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Abstract

We consider the single item, single location, continuous review inventory model with lost sales.
Demand is assumed to arrive as a Poisson process and lead times are assumed to be fixed. The
optimal policy for this system is not known. We introduce a new and simple policy: Every 7 time
units order an item (7 is a positive number). This policy is compared to the standard base-stock
policy and is shown (numerically) to outperform it for certain parameter values. We then carry out
an asymptotic analysis for both policies as the lost sales penalty and lead time grow large. This
analysis, motivated by a conjecture based on our numerical results, provides reasonably explicit
expressions for various quantities of interest, such as optimal costs and optimal safety stock levels.
The optimal safety stock for both policies is shown to grow as the square-root of the lead time, and

may be positive or negative.



1. Introduction

Karlin and Scarf (1958) described two periodic review inventory models with fixed positive
lead times: Model I with lost sales, and Model II with backordering. In the backordering case they
proved the optimality of a base-stock policy, whereas for the lost sales model they found that the
optimal policy does not typically have a simple form. In general, the optimal policy for the lost
sales case may depend on the entire ‘pipeline’ of items ordered but not yet delivered. Such a policy
would be difficult to both compute and implement. Despite its practical importance (as Karlin and
Scarf and others have noted, the lost sales model also applies to systems that employ expediting)
the lost sales model has received relatively little attention in the research literature.

Our focus in this paper is a continuous review version of Model I. Customer demand arrives as
a Poisson process. If the inventory level is positive when a demand arrives, it is satisfied, otherwise
the demand is lost. Inventory replenishment orders arrive into inventory after a fixed lead time.
Items in inventory incur (linear) holding costs, and lost demand incurs a loss penalty. The goal is
to minimize the long run average cost of operation.

As in the periodic review case the continuous review lost sales model has no simple optimal
policy (cf. Hill 1999), and most related work has focused on simpler policies, most notably base-
stock. As recognized by Karush (1957), a base-stock policy in the continuous review lost sales model
leads to an Erlang loss system, so that for a fixed base-stock level the cost can be determined using
the celebrated Erlang B formula. (An interesting historical note: Karush credits Philip Morse for
this insight.) Furthermore, the convexity properties of the Erlang B formula give rise to a simple
search procedure for the optimal base-stock level.

Of course, the policy found by the above search is optimal among base-stock policies, but
typically not among all policies. Recognizing the apparant difficulty of determining the optimal
policy or analyzing the performance of policies that are more complicated than base-stock, we take
a different tack in this paper. We introduce an alternate policy that is easy to implement, analyze,
and optimize, and show that it sometimes (depending on the system parameters) achieves a lower
cost than the optimal base-stock policy. The policy we consider has the following simple form:
Place a replenishment order every 7 time units. This policy, which we call constant order interval,
or COI, leads to a D/M/1 queue for performance evaluation, and the optimal 7 can easily be found.

This policy is ‘open-loop’ — the ordering ‘decisions’ do not depend on the demand process. This

is in contrast to the base-stock policy, where orders are triggered by (successfully met) demands.



We are not necessarily advocating the use of this policy in a real system: an open-loop policy can
lead to disaster in a context where parameters (such as demand arrival rate) change or have been
incorrectly estimated. On the other hand, if one has a system with parameters for which the best
constant order interval policy beats the best base-stock policy, then perhaps some modified version
of COI, which incorporates a certain level of oversight, should be considered.

As indicated above, the performance analysis of the two policies that we consider follow from
standard results in queueing theory. The optimization within each policy type is straightforward,
but the expressions for the resulting minimum costs are not amenable to analytical comparison.
We first carry out a numerical comparison of the policies. This comparison (carried out in Section
3) shows that neither policy majorizes the other: there are parameter values for which the constant
order interval policy is better and others for which base-stock is better. The numerical results
also give rise to a natural conjecture on the relative minimal costs as the lost sales cost grows
large. This conjecture motivates an asymptotic analysis, which we carry out in Section 4. The
asymptotic analysis is for large lost sales cost and lead time, and verifies the conjecture based on
the numerical results. The asymptotic analysis also provides more explicit expressions for various
quantities of interest, which in turn provide additional insights. For example, we find that the
'safety stock’ for both policies grows as the square root of the lead time, and may be positive or
negative. Furthermore, if the parameters are such that the optimal COI policy has positive safety
stock, the optimal base-stock policy also has positive safety stock. (The converse is not true.)

We remark briefly on some related references. The recent text of Zipkin (1999), and the
surveys of Porteus (1990) and Lee and Nahmius (1993) contain discussion of the lost sales model
and related previous work. In addition to the previously mentioned paper of Karush (1957), a key
reference for us is Smith (1977), who also considers the base-stock policy for the continuous review
lost sales model. He provides a characterization of the optimal base stock level that proves to be
very useful. Smith also carries out an asymptotic analysis under large lost sales cost and lead time.
As described in more detail in Section 4, our asymptotic analysis is a refinement of his.

