and � held �xed,

C�BS(b; Lb)

C�COI(b)
! 0 as b!1 :

When Lb
b !1 it can be shown that

s�(b)� �Lbp
�Lb

! �1 as b!1 :
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A heuristic calculation for this case leads us to conjecture that, with h and � held �xed,

C�BS(b; Lb)

C�COI(b)
!1 as b!1 :

A key measure of how much an inventory system hedges against uncertain demand is safety

stock. The safety stock is de�ned as the di�erence between the average inventory position and the

expected number of demands over a lead time. For a base-stock policy the inventory position is

always equal to the base-stock level. Thus, if we let ZBS(s) denote the safety stock of the base-stock

policy with base-stock level s,

ZBS(s) = s� �L :

For the COI policy the average inventory position is the sum of the average inventory level

and the number of items in the pipeline. Letting ZCOI(�) denote the safety stock of the COI policy

with order interval � = (��)�1,

ZCOI(�) =
�

1� �(�)
+ (�� 1)�L :

Using the results of Theorems 1 and 2 we can examine the asymptotic behavior (assuming

Lb = 
b with 0 < 
 <1) of the safety stock of these two policies under the respective optimal s�

and ��. Let bZBS(b) = b�1=2ZBS(s
�(b))

and bZCOI(b) = b�1=2ZCOI(�
�(b)) :

From Theorem 2 we immediately obtain

bZBS(b)! ��
p
�
 � bZBS(1) as b!1 : (57)

Similarly, Theorem 1 yields

bZCOI(b)!r
�

2h
(1� 
h) � bZCOI(1) as b!1 : (58)

(Although it appears that bZBS(1) does not depend on h, recall that �� depends on h.)

In the unlimited backlogging version of the inventory model we are considering, the long lead

time limit leads to safety stock that is proportional to the square-root of the lead time and is always

positive. For the lost sales model, on the other hand, although the safety stock is again proportional

to the square-root of the lead time, it may be positive or negative, depending on the values of h

and 
. (The value of � a�ects the magnitude of bZBS(1) and bZCOI(1) but not their signs.)
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The sign of bZBS(1) will be precisely the sign of ��. Recall from (33) that �� depends on 


and h through their product 
h, and that �� is decreasing in 
h. If we �nd x0 such that ��(x0) = 0

then �� < 0 for 
h > x0 and �
� > 0 for 
h < x0. From (33) we can write

 2(0) =
x0

1 + x0

so that x0 =  2(0)=(1 �  2(0)). Note that  (0) =
q

2
� so that x0 = 2=(� � 2) � 1:752.

From (58) it is immediate that bZCOI(1) < 0 for 
h > 1 and bZCOI(1) > 0 for 
h < 1.

Thus, when 
h < 1 both policies have positive safety stock. When 1 < 
h < x0, the COI policy

has negative safety stock while the base stock policy has positive safety stock. For 
h > x0 both

policies have negative safety stock.
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Appendix

In this appendix we provide proofs of Lemmas 1, 2 and 3.

Lemma 1. With h, b, and � held �xed, C�BS is a continuous and strictly increasing function of L.

Proof. Throughout the proof we assume that h, b, and � are �xed. We also assume that �b � h, so

that s� � 1. We use the following result from measure theory: A continuous function whose right

hand derivative is non-negative everywhere and positive almost everywhere is strictly increasing.

(This follows, for example, from Roydin 1968, Problem 3, p.98 and Theorem 2, p.96.)

Recall that, for s � 0,

CBS(s) = h [s� �L(1�B(s; �L))] + �bB(s; �L) :

For �xed s, this is di�erentiable in L, with

@CBS

@L
(s) = �h�(1 �B(s; �L)) + h�2L

@B

@a
(s; �L) + �2b

@B

@a
(s; �L) : (A1)

Straightforward di�erentiation of B(s; a) with respect to its second argument yields

@B

@a
(s; a) = ps�1 �B(s; a)[1�B(s; a)] : (A2)

It is known that (cf. problem 5-11 on p. 301 in Wol� 1989)

ps�1 = B(s� 1; a)[1 �B(s; a)]; s � 1 : (A3)

Substituting (A3) into (A2) we obtain

@B

@a
(s; a) = [B(s� 1; a)�B(s; a)][1 �B(s; a)] : (A4)

Assume (momentarily) that the right-hand inequality in (3) is strict. Then s�(L) will not

change for suÆciently small changes in L. Thus

@C�BS
@L

=
@CBS

@L
(s�(L))

=
�
�2(hL+ b)[B(s�(L)� 1; �L)�B(s�(L); �L)] � h�

	
[1�B(s�(L); �L)] : (A5)

By (3),

B(s�(L)� 1; �L)�B(s�(L); �L) >
h

�(b+ Lh)
;

so that
@C�BS
@L

> 0 :
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We now deal with the case where the right-hand inequality in (3) is not strict. In this case

B(s�(L)� 1; �L) �B(s�(L); �L) =
h

�(b+ Lh)
; (A6)

and using (A5) we obtain @CBS
@L (s�(L)) = 0. Note also that, at L; s�(L) and s�(L)�1 have the same

total cost. Since CBS(s
�(L)) and CBS(s

�(L) � 1) are both continuous in L, C�BS is continuous at

L.

