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Abstract

We consider a multiserver queue in the heavy-traffic regime introduced and stud-
ied by Halfin and Whitt [7] who investigated the case of a single customer class with
exponentially distributed service times. Our purpose is to extend their analysis to a
system with multiple customer classes, priorities, and phase-type service distributions.
We prove a weak convergence limit theorem showing that a properly defined and nor-
malized queue length process converges to a particular K dimensional diffusion process,
where K is the number of phases in the service time distribution. We also show that a
properly normalized waiting time process converges to a simple functional of the limit
diffusion for the queue length.

1 Introduction and Summary

Multiserver queueing systems arise in many applications, and have generally proven to be
more difficult to analyze than single server queues. In this paper we consider a GI/PH/N
queue (renewal arrivals; ‘phase type’ service distribution; N servers; infinite waiting room)
with several customer classes. We also allow for two priority levels. We analyze this queueing
system in the asymptotic regime pioneered by Halfin and Whitt [7], where N — oo and
pn — 1, with pn denoting the traffic intensity (defined precisely below) in the system with
N servers. More specifically, the Halfin-Whitt regime entails \/N(l —pN)— B as N — o0,
where —00 < ff < .

We examine both the ‘queue length’ process as well as waiting times. We show that
a properly centered and normalized version of a properly defined queue length process

converges to a particular K dimensional diffusion process, where K is the number of phases



in the service distribution. We also show that properly normalized, the waiting times
converge to a simple functional of the diffusion limit for the queue length.

There is a substantial literature on multiserver queues. Our purpose here is not to
provide a survey or comprehensive bibliography, so we restrict ourselves to papers that help
put the contributions of this paper in perspective. We first describe some exact results.
The simplest version of the queueing system under consideration is the M/M/N or Erlang
C queue, first analyzed by Erlang [6], which has Poisson arrivals and exponential service
times. The queue length process is a birth-death process, and the steady-state distribution
has a simple form. The GI/PH/N queue was studied by Neuts [15], who showed that
the steady state queue length distribution has a matrix geometric form, and described
algorithms for calculating it. The numerical complexity grows quickly in the number of

servers and/or phases. In particular, with K phases and N servers, the matrices that arise
N+ K-1
N ’
The most closely related limit theorem is that of Halfin and Whitt [7], who considered

in the matrix geometric solution have dimension (

the GI/M/N queue as N — oo and py — 1 such that v N(1—py) — 8 with —o00 < § < 0.
First restricting their attention to the M/M/N queue with py < 1, they showed that the
steady-state probability that a customer must wait in the queue approaches a limit a with
0 <a<las N — oo if and only if 0 < # < oo. For the GI/M/N queue they showed
that a properly centered and normalized version of the queue length process converges to a
one-dimensional diffusion. We restrict our description of their result to the M/M/N case.
Let QN(t) denote the number of customers in the system with N servers, let p be the service

rate (per server), and let AN denote the arrival rate to the system with N servers. (Then

pn = AV/Np.) Assume that AN = Ny — Buy/N, with —oco < 8 < oo, and let

_QY)-N
-5

Let X = (X(¢),t > 0), be the unique strong solution to

XN(t) t>0.

X(0) = X00) -t~ [ [X() A 0)ds + VW)

where W is a standard Wiener process that is independent of X(0). Then X is a one-

dimensional diffusion with infinitesimal drift m(z) given by

_ _Mﬁ7 z >0
m(z) = { —u(z+06),z<0



and constant infinitesimal variance 2p. This process can be viewed intuitively as ‘piecing
together’ a Brownian motion with drift on [0,00) and an Ornstein-Uhlenbeck process on
(—00,0]. Halfin and Whitt showed that, if XV(0) 4 X(0) (i denotes convergence in
distribution), then XV < X on D([0,00), R) (see Section 2 for a definition of D([0, ), R)).

Our results can be viewed as the natural generalization of the result of Halfin and Whitt
to phase type service distributions and multiple customer classes. Halfin and Whitt briefly
discussed the GI/Hy/N queue, where Hy denotes the hyperexponential distribution with 2
phases (a mixture of 2 exponentials). They introduced a three dimensional process whose
three components are: the number of customers in the queue (waiting for service), the
number of customers in service in phase 1, and the number of customers in service in phase
2. This is a three dimensional random walk, and Halfin and Whitt showed that under the
proper centering and normalization the infinitesimal drift and variance converge. But there
is more that needs to be done here in order to conclude weak convergence of the process. In
particular, the infinitesimal parameters are defined only on a two dimensional ‘boundary’
sub-manifold consisting of two perpendicular half planes: Either there are customers in the
queue, in which case the total number of customers in service is N, or there are fewer than
N customers in service, in which case the queue is empty. It is not clear how to associate a
unique diffusion process with these parameters, and it is also not clear that the convergence
of the infinitesimal parameters will imply weak convergence of the process. (There are
several general theorems in the latter spirit, such as Theorem 8.3.1 in [13] and Theorem
IX.3.48 in [12]; it is not clear if they would apply here, since they require checking extra
conditions.) The approach taken in the present paper involves constructing a K (as opposed
to K + 1) dimensional process for a system with K phases in the service distribution.

It is worth contrasting the asymptotic regime of Halfin and Whitt with two other “heavy
traffic” regimes. A heavy traffic limit theorem for the GI/G/N queue was proved by Iglehart
and Whitt [10]. They considered N fixed and took the limit as p — 1. They showed that
properly normalized versions of the queue length and waiting time processes converge to one
dimensional reflected Brownian motions. (No centering is needed in this case.) One of the
characteristics of this limiting regime is that the probability of having at least one customer
in the queue converges to unity as p — 1. Thus, although this limit theorem provides a
simple limit process for multiserver queues with general service time distributions, it is not

appropriate for systems with many servers where not all customers need to wait.



The GI/G/N queue with N — oo in such a way that (Nu—AN)/v/N — oo, for different
initial conditions and assumptions on the interarrival and service time distributions, was
considered by Borovkov [2, 3], Iglehart [8, 9] and Whitt [18]. The growth condition on N
makes the system asymptotically equivalent to the infinite server queue GI/G/co. Phase-
type service, which is the focus of our paper, was considered in Whitt [18]. There the
process of interest is the K dimensional process (K is the number of phases in the service
time distribution) whose k" component is the number of customers in service in phase k,
1 < k < K. He showed that a properly centered and normalized queue length process
converges to a K dimensional Ornstein-Uhlenbeck process. It seems intuitively clear that
the ‘local” behavior of the GI/PH/N system when there are idle servers should be identical
to the GI/PH /oo system. Our limit theorems bear this point out.