There are also papers that consider sub-optimal policies that are more complicated than base-
stock. In the discounted periodic review case Morton (1969) provided monotonicity results for the
value function as well as upper and lower bounds on the optimal order quantity and cost. Using
this upper bound, Morton (1971) presented a myopic approximation for the optimal order quantity.
For continuous review Hill (1999) showed that given a base-stock policy with base stock level S > 2,

there is some 0 > 0 such that the ‘modified base-stock’ policy that also uses base-stock level S but



waits at least § time units between orders will have lower cost than the base-stock policy. (Thus
no base-stock policy with S > 2 can be optimal.) Based on Hill (1999), but for the periodic review
case, Johansen (2001) introduced a modified base-stock policy specified by the pair (S,t¢). Here
again S is the base-stock level, and ¢ is the minimum number of periods that must elapse between
orders. All of these policies are more difficult to analyze, optimize and implement than the two
simple policies considered in this paper.

The rest of the paper is organized as follows. In Section 2 the mathematical model is more
precisely specified and the analysis (and optimization) of the two policies is presented. A numerical
comparison of the two policies is provided in Section 3. Section 4 contains an asymptotic analysis

under large loss penalty (and large lead time) for both policies.

2. The Mathematical Model

Customer demand arrives as a Poisson process with rate A. Let I(¢) denote the number of
items in inventory at epoch ¢. If I(t—) > 0 at the moment of a demand arrival, that demand is
met, and I(t+) = I(t—) — 1. If I(t—) = 0, the demand is lost and a loss cost of b > 0 is incurred
by the system. The replenishment lead time is L > 0. Thus, if a replenishment order is placed at
epoch ¢, it will arrive at £ 4+ L. A linear holding cost of h per unit of inventory per unit of time is

also charged. The goal is to minimize the long run average cost per unit of time.

2.1. Base-Stock Policy

Let O(t) denote the number of orders that have been placed with the supplier, but not yet received,
at epoch t. Consider the following base-stock policy: for some integer s > 0, place orders to keep
N(t) = O(t) + I(t) equal to s. Note that, aside from a possible initial transient period if N(0) > s,
this policy will yield N(¢) = s for all £. If N(0) > s, then no orders are placed until N(¢) falls
below s. If N(0) < s, an order of size s — N(0) is placed at epoch 0. Otherwise, an order of size 1
is placed whenever a demand is met, and no orders are placed otherwise.

The steady-state behavior of the above system (which is all that we need for determination
of long run average costs) is equivalent to the following Erlang B system. There are s servers.
Customers arrive as a Poisson process of rate A. When an arriving customer finds an idle server
it enters service, otherwise the customer is lost. Service times are all equal to L. (Idle servers
correspond to items in inventory. Customer arrivals correspond to demand arrivals. Busy servers

correspond to orders in the pipeline.) Let Opg denote the steady-state number of busy servers in



this system. Then
(AL)"™
!
anP{OBS:’I’L}:W, OS'I’LSS
=0 !

The fraction of customers lost is given by ps. To avoid confusion when we vary s, A, and L we let

_a"/n!
- Yed /!

for n > 0 and a > 0. This is the Erlang loss function. (The Erlang loss function gives the loss

B(n,a)

probability for any lead time distribution with finite mean, see e.g. Wolff 1989.) The average
number of idle servers, Ipg, can be found using Little’s Theorem. The average number of busy

servers, Opg, is given by (using Little’s Theorem)
Ops = AL(1 — B(s,\L))

so that
Ips =s— AL(1 — B(s,\L)).

Let Cpg(s) denote the long run average cost using base-stock level s. Then
Cps(s) = h[s — AL(1 — B(s,AL))] + A\bB(s, AL). (1)

With a held fixed, B(-,a) is a decreasing function of its first argument: B(n + 1,a) < B(n,a)
for n > 0. Karush (1957) showed that B(-,a) satisfies the convexity property

B(n,a) — B(n+1,a) < B(n —1,a) — B(n,a) . (2)

(The benefit, in terms of reduced blocking, of adding an additional server, is decreasing in n.)
Let
s* = max ¢ arg min Cpg(s)
s>0
(When there is more than one minimizing s for Cpg(s) the largest such s is chosen for s*.)
A useful characterization of s* was provided by Smith (1977) (in equation (7.4)). Translated

into our notation and using our largest arg min definition, it is

h

B(s*,A\L) — B(s* +1,\L -
(s*,A\L) (s +1,A )<)\(b+Lh)

< B(s*—1,\L) — B(s*,\L) . (3)

This provides a simple way to find s*, and also provides a simple sufficient condition for s* > 1.
Note that B(0,AL) =1 and B(1,AL) = AL/(1 + AL). Thus, if

1 h @
1+ AL = Xb+Lh)’
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then (3) assures that s* > 1. The condition (4) is equivalent to
Ab>h. (5)

It is straightforward to check the necessity of (5) by comparing the cost with s =0 and s = 1: We
have Cps(0) = Ab and Cps(1) = (h + A2bL)/(1 + AL). Tt is easy to verify that if Ab < h, then
Cps(0) < Cps(1). It is clear that, since B(s,AL) = 0 as s — oo, (3) always has a solution as long

as (5) holds. The minimum cost achievable using a base-stock policy is
Cpg =minCpg(s) = Cpg(s¥).
§>0

The following result, whose proof is given in the appendix, provides some insight on the effect

of the lead time L on the optimal cost.