In order to complete the proof for this case we show that, for Æ suÆciently small, s�(L+ Æ) =

s�(L), which immediately implies that @CBS
@L (s�(L)) is the right hand derivative of C�BS . This will

be true if
@

@L

�
h

�(b+ Lh)

�
<

@

@L
(B(s�(L)� 1; �L)�B(s�(L); �L)) : (A7)

The left-hand side is immediate:

@

@L

�
h

�(b+ Lh)

�
= � h2

�(b+ Lh)2
:

For the right-hand side, if s�(L) � 2 we use (A4) to write

@

@L
[B(s�(L)� 1; �L) �B(s�(L); �L)]

= � f[B(s�(L)� 2; �L)�B(s�(L)� 1; �L)] [1�B(s�(L)� 1; �L)]

� [B(s�(L)� 1; �L)�B(s�(L); �L)] [1�B(s�(L); �L)]g :

Recall that

B(s�(L)� 2; �L)�B(s�(L)� 1; �L) > B(s�(L)� 1; �L)�B(s�(L); �L) =
h

�(b+ Lh)
;

and de�ne � > 0 by

� = B(s�(L)� 2; �L) �B(s�(L)� 1; �L) � h

�(b+ Lh)
:

We can thus write

@

@L
[B(s�(L)� 1; �L)�B(s�(L); �L)] = �� [1�B(s�(L)� 1; �L)]� h2

�(b+ Lh)2
;

so that (A7) holds.

If s�(L) = 1 and (A6) holds, then �b = h. In this case

@

@L
(B(0; �L) �B(1; �L)) = � �

(1 + �L)2
= � h2

�(b+ Lh)2
;

23



and (A7) again holds.

Lemma 2. For any y 2 (0; 1) there exists a unique w� such that

 0(w�) = y : (A8)

Proof. The uniqueness of w� follows immediately from convexity of  , but existence requires a bit

more e�ort. In order to show that a �nite solution w� to (A8) exists for every y 2 (0; 1) we show

that  0(x)! 0 as x! �1 and  0(x)! 1 as x!1.

We �rst deal with x! �1. We can write

 (x) =
e�x

2=2R1
x e�t2=2dt

and

 0(x) =
e�x

2=2R1
x e�t2=2dt

"
e�x

2=2R1
x e�t2=2dt

� x

#
: (A9)

As x! �1, Z 1

x
e�t

2=2dt!
p
2� ;

e�x
2=2 ! 0 and xe�x

2=2 ! 0. Thus  0(x)! 0 as x! �1.

We now deal with x!1. Our starting point is relation 586. on p. 136 of Dwight (1961):

1p
2�

Z x

�x
e�t

2=2dt = 1�
r

2

�

e�x
2=2

x

�
1� 1

x2
+

3

x4
+ ~�(x)

�
; (A10)

with j~�(x)j � 3=x4. (A similar relation, which would require a bit of manipulation to meet our

purposes is (7.1.13) on p. 298 of Abramowitz and Stegun 1972.) We can rewrite (A10) asZ 1

x
e�t

2=2dt =
e�x

2=2

x

�
1� 1

x2
+

3

x4
+ ~�(x)

�
so that

e�x
2=2R1

x e�t2=2dt
=

x

1� 1
x2 + �(x)

;

where �(x) = 3
x4

+ ~�(x) and x2�(x)! 0 as x!1. Thus

 (x) = x+
1

x
+ �0(x) ; (A11)

where x�0(x)! 0 as x!1. Using (A11) we can write

 0(x) =

�
x+

1

x
+ �0(x)

��
1

x
+ �0(x)

�
! 1 as x!1 ;
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completing the proof.

Lemma 3. For x � 0, �
0
(x) > 0.

Proof. We re-write (54) as

�(x) =

r
x

2
[ (���(x)) + ��(x)] +

 (���(x))p
2x

: (A12)

Di�erentate (A12):

d�

dx
(x) =

d��

dx

�r
x

2

�
1�  0(���(x))�� 1p

2x
 0(���(x))

�
+

1

2
p
2x

[��(x) +  (���(x)]� 1

2x
p
2x
 (���(x)) : (A13)

From (33) we can substitute  0(���(x)) = x
1+x . Performing this substitution, the term multiplying

d��

dx is seen to be zero. We thus have

d�

dx
(x) =

1

2
p
2x

�
��(x) +  (���(x))� 1

x
 (���(x))

�
: (A14)

Although the d��

dx term does not appear in (A14), we obtain a useful relation from d��

dx , so we

calculate it. Implicit di�erentiation of (33) yields

d��

dx

�
 (���(x))�  0(���(x))[2 (���(x)) + ��(x)]

	
=

1

(1 + x)2
:

Substituting in  0(���(x)) = x
1+x , we obtain

d��

dx
=

�1
x(1 + x)[��(x) +  (���(x))� 1

x (���(x))]
: (A15)

Recall that �� is decreasing in x, so d��

dx < 0, which implies that

��(x) +  (���(x))� 1

x
 (���(x)) > 0 : (A16)

Combining (A16) with (A14) yields d�
dx > 0, completing the proof.
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