The final related reference we want to mention is Mandelbaum, Massey, and Reiman
[14]. They provide fluid and diffusion limits for what they call ‘Markovian service networks’
with many servers. They allow multiple stations and time varying parameters. The results
there cover the M/M/N queue in the Halfin-Whitt regime as well as a special case of the
M/PH/N queue where there is exactly one ‘initial phase’ (K’ = 1 in the notation introduced
below in Section 2).

The rest of this paper is organized as follows. Section 2 provides a precise specification of
the model as well as a statement of the main results. The proof of Theorem 1, with Poisson
arrivals and one priority level is contained in Section 3. Section 4 contains a proof of
Theorem 2, which covers a system with two priority levels. Section 5 covers the extension
to renewal arrivals. Two technical lemmas needed in the proofs of the main results are

proved in the appendix.
2 Statement of Main Results

We begin with the case of Poisson arrivals and one priority level. Consider an N-server
queue with infinite wating room. Arrivals to the N-th queue are Poisson with rate AV,
while service time distributions are held fixed with cumulative distribution function F(z) of
‘phase-type’ [15]. Arrival and service processes are independent, and customers are taken
into service on a first-come-first-served basis.

A phase-type (PH) distribution corresponds to the distribution of the life-time of a

transient, continuous-time, finite-state Markov chain. Let K denote the number of states,



(p1,...,pK) denote the initial distribution, (p;;, 1 < 4, 7 < K), denote the transition
probabilities, p;o, 1 < i < K, the probabilities of absorbtion (pjo =1 — 2?:1 pi;), and u;l,
1 <4 < K, the mean sojourn times in the states. It is worth remarking here that p; = 0,
1 <7< K. A state of this Markov chain may also be called a phase, or a phase of service.
Assume that the states are labeled in such a way that p; > 0 for 1 <¢ < K’, and p; = 0
for K/ < 1 < K, with 1 < K’ < K. We associate a customer class with each possible
initial state, so that there are K’ customer classes. The arrival rate of class k is then pp AN,
and the service time distribution of a class k customer is the phase-type distribution F(-)
conditioned to have initial state &, 1 < & < K’. Note that we are making no assumption
on the structure of P = (p;;,1 < 4,5 < K) other than transience. (Thus, although it is
possible that each state is reachable from only one starting state, so that we can determine
the initial state, and hence class, of a customer from its current state — we call such a Markov
chain ‘separated’, this is not required. We use class only to keep track of the customers in
the queue, keeping track of customers in service by state. If it is desirable to keep track
of customers in service by class, and the original Markov chain is not separated, it can be
modified, at the expense of increasing the number of states, into a separated Markov chain.)

Let us consider an auxiliary discrete-time Markov chain with K + 1 states indexed by
0,1,..., K, so that the probability of going from state ¢ to state j is p;; fori =1,..., K,
j=0,1,..., K, and is equal to p; for i =0 and 5 =1,..., K. Obviously, this is an ergodic

Markov chain. Let (19, m1,...,7x) denote its stationary distribution, i.e.,

K K
mopi + Y pim =mi, L<i< K, Y mi=1,1m>0. (2.1)
The mean service time is =1, where
K " -1
= - : (2.2)
Let

o .

= , 1<1<K. (2.3)
Toki

Then (q1,...,qx) is the stationary distribution of the continuous time Markov chain
obtained from the K 41 state auxiliary Markov chain by making state 0 instantaneous, and

having the sojourn time in state ¢ exponential with rate u;. We also denote

Hi; = Dijlhi, 1=1,...,K, 7=0,1,....K. (2.4)



We assume that, for some 3, with —o0 < 8 < o0,
AN = uN —upv'N, N >1. (2.5)

The traffic intensity is defined as py = Ay /Np. Thus pxy = 1-3/v/ N, and VN(1—py) = 3.
Let va(t), 1 €% < K denote the number of customers over all the servers who are being
served at time ¢ in phase i, Q) (¢) denote the number of customers in the queue at time ¢ (in
the system but not in service), C:)fv(t), 1 <1 < K', denote the number of class 7 customers
in the queue at time ¢ (in the system but not in service), and @fv(t) =0,K'<i<K.
Let
QY1) = V(W + 0N, 1<i<K. (2:6)

Then va(t) is the total number of “phase 7” customers in the system, i.e., those who either
(are in the queue and) start service in phase ¢ or are currently being served in phase 7. It

is not difficult to see that QY (¢) can be recovered from QN (¢),1 < i < K, by the relation

K +
b= (L avn-n) )

We also note that

o) =2 QM) (2.8)

i=1
Let us introduce the following independent Poisson processes:
AN
[

(AN(t), t > 0) has rate AN, N =1,2,...
(Sfj(t), t>0)hasrate p;;, ¢=1,...,K, 7=0,1,....,K,[=1,2,....

We interpret AN as the arrival process. The interpretation of Sfj is a bit more involved.
The process Sfj corresponds to transitions from phase i to phase j in the [*P server that is
serving a customer in phase . When there are fewer than [ customers being served in phase
¢ at the moment of a jump in Sfj, the jump has no effect on the system state. Similarly, SZZO
corresponds to service completions from phase 1.

All the random processes are assumed to have right-continuous sample paths with
left limits and, hence, are considered as random elements of appropriate Skorohod spaces
D([0,0), R?) of R?-valued right-continuous functions with left-hand limits. We endow
D([0,00), R?) with the Skorohod-Prohorov-Lindvall metric, which turns it into a Polish
space, Liptser and Shiryaev [13]. For f = (f(1),t > 0) € D([0,0), R?) and ¢ > 0, we
denote by f(t—) the left limit at ¢; we also set f(0—) = f(0).



Let {a;,7 > 1} be ii.d. random variables independent of the arrival and service pro-
cesses that take values in the set {1,..., K'} with probabilities P(a; = ¢) = p;. (Though the
range of the «; is actually {1,..., K'}, for notational purposes it is conveninet to consider
them as taking values in {1,..., K'}.) Informally, a; indicates the phase in which the j-th
customer to enter service after time zero begins service.