Lemma 1. With h, b, and X held fized, C%q is a continuous and strictly increasing function of L.
2.2. Constant Order Interval Policy

We propose the following policy: For 7 > 0 (we impose 7 > A~! below for stability), place a
replenishment order every 7 time units. After the system has been in operation for L time units,
the pipeline is ‘filled’ and orders are delivered into inventory every 7 time units. Thus {I(¢),¢ > L}
behaves as the number-in-system process in a D/M/1 queue. (Customer demand arrivals correspond
to service completions. Demands arriving when I(¢) = 0 do not change the state of the system.)
Let p denote the traffic intensity of this D/M/1 queue. Then p = (A7)~ !. This system will have a
steady-state distribution if and only if p < 1, which corresponds to 7 > A~ If 7 < A~! the average
inventory level will be infinite, which will correspond to an infinite long run average cost. So we
impose the condition 7 > A~'. We also assume, as we did for the base-stock policy, that A\b > h.

By PASTA (the Poisson ‘arrivals’ here correspond to demand arrivals) the fraction of lost
demands is 1 — p. The average number-in-system (= inventory level) Ico; is obtained from the

standard GI/M/1 analysis (c.f. Wolff 1989):

- p
Icor=+—, (6)
1 —a(p)
where a(p) is the unique root in (0, 1) of
z = R(P, Z) ) (7)
with
R(p,2) = e~1=90s )



Let Ccor(r) denote the long run average cost using constant order interval 7. Then, for
>4
CC()](T) = tho](P\T]_l) + )\b(l — [)\T]_l) .

It is easier to work with p than 7, and then translate: 7 = [Ap]~!. Let

f(p) = hIcor(p) +Ab(1 —p).

From (6), B
dp 1—a(p)®
where o/ (p) = ‘é—‘;(p). Using (7) we can write
da OR OR da
Sy =22 ki ). |
) = 5 alo) + G (el () (10)
Differentiating (8) yields
OR 11—z
(9_p(p’ Z) = ,02 R(,O, Z)
and
OR

S .2) = %R(p, ).

Substituting these into (10), and noting that a(p) = R(p, a(p)), we obtain

da .« [1=a(p)le(p)
dp(p)_ plp —alp)] (1)

For the D/M/1 queue, a(p) < p (cf. Rogozin 1966, Theorem 1), so o/(p) > 0. Substituting (11)
into (9) yields

dIcor (p) = p

. (12)
dp [1—a(p)]lp — alp)]
Differentiating (12) and using (11) we determine that (after some cancellation)
d*Icor a(p)
(0) = . (13)
dp? [p—a(p)]?
Recall that a(p) < p, so d2§pc201 (p) > 0, and I¢or is a strictly increasing, strictly convex function

of p. By the definition of f 3
df dlcor
—(p)=nh —Ab.
i (p) ap (p)

Let p* denote the unique root of

o =0. (14)



We show that (14) always has a root (for Ab > h) by showing that a(p)/p — 0 as p — 0 and

a(p) — 1 as p — 1. The uniqueness of the root follows from convexity of f. Because a(p) < p,
R(p, a(p)) < e V7.

Since e(P~D/P/p — 0 as p — 0, a(p)/p — 0 as p — 0. To show that a(p) — 1 as p — 1 we use the
heavy traffic limit for the D/M/1 queue. The classical heavy traffic result of Kingman (1962) (see
also e.g. Wolff 1989) for the GI/G/1 queue can be applied here. Specialized to the D/M/1 queue,

this result states that

- 1
(L =p)corlp) =+ 5 as p—1. (15)
Thus
(L—pp 1
_— = 1. 16
1—a(p)_>2 as p— (16)

From (16) we see immediately that a(p) — 1 as p — 1.

Thus, defining 7 = [Ap*] ! we have

*

7" = arg min {Ccor(7)},
7>0

and C.op = Coor(r7) = f(p").
3. Comparison of the Two Policies

The preceding analysis does not provide any hint of the comparative performance of the optimal
base-stock policy and the optimal constant order interval policy. So we begin this section by
presenting a numerical comparison.

For all of our numerical results we set A = 1 and h = 1. This is without loss of generality:
Setting A = 1 fixes the time unit, and setting A = 1 fixes the monetary unit. We are left with two
parameters, b and L. Recall that Cf,,; does not depend on L. In Figure 1 we plot Cf.,;(b) and

Bg(b, L) vs. bfor 1 <b <20 and L =1,10,100. (Here and in other places below we explicitly
indicate the dependence of Cf,,; and C'5 ¢ on some parameters. Precise use will vary and should be
clear from the context.) This figure clearly indicates that it is possible to have Cf.,;(b) < Cj4(b, L)
for some (b, L): The optimal constant order interval policy sometimes provides a lower cost than the
optimal base-stock policy. (The figure also indicates that, for some (b, L), Cf,;(b) > Chg(b, L).)

Now that we have established that neither policy majorizes the other, it would be nice to

determine, for any given (b, L), which policy provides a lower cost. Lemma 1 provides a key step
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in this comparison. Because Cf.,; does not depend on L, by Lemma 1 for each b > 1 there is an
L*(b) such that Cjq(b,L) < Cf;(b) for L < L*(b) and Cxg(b, L) > Cky;(b) for L > L*(b). In
Figure 2 we plot L*(b) vs. b for 1 < b < 20. There are two immediate observations one can make
from the figure: L*(b) is not monotone in b, and for large b L*(b) appears to be nearly linear in b.
The latter observation is shown to be true, in an asymptotic sense, in Section 4: We show there
that

lim b 1L*(b) = v, (17)

b—oo

where v* is approximately 0.69787.

It is worth pondering, at least momentarily, what a reasonable relationship is between b and
L, especially given (17). This topic appears to be worthy of further study. Such a study is beyond
the scope of this paper, so we provide some simple observations. If the lead time is purely due to
transportation, and the holding cost during transport is borne by the decision-maker, then we must
have b > hL. Indeed, if b < hL then it would be cheaper to expedite all orders. The picture is a bit
murkier when the lead time is caused by production, and the ‘holding’ costs during production are
borne by the producer. We can imagine an item going through a series of production steps, each of
which adds some value. We can also imagine that the holding cost (certainly the financial piece)
is proportional to the current total value V(¢). Then the holding cost incurred by the producer

is proportional to fOL V(s)ds. If value is added in a reasonably linear fashion (i.e. not all in the
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Constant Order Interval better

L*
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Base—Stock better

interval [L — €, L]) then the expediting cost should grow proportionally with L. (Again, if it does
not, the producer would always use the expediting mode.) Another view of expediting cost — the
cost to the producer of the disruption to other production caused by expediting, would require a

deeper analysis of the entire production process and all demands placed on it.

4. The Large Loss Penalty Limit

In this section we examine the behavior of p* and s* as b — oo, with a particular focus on
determining the behavior of L* as b — oco. As a byproduct we also obtain long lead time asymptotics

(L — o0) for s*.
4.1. The Constant Order Interval Policy

We begin with an analysis of the constant order interval policy. We consider the limit b — oo
with A and A held fixed. Thus we explicitly indicate the dependence of various quantities on b. (As
indicated earlier, L plays no role in this policy.)

Before stating and proving Theorem 1, which provides the asymptotic behavior of the COI
policy as b — oo, we first provide a heuristic derivation of the results. Intuitively, as b — oo we want
to have the lost sales fraction shrink to zero. This corresponds to p* — 1: heavy traffic. (Recall

that we introduced the heavy traffic limit for the D/M/1 queue in Section 2.2.) Anticipating the

10



behavior of p*(b) we assume that
Vb(1 = p* (b)) = r*,  0<r*<oo. (18)

One might reasonably guess this behavior as follows. With p*(b) satisfying (18) the average inven-

tory holding cost rate, hIcor(p* (b)), satisfies

b_1/2h7001(p*(b)) — Q—h* as b— 0. (19)
r

The lost sales cost rate, Ab(1 — p*(b)), satisfies
b='2Xb(1 = p*(b)) = Ar* as b— oo. (20)

Thus, with p*(b) satisfying (18) the holding and lost sales costs are of the same order of magnitude.

Recall that p*(b) is the unique solution of

p*(b) _Ab
T alr O ) — ol @)~ b 21)

Assuming (18), and using (16) we obtain

p*(b) 1
b[1 — a(p*(0)][p*(b) — a(p*())] ~ 2(r*)?’

so that, by (21), 7* = y/4%. Combining this with (19) and (20) yields

b=12CE 0, (b) = V2hX.

Parts (i) and (ii) of the following theorem provide a rigorous justification for the above heuris-
tically derived results. Part (iii) of the theorem shows the asymptotic optimality of a natural

approximation to p*(b) based on (18). Solving (18) for p*(b) we obtain

,r,*

ACEIEy 2

Using the value of r* obtained above, it is natural to propose the use of

h
s(h) = 1 [ h
p(b) Ve

or 7(b) = [Ap(b)]~! in a system with parameters h, A and b. Part (iii) of Theorem 1 shows that, to
leading order (the optimal cost and cost under p(b) both grow to infinity), the cost under p(b) is

the same as the cost under p*(b).
Theorem 1. With h and X\ held fized, the following hold:

11



(i) p*(b) — 1 as b — oo with

ﬁ(l—p*(b))%\/g as b — oo, (22)
(i)
b 12Ck o () = V2R as b — 0. (23)

(idi) Let p(b) =1 — \/ oy and #(b) = [\(b)]~".

Then
Ccor(7(b)
Céor(b)

Proof. We first show that p*(b) — 1 as b — 00. As b — oo, the left-hand side of (21) must grow

—1 as b— .

to oo as well. The numerator is clearly bounded, so we must have the denominator converge to 0
as b — oo. This can only occur if p*(b) — 1 as b — oo.

We rewrite (16) as
1—a(p) =2(1—p) +d(p)(1 — p) (24)

where 6(p) — 0 as p — 1. Using (24) we can write

L —a(p™(b)) = 2(1 = p" (b)) + 32(b) (1 = p" (b)) (25)

with d2(b) — 0 as b — oo. (We have d2(b) = 0(p*(b)); d(p*(b)) — 0 as b — oo since p*(b) — 1
as b — 00.) Let D(b) denote the denominator of the left-hand side of (21). Substituting (25) into
D(b) yields

D(b) = (2 + 62(b)) (1 + d2(b)) (1 — p*(b))?,

so that
[1—p*(®)] 2D(b) =2 as b— .