We assume as given initial values Q5(0) and (QN(0),...,QN(0)) that are independent

of AN, {Sfj, 1<i<K,0<j<K,[l>1}and {a;, j > 1}. In addition, we assume that

Qg (0) K
QN(0) = Z 1(a; =4), andif Q)(0)>0, then ZQfV(O) =N.
7=1 =1

The limit theorems that we prove are for properly centered and normalized versions of

the above processes. Let

N(ty=N
xNay= QO =N ks, (2.9)
k3 \/7
AN
- N(¢
X;V(t):Ql(V), 1<i<K,1>0, (2.10)
1
and
N o (1)
X (t) = =2 t>0. (2.11)

In addition, for 1 < i < K, let XN = (XN(t), t > 0), X} = (XN(#), t > 0) and

[2
XY = (x{'(t), t > 0). Tinally, let XNV = (XN,...,X¥) and XN = (XN,...,X}).
We consider XV and XV as random elements of the Skorohod space D([0,00), R). The
process X is similarly a random element of the Skorohod space D([0,0), R).

We define 2T = 2 v 0, and let 4 denote convergence in distribution on the appropriate

space. Let X(0) = (X1(0),...,Xk(0)) € RX and X(0) = (X1(0),...,Xk(0)) € RX be

random vectors.

Theorem 1: Let the above conditions hold. If X™V(0) 4 X(0), then XN 4 x = (X1,..., XK),
where X; = (X(t), t > 0), 1 <i < K, is the solution of the equation

K ’
Xty = X0 -+ > i [ Xy(o)ds

j=1,5#
4 K . [ K +
- uz’/ Xi(s)ds — | > piugi — pipti / D X (s) | ds
0 j=1,#i 0 \j=1
+ Y1), 1<i<K, (2.12)



and the processes (Yi(t), t > 0), 1 <i < K, are defined as

K K
Yi(t) = /pipWi(t) + Z VG iWii(t) — E Vi Wii(t), 1 <i < K,
j=1ii j=0,j#i

with (Wi(t), t > 0), 1 <t < K, and (W;(t), t > 0), 1 < i < K,0 < j < K, being

independent standard Wiener processes that are also independent of X (0).

Remark 1: Since the drifts in (2.12) are Lipshitz continuous in X, equation (2.12) has a

unique strong solution [11].
Remark 2: The processes Y; are driftless Wiener processes with covariances
BYi(1)* = 2qipit,  EY(1)Yir(t) = —(miogi + piriqa)t, i # 4.

Remark 3: The process X is a K dimensional diffusion with infinitestmal drift vector

m(z) = (m(z),...,mg(z)) with

K K
—ufpi + Z Tjifji = il sz <0
J=1,5#4 £=1
K K
mi(z) = § —pbpi+ Y [wj —p; Zwe] i
J=1,5#4 =1
K K
— ki [ﬁz _piZéW] ) sz >0,

and infinitesimal covariance matriz I' = (I';;,1 < ¢,7 < K) with
Pii = 2qipi, 1<1< K

and
Lij = —Gipsj — qii, 1<i#j< K.
By (2.2) and (2.3)
K
da=1, (2.13)
=1
so that by (2.7)

K +
XNt = <Z X;V(t)> : (2.14)

. +
Let Xo(t) = (E,Lh:l Xi(t)) ,and Xg = (Xo(t), t > 0). Then Theorem 1 and (2.14) yield

the following.



Corollary 1: Under the conditions of Theorem 1 X}V 4, Xo.

We show, in Lemma 3, that for 0 < T < 00, >0,1 <1< K,
lim P | sup ‘XZN(t) — piXéV(t)‘ >e| =0. (2.15)
N—oo 0<t<T

This state space collapse result, combined with Corollary 1, yields the following limit for

the queue length of each class.

Corollary 2: Under the conditions of Theorem 1 XN 4 X = (Xl, .. .,XK), where X; =

(Xi(1),t>0), 1 <i< K, are given by

Theorem 1 also allows us to establish asymptotics of waiting-time processes. Let 'wN(t)

denote the virtual waiting time at time ¢ and w!¥, the waiting time of the ith customer, and

let us introduce the processes @V = (v/N w™V(t),t > 0) and @ = (VN w]L\]thHl’t >0).

N and &N converge in

Corollary 3: Under the conditions of Theorem 1 the processes
distribution in D([0,00), R) to the respective processes (Xo(t)/p,t > 0) and (Xo(t/p)/p,t >

0).

We next consider a system with priorities. Let us assume that in the above model
customers have two priority levels, high and low. High priority customers are those that
start service in phases 1 through K" < K’, low priority customers start service in phases
K"+ 1 through K’. The low priority customers are allowed to enter service only when there
are no high priority customers in the queue. (This is a non-preemptive system.)

Let AN(t) and AY(¢) denote, respectively, the number of high and low priority customers
arrived in [0, ]; obviously, AN = (A¥(t),t > 0) and AY = (AN (t),t > 0) are independent
Poisson processes with respective rates /\% = pg AN and /\g = pr AN, where pg = EZB:/; i
and p;, = Efi’]{“ 41 pi are probabilities with which an arbitrary customer is a high or
low priority customer, respectively. We also introduce analogs of the random variables
a;: random variables apy ;,7 = 1,2,... assume values 1 through K" with probabilities
pa;i = pi/PH,1 < i < K"”and indicate the phases in which successive high priority customers

start service; similarly, random variables az, ;,7 = 1,2, ... assume values K41 through K’



with probabilities pr,; = p;/pr, K" +1 < ¢ < K’ and indicate the phases in which successive
low priority customers start service. We assume as given values QN (0) and Q¥ ,(0) of the
initial quantities of high-priority and low-priority customers, respectively, in the queue, and

assume that

QN(0) = Wag,;=14), 1<i< K", QN0)= Wap; =1), K"+1<i< K,

K
and if Qﬁo(()) + Q%O(O) >0, then Z oNw)y=N.
=1

The random ob jects (Q%70(0),Q£0(0),Qy(0), 1<i<K),(apg;,j=12,..),(ar;,j=
1,2,...), A%, Ag, and Sfj, 1<i<K,0<j3<K,!l>1,are assumed to be mutually

independent.

Theorem 2: Under the conditions and notation of Theorem 1, the processes XV converge
in distribution on D([0,00), R¥) to the process X = (X1,..., XK), where X; = (X,(t), t >

0), 1 << K, that is the solution of the equation
K +
Xi(t) = X0 = Bt + 30 e [ Xy
=1 0
t

+ K'
- m/ Xi(syds = | D primi /
0 0

J=K" 41

K

ZXj(s) ds
j=1

+ Yi(t), 1<i<K''K'+1<i<K,

K t
Xlt) = X(0) it + Y i [ Xy
7=1

+ K’ + K
— / Xi(s)ds — Z PL,jlji = PLibi / Z Xj(s) | ds
0 J=KH1 0 \i=1

T OYit), K"+1<i<K',
where the processes (Yi(t), t > 0), 1 <1 < K, are defined as in Theorem 1.