Combining this with (21) yields

\/g(l—p*(b))%\/g as b — 00,

and completes the proof of (i).

We have
hp* (b)

Coor®) =1 ®) = 72020

+ Xb(1 — p*(b)).

12



Using (22) and (25),
V[l — a(p*(b))] = V2h/X as b— o0o. (26)

Thus (using (22) for the second term of f(p*(b))) we obtain
hA hA
b=12Ck 0, (b) — ,/7 +y/ 5 as b oo,
which is (ii).

With p(8) = 1=/ and 7(6) = \a(0)] ",

Ceon(F) = F(p0) = =2 + A1 = (0
Using (24) we can write
L a(p(B) = 2+ 5(p0)] a5
so that
b='2Ceor(7(b)) — V2hA. (27)

Combining (23) and (27) yields

Ccor(7(b))
Céor(b)

which is (iii). .

-1 as b— 0,

4.2. The Base-Stock Policy

We now undertake an asymptotic analysis of the base-stock policy as b — oo. As in the
analysis of the constant order interval policy we hold A and A fixed. In contrast to the constant
order interval policy, however, the performance of the base-stock policy, as well as the choice of s*,
depend on L. Motivated by the desire to prove the asymptotic linearity of L* in b, we let Ly = b
for 0 < v < co. (Other scalings for L; vs. b are commented on below, in Section 4.3.)

As in the previous section, we begin with a heuristic derivation of the asymptotic behavior of
s*(b) and Cj4(b) as b — oo. As for the COI policy, intuitively, as b — oo we want to have the lost
sales fraction shrink to zero. The fraction of lost sales is B(s*(b), \by). Although it seems clear
that we want s*(b) — oo as b — oo, it is not immediately clear how s*(b) should relate to b as both
grow large.

A key role in our analysis is played by an asymptotic result for B(n,a) due to Jagerman (1974),

which states that, if 3, — 8 as a — oo with —oo < 3 < oo, then
lim VaB (la + fuval,a) = (=), (28)
a—00

13



where
V@) = 5 ib(;zx) , —oo<z< oo,

P(z) = e **12/\/2x, and ®(z =[" 9z

The limit (28) provides us with the key to determining how s(b) needs to grow to have the
holding and lost sales costs be of the same order. In particular, if s(b) = |Aby + Bv/Aby| for some
B € (—00,00), then the average inventory holding cost rate h[s(b) — Aby(1 — B(s(b), Aby))] satisfies

b= 2R [s(b) — Aby(1 — B(s(b), \by))] = A/ Ay(B+¢(—B)) as b — co. (29)

The lost sales cost rate AbB(s(b), Aby) satisfies

b2 XbB(s(b), \by) — \/§¢(—ﬁ). (30)

Combining (29) and (30) we obtain

b=2Cps(s( —>hﬁ\/_+\[m+ Dip(=B) =g(f) as b— oco. (31)

It was shown by Morrison and Ramakrishnan (2003) that ¢ is strictly increasing and strictly convex.

Thus g is also convex. A simple calculation yields

dy
dr

"(B) = hy/ Xy — \g(hv + 1)y (-B),

so that ¢'(8) = 0 if and only if
h
Y(—B) = — . (32)

14 hy

The following lemma, which is proved in the appendix, verifies that (32) has a unique solution.

P() = ——(2) = (2)[h(z) —a], —o0<z<o0.

Differentiating (31),

Lemma 2. For any y € (0,1) there exists a unique w*(y) such that
P (w'(y) =y.

Let




and

b=12Chs(b) — g(B°) as b— oo.

These two limits, as well as the asymptotic optimality of the base-stock level

3(b) = [Aby + BV Aby

are shown in Theorem 2.

Theorem 2. With h, A, and ~y held fized, 0 < h, A,y < 00, and Ly = b, the following hold:

(i) s*(b) — oo with

s(b))\?—bv)\b’y — B as b— 0.
(i)
— * * A *
b=12C%4(b) — hB* /Ny + \ﬁ(hw Dp(—=B*) as b— oo.
(iii) Let
Sy = [Aby + B/ Aby] .
Then
Cps(5p)
— X 31 as b— .
Chs(b)

Proof. We use the following standard identity for B(-,-): For 1 < s < oo and 0 < a < o0,

a
s+aB(s—1,a)

B(s—1,a) — B(s,a) = B(s — 1,a) [1

We can write (28) as

B (1N + /), Ab) = U2,

(37)

(38)

where d3(b) — 0 as b — oo. Let A > 0. With §;, defined as in (36) and using (38) on the right-hand

side of (37), we have

B (g,,—1+ | AV, )\bfy) _B (§b+ LAV by, Aby)

_ p(=p" = A) +53(b) [ B VADY + AVAY + VA (h(=" = A) + 64(b))
VAby Aby + B*V/AbY + AVADy + VA ((=f* — A) + 04(b))
Ry(A)
Aby

15

(39)



where 04(b) includes d3(b) as well as round-off error due to |-|; d4 — 0 as b — oco. As b — oo,

Ry(A) — R(A) with
R(A) = (=" = A)[B* + A+ (=" = A)]| =4 (=" = A).

By the definition of 5* and the convexity of ¢, R(A) < 15:—%7 Define C(A) > 0 by C(A) =

1-}&—%7 — R(A). Using (39) we can write
. . h Cc(A)
b|B (8 — 1+ |Ay/Aby|, \by) — B AN Aby], Aby) | = — 5 (b
12 (3= 1+ 18V, M) = B (3-+ LAVAD, M) | = 5 = 5 #8500,

(40)
where 05(b) — 0 as b — oo. For b large enough the right-hand side of (40) is strictly less than
m From (3),

b[B(s*(b) — 1, Aby) — Ab —_—
[B(:"(0) = 1. Aby) = B(s" (), W] > 5
so that
Sp+ [AVAby] > s7(b). (41)

Using a similar argument on B(§, — 1 — |[AVAby], Aby) — B(8, — |AVAby], Aby) (and using

R(—A) > 1Jr,w) yields

— [AVABy) < 5°(b). (42)

Combining (41) and (42) we obtain that, for any A > 0,

— AV < 5°(b) < 8 + |AVADY) (43)

Since A > 0 was arbitrary this implies that

s*(b) — 3
VAby

which, by the definition of §;, implies (i).

-0 as b— 0,

We prove (ii) and (iii) together. Using (1) we can write

Cos(s) = [y + 8 VAby) =2y (1= By + B7V/Aby), 007)) |
+ AbB(|Aby + BV Aby], Aby). (44)

Combining (44) with (38) we then have
b~2Cps(3) = hB*V/ Ny + \[ (hy + D) (W (=5") + 63(b) + 05 (), (45)
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where dg(b) contains round-off error due to |-|; ds(b) — 0 as b — oco. From (45) it is immediate

that
A o
b 12Cps(8) = B VA +\ﬁ (hy + 1)p(—B*) = Cpe as b— 0.
Using (43) and the fact that B(n,a) is decreasing in n, we obtain, for A > 0,
(s,, + [AV/AbY ] )\bfy) s*(b), A\by) < B (s — AV, Aby) :

Let

La(b) =b 12 (§,,—{A\/WJ> — mxyb + AWh(hy + 1)B (s,,+ LAV by, Aby)

and

UA(b):b’l/Zh(§b+LA\/WJ>—hM\/Jr)\\f(herl ( LAV, Aby).

Combining (43) and (47) yields
La(b) <b 2Chg(b) < Ua(D).

In the same manner that (44) led to (46), from (48) and (49) we obtain

1l
&~
>

b—o0

lim La(b) = Cps — hAV Ay + \[ (hy + 1) (=" = ) = $(=5")]
and
b—o0
By the continuity of v, lima_,g LA = lima_,oUa = 625- Since A > 0 was arbitrary,
b=12Ch(b) = Cpg as b— oo,
which proves (ii).

Finally, combining (46) and (51) yields

Cps(3p)
Chs(b)

-1 as b— o0,

proving (iii).

lim Ua(b) = Cgg + hAV/ My + \ﬁ (hy + 1) [p(=B" + A) = (=) =Ua.

(46)

(47)

(49)

(50)

Smith (1977) considered the limit (translated to our notation, as are all of Smith’s results

below) L — oo with by, = y~!L. This is equivalent to the limiting regime considered here. With

s(b) = [Aby + 2+/Aby| he used the approximation
s(b) n
by Z (Aby)"™
’ n=0 nl =

17



The result of Jagerman (1974) that we use is based on the more accurate limit
s(b)
. (Aby)™
e /\MZT — ®(x) as b— 0.
n=0

One consequence of Smith’s less accurate approximation is that he obtains 8* > 0 for all values of
h. This contrasts with our results, since the solution to (33) can be negative. (See the discussion

on safety stock in Section 4.3.)
4.3. Comparison of the Limits

The essence of Theorems 1 and 2, from the point of view of comparing the two policies is the

following;:
b 12CE o (b) = V2hA as b — oo
and
b=12C%4(b) — hB* /My + \g(m +1)p(—B") as b— 0.
Let
Chrq(b
Op(hy A, y) = ﬁz((b)) (52)
Then Theorems 1 and 2 imply that
Oy(h, \,y) — O(hy) as b— oo, (53)

where

and §*(z) is defined by (33) with hy = z. Interestingly, the A terms cancel out in the ratio, and

h,~ appear only via their product. By (33) and the convexity of 1, 5* is decreasing in x. The

following lemma, showing that 6 is an increasing function, is proved in the appendix.
Lemma 3. For z >0, 6/(z) > 0.