We now extend Theorem 1 to the case of renewal arrivals. Let us assume that AN =
(AN(t),t > 0), the arrival process to the Nth system, is a renewal process with &V, i > 1,
denoting the times between arrivals. Stated another way, the le , ¢t > 1, are nonnegative,

ii.d. and

k
AN(t) = max k:ijvgt

i=1

10



We moreover assume that

PN >0)=1, E(V)? < x. (2.16)
Denote

AV = (BT, (o) = Var &
We assume that AV is given by (2.5), that

lim N%(e™)?=0¢%>0, (2.17)

N—oco

and the Lindeberg condition holds:
im N2E(EN21(ENVN > ) =0, ¢>0. (2.18)
We preserve the independence assumptions of Theorem 1.

Theorem 3: Let conditions (2.16)—(2.18) hold and the service time distribution be the same

as in Theorem 1. Then the assertion of Theorem 1 holds with

K K
i) =Vi)+ Y VamiWal) = Y amWit), 1<i <K, (2.19)

=1, =0,
where ((Vi(t),...,Vk(t)), t >0) is a K dimensional Wiener process with zero drift and
covariances EVi(t)? = (pi(1—pi)+piplo?)ut, EVi(t)Vi(t) = pipi(p?o? —1)ut; (Wii(t), t >
0), 1 <i< K,0<j <K, are standard Wiener processes, and all the processes on the right

of (2.19) are mutually independent and also independent of X(0).

Remark 4: The processes (Y;(t),t > 0), 1 <1 < K, above are zero drift Wiener processes

with covariances
EYi(1)" = [2niq; + (u0® = Dupf] t,
EYi ()Y (t) = [~pirqi — piriqir + (0*0® — Dupipi| t, i #74.
Remark 5: Theorem 2 has a similar extension to the case of renewal arrivals.

Remark 6: Appropriate analogs of corollaries 1-3 carry over to the settings of Theorems 2
and 3. Thus, for example, the normalized waiting time for high priority customers converges
to zero. (Lemma J shows that the normalized number of high priority customers waiting in

the queue converges to zero.)

11



3 The Proof of Theorem 1

The proof consists of two main steps. The first step, which is broken down into several
smaller steps culminates (in Lemma 3) in proving (2.15), i.e., that the processes XN and
p; X}V are asymptotically indistinguishable. (This is an example of state-space collapse.)
In the second step we write a stochastic integral representation for the process XV. This
stochastic integral contains an error term that, by Lemma 3, is asymptotically negligible.
The proof is then completed by using a martingale diffusion limit theorem.

One interesting aspect of the proof is worthy of mention. In developing semimartingale
decompositions for Qév and va, 1 <7< N, we use a filtration (]FN) that does not ‘know
the identity’ of customers in the queue. This is essential for the proper application of
Lemma Al. For the second part of the proof we introduce a second filtration (FV) that
does ‘know the identity’ of customers in the queue. This second filtration is needed because
the martingale terms appearing in the semimartingale decomposition for @V are not FV
adapted but are N adapted.

Our first step is to develop semimartingale decompositions for the processes Qév and

QN 1<i< K. Let

DN(t) = Z/t 1 (Q;V(s—) > z) 1(QN(s—) > 0)dSly(s), 1< j< K,  (3.1)
1=1 70
K
DY)y => " DN 1), (3.2)
and
t K
BN (t) = DV (1) +/ L) QY (s=) < N | dAN(s). (3.3)

Then D;V (t) represents the number of customers that left the queue during the interval
(0,1] due to a termination of service in the j-th phase; D™(¢) the number of customers that
left the queue and went into service during (0,¢]; and B™ (¢) the number of customers that
started service during (0, ¢].

The processes Q[ Qf\[, 1 <1 < K, obey the equations

‘ K
A=+ [1[ L@ e=n] i -pY0, e

12



and

We define the o-algebra FN(t) by

FN(t) = o{Q4'(0),QN(0), AN(s), 55i(5), agr(s); 1 < i < K,

0<j<K, 1>21,0<s<t} VN,

(3.5)

where A denotes the family of P-null sets, and introduce the filtration F¥ = (FN(t), t > 0)

(right-continuity of FN follows from Brémaud [4]). Relations (3.1)- (3.5) show that the

processes (BN (t),t > 0), (DN(t),t > 0),1 < j < K, (DV(2),1 > 0), (agny,t > 0), QY

and va are FV-adapted. Note that va is in general not FV adapted.

In the following lemma we provide the desired semimartingale decompositions for Q)

and QN.

Lemma 1: The processes QY = (QN(t),t > 0) and QN = (QN(),t > 0),1 < i < K, admit

the decompositions

K .
= Yo [ QNN @) > 0)ds+ 31 (0),
QN (1) = ;N(O)JFPM\N/ (ZQN <N)
K
b [ QNQY ) > 0)ds + 5 uﬂ/@N
7=1 0 J=1,j#i

13

(3.6)

(3.7)



where MY = (MY (t),t > 0) and MN = (MN(t),t > 0),1 <

i < K, are FN ~locally
square integrable martingales, whose respective predictable quadratic variations <JW(§V> =
(MY (t),t > 0) and (MN) = ((MN)(t),t > 0), for some b> 0 and allt >0, N =1,2,...,

satisfy the inequalities

(MIY(t) < bNt, (MN)(t) <bNt, 1<i<K.