We are now ready to prove the asymptotic linearity of Lj in b as b — oo. Let z* be the unique
point where

0(z*) =1. (55)

The uniqueness of z* satisfying (55) follows from Lemma 3. The existence of z* follows from

numerical calculation: 6(0.69786) < 1 and 6(0.69788) > 1. Thus 0.69786 < z* < 0.69788. By

Lemma 3, f(x) < 1 for x < * and 6(z) > 1 for z > z*.
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Theorem 3. With h and X fized,

L* *
?b—f,%z'y* as b — oo. (56)
Proof. We prove that limsup,_, LT; < v* and that liminfy_, LTZ > v*.
By (53) and the definition of v*,
Op(hy \,7v") =1 as b— 0.
In addition, by Lemma 3, for any A > 0,
lim Oy(h, A,y —A) < 1
b—o0
lim Hb(h, )\,’}’* + A) > 1.
b—o0
Thus, given any A > 0, for all b large enough,
L*
7 -AS <y HA,
which implies
: Ly .
limsup—= <"+ A
b—oo b
and
L*
liminf =% > ~* — A
b—soo b
Since A > 0 was arbitrary the theorem is proved. .

In the above asymptotic analysis we have assumed that L, = b with 0 < v < oo and let

b — oo. Although a detailed analysis is beyond the scope of this paper, we provide a quick

overview of the cases % — 0 and % — o0 as b — oo. When % — 0 as b — oo it can be shown

that
8*(b) — >\Lb
VL,

A heuristic calculation leads us to conjecture that, with h and X held fixed,

— 00 as b— .

Cis (b, Ln)
Céor(b)

When % — 00 it can be shown that

—0 as b— .

s*(b) — ALy
VoY

— —00 as b— 0.
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A heuristic calculation for this case leads us to conjecture that, with h and X held fixed,

Chs(b, Ln)
Ceor(b)

A key measure of how much an inventory system hedges against uncertain demand is safety

—00 as b— 0.

stock. The safety stock is defined as the difference between the average inventory position and the
expected number of demands over a lead time. For a base-stock policy the inventory position is
always equal to the base-stock level. Thus, if we let Zpg(s) denote the safety stock of the base-stock
policy with base-stock level s,

Zps(s) =s—AL.

For the COI policy the average inventory position is the sum of the average inventory level
and the number of items in the pipeline. Letting Zco7(p) denote the safety stock of the COI policy

with order interval 7 = (Ap)~!,

Zcor(p) = 1%;([))

Using the results of Theorems 1 and 2 we can examine the asymptotic behavior (assuming

+(p—1)AL.

Ly = vb with 0 < v < 00) of the safety stock of these two policies under the respective optimal s*
and p*. Let
Zps(b) = b2 Zps(s* (b))

and
Zcor(b) =072 Zcoi(p* (b)) -

From Theorem 2 we immediately obtain
Zps(b) = B /Ay = Zpg(oo) as b— oco. (57)

Similarly, Theorem 1 yields

Z\CO[(b) — \/g(l — ’)’h) = 2@01(00) as b— o0. (58)

(Although it appears that Zgg(oco) does not depend on h, recall that 3* depends on h.)

In the unlimited backlogging version of the inventory model we are considering, the long lead
time limit leads to safety stock that is proportional to the square-root of the lead time and is always
positive. For the lost sales model, on the other hand, although the safety stock is again proportional
to the square-root of the lead time, it may be positive or negative, depending on the values of h

and 7. (The value of X affects the magnitude of Z\Bg(oo) and Z\co[(oo) but not their signs.)
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The sign of Z\Bs(oo) will be precisely the sign of 5*. Recall from (33) that 8* depends on vy
and h through their product vk, and that §* is decreasing in yh. If we find ¢ such that 5*(xo) =0
then 8" < 0 for yh > xp and * > 0 for vh < zp. From (33) we can write

N 1+(IIO

¥?(0)

s that 2o = $*(0)/(1 — 42(0)). Note that $(0) = /2 so that zg = 2/(r — 2) ~ 1752

From (58) it is immediate that Zcor(co) < 0 for & > 1 and Zeor(o0o) > 0 for yh < 1.
Thus, when vh < 1 both policies have positive safety stock. When 1 < vh < g, the COI policy
has negative safety stock while the base stock policy has positive safety stock. For vh > zg both

policies have negative safety stock.
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Appendix

In this appendix we provide proofs of Lemmas 1, 2 and 3.
Lemma 1. With h, b, and X held fized, Cgq is a continuous and strictly increasing function of L.

Proof. Throughout the proof we assume that h, b, and A are fixed. We also assume that Ab > h, so
that s* > 1. We use the following result from measure theory: A continuous function whose right
hand derivative is non-negative everywhere and positive almost everywhere is strictly increasing.
(This follows, for example, from Roydin 1968, Problem 3, p.98 and Theorem 2, p.96.)

Recall that, for s > 0,

Cps(s) = h[s — AL(1 — B(s,AL))] + A\bB(s, AL).