Proof. By a well-known fact (see, e.g., [11]), the Poisson processes AN and Sfj admit

the representations

AN(t) = AN+ MV (1), (3.8)

SL(t) = pijt+ ML(t), 1<i<K, 0<j<K,l>1, (3.9)

where MY = (MM (t), t > 0) and IV[Z»lj = (IV[ZZj(t), t > 0) are independent locally square-
integrable martingales relative to the associated natural filtrations with respective pre-

dictable quadratic variations, Liptser and Shiryaev [13]

(MMY(t) = AVt (3.10)
(M{)(t) = pijt . (3.11)

Since FN(1) C o{QY(0),QN(0),1 < i < K}V o{AN(s),0 < s < t} V U{Slz(s) 0<s<
t,1<i<K,0<j<KI1>1}Vo{a,i>1}VvN, (Q)(0),QN0)), AN, sL,1 < i <
K,0<j<K,l>1,and {a;,i > 1} are mutually independent, and AN and Sfj, 1<i<
K,0 < j < K,l>1are FN-adapted, the semimartingale decompositions (3.8) and (3.9)
also hold relative to FV in that M" and ﬂ/[j], 1< < K,0<75<K,l>1,are orthogonal

FN-locally square-integrable martingales with respective predictable quadratic variations
given by (3.10) and (3.11).
Substituting S]lo(t) from (3.9) into (3.1), we have

= o [ @ on(@s >0ds+2 [ (@) 2 1) 1@ > 0) dntlfs),

which means that the process D;V = (D;-V(t),t > 0) has the FV-—compensator
(,u]o fo QN 1(QY(s) > 0)ds,t > 0); hence, by Lemma Al the process
(pi,ujo fo QN (s)1(QY(s) > 0)ds,t > O) is the FN-compensator of the process

(Js Hapng, = )ADN(s),t > 0).
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Similarly, by (3.8) and Lemma Al, (pi/\N fg 1 (25;1 ij(s) < N) > 0) ds is the FN-
compensator of (fg 1 (Zle Q;V(.s—) < N) Wapn(s = i)dAN(s),t > 0) . Thus, we can write

t
/1(aBN(5)_ )dD pzujo/ QN( N(s)> 0)ds+ MY (1) (3.12)
0
and
+ K ) + K )
/1 Y QV(s-) <N 1(aBN(S):i)dAN(S):/\NpZ'/ 1) @QN(s) < N | ds+ MY (1)
(3.13)

where M{{ﬁ = (IV[gﬁ(t),t > 0) and IVIQZ» = (Mj{i(t),t > 0) are F¥-locally square inte-

grable martingales with respective predictable quadratic variations

(M ;i)(t pzujo/ QY 0 (s) > 0)ds, (3.14)
<Mﬁxv,¢>(t)=pMN/ ZQN <N |ds. (3.15)

(The latter follows by the fact that the predictable quadratic variation of the locally square
integrable martingale that appears in the semimartingale decomposition of a point process
with a continuous compensator coincides with the compensator, Liptser and Shiryaev [13].)

Next, by (3.9), we also have

i ~
Z/ QN >z) dsti(s) = uﬁ/o ON(s)ds + MY..(1), (3.16)

where
LV[S]Z E/ QN ) LV[Z() j=1,...,K,i=0,1,...,K. (3.17)

In view of (3.11) and the fact that the local martingales ﬂ/[f],l =1,2,....1=1,2,...,K,7 =

0,1,2,..., K, are mutually independent, the predictable quadratic variations of the above

processes are

t
(M0 = s [ QN (s)as. (3.15)
Substituting (3.12), (3.13) and (3.16) into (3.5), and using
K
Z Hij = [is (3.19)
i=0,i#i
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which follows by (2.4), yields the required representations for va with

K K K
MN(t) = MY+ MY a0+ Y ME0) - Y MF(). (3.20)
=1 =154 J=0,j#i
The representation for Qév with
K K
MYt _/ ZQN =N | dMN(s) =D Mp (1), (3.21)
7=1 =1

follows by (3.4), (3.8), (3.12), and (3.2).

By construction, the processes MY = (M (1), t > 0) and MN = (MN(t), t > 0),
1 < i < K, are locally square-integrable martingales relative to FV. To estimate their
predictable quadratic variations, we use the fact that, given two locally square-integrable
martingales Z; = (Z1(t),t > 0) and Zy = (Z3(t),t > 0), their predictable covariation
(Z1,Zy) = ((Z1,Z3)(t),t > 0) satisfies the inequality 2(Zq, Z2)(t) < (Z1)(t) + (Z2)(1),
Liptser and Shiryaev [13, Probl. 1.8.9]. Applying this property to M}V and AZIZN yields by
(3.20) and (3.21)

K K
(MM)(1) < (3K = DIME) (1) + Z (MB 0+ Y (MED0+ Y (M)

j=1,j#i j=1,j#i j=0,j#i
K K

(M) (1) < (K + DIUMN) () + ) (Mp ;:)(¢t
7=1 =1

The required estimates follow now by (2.5), (3.10), (3.14), (3.15), (3.18) and the bound
QN(s)<N. O

We now introduce auxiliary processes QN = (QN(t),t > 0) by

QN(1) = piQo (D + QN (1), 1 <i< K, (3.22)

and define the processes XV = (XZ»N(t), t> 0), 1<i< K, by

= ON(t) — N i

KNy = Y= Nai. (3.23)

VN

Note that

K - K

YN =Y oM. (3.24)

=1 =1

By (3.6) and (3.7) we obtain

QY0 = QYO+ pA Vi 3 uﬂ/ ON(s)

J=1,5#1

i [ QN s+ X (), (3.25)
0
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where

MN(t) = piM (1) + MN(t). (3.26)

We note that by (2.1), (2.2), (2.3) and (2.4), the ¢;, 1 < i < K, satisfy the equations

K
pin+ Y piig; — pigi = 0. (3.27)

J=1g#0
Recalling (2.5), we then obtain by (3.25) the following equations for the processes XN from
(3.23):

K .
XNty = XN(0) — pippt + Z Nji/o XN(s)ds

J=15#1
"N I o
i [ XN s+ 0 (3.25)
where
o N QN(t) - Ng;
XN(t) = 27\ (3.29)
‘AT

Lemma 2: Under the conditions of Theorem 1, for every T > 0,

(i) lim Tim P (sup XNt > A) =0,
—00 N—oo t<T

(ii) lim Tim P [sup |[XN(#)>A] =0,1<i<K.
A—oo N—oo t<T

Proof. By (3.22), (2.7) and (3.24)

+

K
QYN =QY ) —pi | QYO -N| |
i=1

therefore, by (3.23), (2.13) and (3.29)

K +
XNty = XN - pi ZXJN(t) . (3.30)

Substituting the latter into (3.28) yields

K + t
XN = XN - papt+ Y s [ X (s - [ XV (5)ds
0 0

=1
K ¢ f K + L

+ i = Y pim / > X N(s) d8+ﬁMzN(t)-
=1 o \j=1 :

17



This obviously implies that for some 0 < ' < oo

t]&

K
1 _
§j|XN |<§j|XN )+ Bl + N,§:|MiN<t>|+c/§j|XN s, (3.31)
L =1

Gronwall’s inequality then yields

wp 3N |<<Z|XN )+ WAIT + fzsup ALt >|)- T (332)

t<T i—1

Since XV(0) converges in distribution to X (0) as N — oo by the assumptions of Theorem 1,

we have using (2.14)

lim Tim P (X'(0)> A) =

A—oo N—oo

since QN (0) < QN (0) by (2.8), it follows by (2.10) and (2.11) that

lim lim P(XN( )>A):0

A—oo N—oo

and, since by (3.22), (3.23), (2.6), (2.9), (2.10) and (2.11)

XN(1) = piXg () + XN (1) - X (1),

we conclude that

K
lim lim P (Z IXN0)] > A) =0. (3.33)

A—oco N—oo .
=1

Next, since the process MY = (M}N(t), t > 0) is a locally square-integrable martingale
with respect to FV by (3.26), by the Lenglart—Rebolledo inequality, Liptser and Shiryaev
[13], for B > 0,

P (sup \/%M/[ZN(M > A) < % + P (N<1UN>(T) > B) . (3.34)

t<T

By (3.26) and the inequality 2(MYN, MN)(t) < (MY )(t)+ (MN)(t), we have that (MN)(t) <
2 (pHMY)(t) + <1\;[ZN>(15)}, so by Lemma 1

(MMY(t)<rNt, 1<i<K, (3.35)

for some r > 0. Therefore, by (3.34)

- 1 _
lim [im P (Sup IMN(t) > A =0, (3.36)
VN

A—oo N—oo +<T
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which, combined with (3.32) and (3.33), allows us to conclude that
K
lim lim P sup XNt >A] =0, 3.37
e OV SEACTER (a7

The lemma follows by (3.30) and since, in view of (2.14),

K + K +
- (L xw) -(Len) -
We now prove asymptotic indistinguishability of )N(ZN and piXéV, as well as of XZ»N and

XN,

k3

Lemma 3: Under the conditions of Theorem 1, for every T >0, ¢ >0, and 1 <1 < K,

(i) lim P (sup XN - XN > 6) =0.
N T

— 00 tS

(ii) ]\}im P (sup ‘XZN(t) —piXéV(t)‘ > 6) =0.
<T

— 00

Proof. By (3.22) and (2.6)
QY (1) = QY (1) = piQg' (1) - QY (1)
so that, by (3.23), (2.9), (2.10) and (2.11),

XN - xN@) = pix{ () - XN ().

k3

Thus, parts (i) and (ii) are equivalent. We prove (ii) next.

We first note that the definition of va yields the representation
Qo' (0)+AN (1)
oN(t) = > Waj=1i), 1<i< K, t>0. (3.38)
J=QY(0)+AN (1)-Q¢' (1)+1
Next, by (3.38), (2.10) and (2.11), for C' > 0,

P (SUP XN () — pi XY ()] > 6)
<T

Qg (0)+AN(?)

1
= P |sup v Z L(a; =1)—p]| > ¢
STV ad o)+ 4N (-0 ()41

N N
§P(QO (0)+ 4 (T)>C)—|—P<sup X(])V(t)>C>
NT t<T
1 L%J
+ P sup — Lo =1)—p]| > €| . (3.39)
oa<c VN i=|Ny|+1

r—=<y<z
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Since (AN(t), t > 0) is a Poisson process with rate AV, equation (2.5) and the fact that

QN (0)/N LA 0, which follows by Lemma 2(i), imply that

o (QY(0) + AN(T) _
ch_{%ojvlféop( NT >C)=0. (340)

Also by Lemma 2(i), the second term on the right of (3.39) tends to 0 as N — oo and
C — 0. The proof is completed by proving that the third term on the right of (3.39) tends
to0as N — oo.

Let
1 [NVt]

UN(t) = N Z [1(a; = 1) —pi] .

J=1
By Donsker’s Theorem [1] the processes (U/¥(t), t > 0) converge in distribution as N — oo

to the process (y/(1 — p;)p; W(t), t > 0), where (W(t), t > 0) is a standard Wiener process.

Therefore, by the almost sure continuity of the Wiener process, for any § > 0,

lim P | sup ‘UZ'N($) - TZ»N(y)‘ > €
N=co Y o<ay<a
lz—y[<8

<Pl osup  A(1—p)p |[W(z)—W(y)|>c¢
st
r=y|ls

By the almost sure continuity of the Wiener process again, the latter converges to 0 as

6 — 0, so we deduce that the right-most term in (3.39) also converges to 0 as N — co. O

Proof of Theorem 1. We introduce a o-algebra FN(t), defined by

FN(1) = oQN(0), QN (0), AN(s), S(s), at,- . aungaon@i 1 <1< K,

0<j<K, 1>1,0<s<t}VAN,

and introduce the filtration BN = (FN(t), ¢ > 0). The argument used in the proof of
Lemma 1 to justify semimartingale decompositions (3.8) and (3.9) relative to FV applies
to PV as well to the effect that MY and ij, 1<i<K,0<j5<K,l>1, are orthogonal
N -locally square-integrable martingales with respective predictable quadratic variations
given by (3.10) and (3.11).

Let

AN(t) = Wy qne =), 1<i< K. (3.41)
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By Lemma Al, AN = (AN(#),t > 0),1 < i < K, are Poisson processes with respective
decompositions

AN = piANt+ MM (1), (3.42)

where MY = (MN(t), t > 0) are FN-locally square-integrable martingales. (Note that AN
are adapted to N but are not adapted to FV.)
By (3.38), (3.41) and the fact that

Q0 (0) + AN(1) = Qo (1) = BN (1), (3.43)
we can write
t
QX0 = Q¥ )+ ¥ - [ 1apn = 1 dB()
0
Therefore, by (2.6), (3.3), (3.2), and (3.5), noting that by (3.41) and (3.43)
t t
AN = [ Hawnsape = 14476 = [ amvipugpe = 4%, (B4)

and that in the first integral on the right of (3.5) we may replace apn(s) by QBN (5)4QN (s)

since QY (s) = 0 if 2?:1 QN(s—) < N, we have

QN(t) = QN(0) + AN (1) +Z Z/ ( )>z)dsl()

=1 j=1,j#i

—Z Z/ 1(QN(s-) 2 1) dsli(s), 1< i < K.