For fixed s, this is differentiable in L, with

(s) = —hA(1 — B(s,AL)) + h)\QLg—B(s, AL) + A%‘Z—B(s, AL). (A1)
a a

0CBps
oL

Straightforward differentiation of B(s, a) with respect to its second argument yields

0B

5 (8:0) =pac1 = B(s,a)[1 - B(s,a)]. (A2)

It is known that (cf. problem 5-11 on p. 301 in Wolff 1989)
ps—1 = B(s—1,a)[1 — B(s,a)], s>1. (A3)

Substituting (A3) into (A2) we obtain

g—f(s,a) = [B(s —1,a) — B(s,a)][l — B(s,a)]. (A4)

Assume (momentarily) that the right-hand inequality in (3) is strict. Then s*(L) will not

change for sufficiently small changes in L. Thus

oC* Cgs ,
aLBS = 51 (@)
= {N(hL +b)[B(s*(L) — 1,A\L) — B(s*(L),AL)] — hA} [1 — B(s*(L),AL)].  (Ab)
By (3),
B(s*(L) — 1,AL) — B(s* (L), \L) > ﬁ ,
so that
oC*
8235 > 0.
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We now deal with the case where the right-hand inequality in (3) is not strict. In this case

h

B(s*(L) —1,AL) — B(s*(L),\L) = m,

(A6)

and using (A5) we obtain 3%55 (s*(L)) = 0. Note also that, at L, s*(L) and s*(L) —1 have the same
total cost. Since Cps(s*(L)) and Cps(s*(L) — 1) are both continuous in L, Cjg is continuous at
L.

In order to complete the proof for this case we show that, for ¢ sufficiently small, s*(L 4 §) =
s*(L), which immediately implies that %(s*(L)) is the right hand derivative of C%g¢. This will
be true if

a% (ﬁ) < a% (B(s*(L) — 1,AL) — B(s*(L),\L)) . (A7)

The left-hand side is immediate:

9 ( h . w
oL \ Mo+ Lh)) ~ AbtLh)?2
For the right-hand side, if s*(L) > 2 we use (A4) to write

0

o7 [B(s"(D) = LAL) = B(s"(L), AL)]

= M[B(s*(L) — 2,A\L) — B(s*(L) — 1, AL)] [ — B(s*(L) — 1, AL)]

— [B(s*(L) — 1,AL) — B(s*(L), AL)] [1 — B(s*(L), \L)]} .

Recall that

B(s*(L) — 2,A\L) — B(s*(L) — 1,AL) > B(s*(L) — 1,AL) — B(s*(L),A\L) = ﬁa
and define n > 0 by
n = B(s*(L) — 2,A\L) — B(s*(L) — 1,\L) — ﬁ :
We can thus write
0 * * * h2
o B(" (L) = LAL) = B(s"(L). AL)] = M [L = B(s"(L) = LAL)] = 3

so that (A7) holds.
If s*(L) = 1 and (A6) holds, then Ab = h. In this case

A h?

0
ar BOAL) = BULAL) = == = —3 5 e

oL
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and (A7) again holds. .

Lemma 2. For any y € (0,1) there exists a unique w* such that

P(w) =y. (A8)

Proof. The uniqueness of w* follows immediately from convexity of 1, but existence requires a bit
more effort. In order to show that a finite solution w* to (A8) exists for every y € (0,1) we show
that ¢'(z) — 0 as + — —oc and 9'(z) — 1 as z — co.
We first deal with £ — —oo. We can write
=2’ /2

V) = =

and

Py o e (A9)
_f;oe*tz/th [2 e 2dt '

As z — —o0,

o0
/ eV /2q4 — V2r,
xT

e™**/2 5 0 and ze=*"/2 — 0. Thus ¢(z) = 0 as = — —oo.

We now deal with z — co. Our starting point is relation 586. on p. 136 of Dwight (1961):

LT ey —\Eﬁm _1 .3
m/me dt =125 1= 4 5 el (A10)

with |é(z)| < 3/z%. (A similar relation, which would require a bit of manipulation to meet our

purposes is (7.1.13) on p. 298 of Abramowitz and Stegun 1972.) We can rewrite (A10) as

00 —x2/2 1 3
_$2/9 o (& ~
/m e /dt— |:1_ﬁ+ﬁ+e($):|

T

so that

2
e /2 T

[ et/2dt T1- L te(z)’

where e(z) = % + é(z) and z?¢(x) — 0 as £ — oo. Thus

1
V@) =z + —+€(z), (A11)
where z€'(z) — 0 as x — oco. Using (A11) we can write
! 1 12 ]- 12
P(z)=|c+—-+€())|-+€(x)) =1 as z— o0,
x x
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completing the proof. "
Lemma 3. For z >0, 8 (z) > 0.

Proof. We re-write (54) as

0(z) = /5 [W(=0"(2)) + 5" (2)] + e (A12)
Differentate (A12):
df dag* ' ¥ r *
) =L [ - ves @) - v -]
1 . . 1 *
+ 3=l @)+ $( ()] = S ). (A1)
From (33) we can substitute ¢'(—3*(z)) = 1{5. Performing this substitution, the term multiplying
% is seen to be zero. We thus have
de 1 . . 1 .
Ta) = 5= @)+ 9 (@) = ()| (A14)

Although the % term does not appear in (A14), we obtain a useful relation from %, S0 we

calculate it. Implicit differentiation of (33) yields

d * !/ % k *
T 0 @) =¥ B @)2H ) + @) =
Substituting in ¢'(—8"(z)) = {7, we obtain
dgs* -1
= . Alb
&~ 2L+ 2)F @) + B @) — T @) (A1)
Recall that 8* is decreasing in z, so % < 0, which implies that
B () + (= (2)) — 9(~5"(@)) > 0. (A16)
Combining (A16) with (A14) yields % > 0, completing the proof. .
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