=1 j=0,j#1

By (3.9), (3.42) and (3.19),

Q¥ = Q04 pA i+ S / ON(s)

J=1,57#1
1
_ ui/ ON(s)ds+ MN(1), 1<i< K, (3.45)
0
where
K K
MY = MY+ Y M) - > M), 1<i< K (3.46)
J=1,5#0 J=0,5#¢

(the Zwé\,fij are defined in (3.17)).
Substituting (2.9) and (3.29) into (3.45) and using (2.5) and (3.27), we obtain
xXN(t) = XN(0) - piust + Z uﬂ/ XNV(s
j= 171752
o N TN
e [ X s+ bt 1) (3.47)
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Next, the processes MY = (MN(t),t > 0) and *Mé\,fij = (ﬁwgij(t),t > 0) are orthogonal
Vv —locally square integrable martingales, whose predictable quadratic variations, in view

of (3.42) and (3.18), are given by

t
(VX)) = pee, (M0 = sy [ Q) s
Also Lemma 2(ii) implies that

QN(t) _

P
T .
N —0,7>0

sup
t<T

q;

Therefore, by (2.5)

1 P 1 P
——MN Y (t) = pipt, —MN,> t) = piiqit,
<\/N z >() pip <\/N S,17 () Hizq

and, e.g., by Theorem 8.3.1in Liptser and Shiryaev [13], the processes { M /v/N, ﬂ/[gij/\/ﬁ,
i=1,...,K, j=0,...,K,j# 1} converge jointly in distribution to {\/p;aW;, \/@i; Wi ;,
i=1,...,K,j =0,...,K,j # i}; so, by the continuous mapping theorem and (3.46)
the processes {117[Z»N/\/N,1 < i < K} converge jointly in distribution to the processes
Vi, 1<i<K).

In view of (3.30) and Lemma 3(i), we can rewrite (3.47) as

XzN(t) = XZ'N(O) — pipt + Z,Uji/ X]N(s)ds - ,ui/ XZ»N(,s)d.s
j=1 0 0

K . [ K +
+ | pipi = Y pini /0 D XT(s) | ds
1

where

Since the process (XV(t),t > 0) is a continuous function of the process (X¥(0)+MN(t)/v/ N+

éN(t),t > 0), the result follows by the continuous mapping theorem. O

Remark 7: The latter argument shows that the processes (MY /N, XN, 1 < i < K)
converge jointly in distribution on D(Ry, R*®) to the processes (\/piiWs, Xi,1 < i < K).

The formulas for the covariances of Y; in Remark 1 follow by the definition of Y; and (3.27).
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Corollary 1 follows by (2.14) and the continuous mapping theorem.

Corollary 2 follows by Corollary 1, Lemma 3, and the converging together theorem.

Corollary 3 follows by Theorem 1 and Lemma A2 since, in the notation of the theorem,
the processes ((AN(t) ~ AN /VN,t > O) and (X¥(t),t > 0) jointly converge in distri-
bution to the processes (221;1 VPiEWi(t), t > 0) and (Xo(t),t > 0), which is implied by
Remark 7, (3.42) and (2.14).

4 Non Preemptive Priorities

In this section we prove Theorem 2.

Proof of Theorem 2. The proof mostly repeats the proof of Theorem 1. We only mention
the modifications that are required in the above proof. Let Q%O(t) and ng(t) denote the
number of high and low priority customers in the queue at time ¢, respectively.

We introduce the analogs of the processes D;V, DN and BV from (3.1), (3.2) and (3.3)

DN =3 [ 1(@)(6) 2 1) 1 @ols-) > 0)dsuts) 1 <5< K

Dp(t) = Z/Ot 1(QY (s=) > 1) 1(@No(s—) = 0) 1 (QRo(s—) > 0) dSly(s), 1 < j < K,
DY) = 3 D0 DY) = z DY
By = v+ [ 1 EQN )< N | dafs)
B0 =i+ [ 1 EQN )< | da(s).

We define the o-algebra FN(t) by

fN(t) = U{Q%,O(O)v QEO(O)v QfV(OL A%(S)v Ag(s)v Sfj(s), aH,Bg(sy aL,Bi\I(s);
1<i<K,0<j<K,I>1,0<s<t}VN

where AV denotes the family of P-null sets, and introduce the filtration FN = (FN(¢), ¢t > 0).
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Analogs of equations (3.4) and (3.5) look as follows:

.
Il
—

. K
QHo(t) = Q%,O(O)Jr/o 1 ( QY (s—) =1 ) dAR(s) = D (1),

71=1
K 4 N K ;
+ Z/ U ampy =) dDF )+ > > /1( ¥(s=) > 1) dsli(s)
j=1"0 I=1 j=1,j#i 0
N K ‘
-y ¥ /1(Afv(s—)zl)d5‘fj(s),1§i§K”,

S vk
153 3 RICAESENFEICED 3ib il RICATS BN FEIE
=1 j=1 I=1 j=0,j#i 0

K'+1<i<K',

oM () = +ZE/ 1@ (s 2 1) asiis)

= 1] 1,571

_Z / (@N(s=) 2 1) dsli(s), K" +1<i < K.
=1 7=0,5#

By an argument similar to the one used in the proof of Lemma 1 these equations allow us

to derive the following analogs of (3.6) and (3.7)
Qho(t) = QR o(0) + /\N/ (Z QN (s) N) ds

_ ZMO/ QN ()1 (QF o(s) > 0) ds + M o(1), (4.1)
QL o(t) = Q1 4(0) +AN/ (Z QN(s) = N)

- Zu]o / O ()1 (QNo(s) > 0) 1 (@ o(s) = 0) ds + MP(1).
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K
Q¥ = @Yo e [[1( 200 < ¥

+szZM]0/QN QHO()>0d5+ Z /’L]Z/QN

J=1,5#1

—m/ QN(s)ds+ MN(t), 1 <i< K",
0
QN(1) = QN(0) + piaY / ZQN <N | ds

+pLzzu]o [ @b > 0@ =0+ Y i [0

J=1,57#1
/Q (s)ds+ MN(t), K"+1<i<K',
QN(t) = )+ Z uﬁ/ QN(s) Hi/thV(s)ds—}—ﬂ;[ZN(t), K +1<i<K,
J=1,57#1 0
where MY o = (M} o(t),t > 0), MYy = (Mo(t),t > 0) and MN = (MN(t),t > 0),1 <
i < K, are FN-Jocally square integrable martingales with respective predictable quadratic

variations satisfying, for some &' > 0,
(ME o) (1) VNt (Mp)(t) <UNt, (MN)(t) <VNt, 1<i<K. (4.2)

The latter representations lead to equation (3.28), where the processes X¥ = (XN(¢), t > 0),
and XN = (X (1), t > 0) 1 < i< K, are still defined by (3.23) and (3.29), respectively,

the difference being that processes QY = (QN(¢),t > 0) are defined as

(1) = pri QN o) + QN (1), 1<i < K", (4.3)
(1) = priQLo(t) + QN (1), K" +1<i <K', (4.4)

QN(t) = QN(t), K'+1<i< K,

QN
QN

and

MN(t) = priMpo(t) + MN(t),1<i < K",
MN(t) = praMLo(t) + MN(t) K" +1<i < K',

MN(t) = MN(1),K'+1<i< K.

We next prove the assertion of Lemma 2 by essentially the same argument as above except
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that in order to deduce (3.31) from (3.28) we have to use instead of (3.30) the inequalities

+
K
PRIGIESRGIEN DPPEION I
7=1
which follow by (3.23) (3.29), (4.3) and (4.4).
The next step is to prove an analog of Lemma 3(ii). Let
Qro(t) Qi o(t)

xin = LR X - L
Since, in analogy with (3.38),

QYo (0+A7 (1)
QN(t) = > Wag; =), K"+1<i<K' t>0,
i=QR o (0)+AF (1)=-Q7 o (1)+1

the same argument as in the proof of Lemma 3 shows that

hm P (sup ‘XZN(t) —pLﬂ'Xi\fO(t)‘ > e) =0, K"+1<i<K'. (4.5)

N—oo t<T

An analogous result holds for the high-priority customers as well, but we do not need it

because of the following lemma.

Lemma 4: For every T > 0, as N — o0,

P
sup XY(1) 2 o.
t<T

Proof. Let us denote
ZN(1) = QN o(0) + AN / ZQN )= N | ds
K ¢ )
- Y o / QY (s)ds + M o(0),
o 0
ZV() = QR ol0 Zuyo/ OV (s)ds + MY o(0),

ZV(1) = QY40 Zu]o / N(s) = Ngj)ds + MY oft).

From (4.1) we can see that Q%,o is the Skorohod reflection of the process (ZV(t),t > 0).

Define the process Q%,o as the Skorohod reflection of the process (ZN(t),t > 0). Since
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the process (ZN(t) — ZN(t),t > 0) is nondecreasing, it follows that QY (1) < QL ().

Therefore, it is enough to prove that

= 0. (4.6)

Since )
= K

N0 _ o e, M0
= X0 = S [ XN (s + L

it follows from (4.2) with the use of the Lenglart-Rebolledo inequality and the analog of

Lemma 2(ii) that the sequence of processes (ZN(t)/v/N, ¢ > 0) is relatively compact in dis-
tribution. So, by taking a subsequence, if necessary, and using the principle of the common
probability space we can assume that, for some continuous process (Z1(t),t > 0),as N — oo,
ZN(t)/V/N — Zi(t) P-a.s. uniformly in t over bounded intervals. Also, by hypotheses,
limy oo A /N = HZZ 1pZ <SH= E?:l qitjo, so that (AF — NE] L 4ittjo) VN — —oc.

Since

ZN@)  ZN@) AN - NI g
v v " N
and the process (Q%O(t)/\/ﬁ\_f,t > 0) is the Skorohod reflection of the process (Z%O(t)/\/ﬁ,
t > 0), convergence (4.6) follows by Theorem 6.4(iii) in Whitt [17]. O
The rest of the proof of Theorem 2 is analogous to the proof of Theorem 1. The o-algebra

FN(t) is defined as

FN(t) = o{QH0(0), QLo(0), @F(0), AF(s), AF(s), Sii(s),

(CEHJ,...,C!AN +QH0 ) (aLl,.. QAN )+Q]LV,0(O));

1<i<K,0<j<K,I>1,0<s<t}VN,

and BN = (FN(t), t > 0). We observe that the introduced quantities satisfy equations
(3.47) and (3.46). By the same argument as in the proof of Theorem 1, the processes
{AZIZN, 1 < i < K} converge jointly in distribution to the processes {Y;,1 < i < K}. The
next step is to use (2.14), (4.3), (4.4), (4.5) and Lemma 4 to substitute into (3.47)

XN(t) = xFo + (1), 1< i< K,
K +
XNy = XN —pri [ D XN | +eV@), K"+1<i< K,

i=1

XNty = xN(t),K'+1<i<K,

k3
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where

sup ‘e )\50,1§7’,§K’.
t<T

We end the proof by applying the continuous mapping theorem. [
5 Renewal arrivals

We indicate here how the proof of Theorem 1 is extended to the context of renewal arrivals.
Analogous arguments extend the proof of Theorem 2. The plan of the proof is the same:
we first need to prove the assertion of Lemma 3 and then use a representation in the theme
of (3.47). The techniques used are also similar. For example, we still need two different
filtrations when proving Lemma 3 and the theorem itself. However, we no longer have
decomposition (3.8) for the arrival process, so certain additional tools are required.

Let g}j be the o-algebra generated by the random variables £V, .. 7£]JCV Then AN(t)+1
is a stopping time with respect to the low GV = (gm, t > 0) and the o-algebra g 1

is well defined [5]. In contrast with the proof of Theorem 1, we define the o-algebra ]—"N( )

as

FN(t) = gilvN(tH-l v U{Qév(()), va(()), Sfj(s), BN(‘S)aaBN(s)§

1<i<K, 0<j<K,[>1,0<s<t}VN

and introduce the filtration FY = (FN(#),¢ > 0). The process A is F¥-predictable [5].
Our first goal is to prove the assertion of Lemma 2. Let processes X}¥ = (XN (t),t > 0),
1 <@ < N, be defined by (3.23) and (3.22). As in the proof of Lemma 2, it suffices to prove

(3.37). Algebraic manipulations similar to those that led to (3.28) lead to the equation

580 = 104 p O S [T
J=1,57#1
t
. 1 -
— / XN(s)ds + MN(t), (5.1)
0 N
where XN (1) are defined by (3.29),
- - K K K
MN(t) = MY () + > MY )+ Y M) - > MY () (5.2)
= =1 i=0,j#i
K K
—Di Z Z My (1), (5.3)
7=1 k=1
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zngi(t) and ﬁ\lévji(t) are defined by (3.12) and (3.16), respectively, and

MYt :/ ZQN (1(aBN(S):¢)—pi)dAN(S). (5.4)

In analogy with the derivation of (3.32), we obtain from (5.1)

sup Z XNt

t<T 34
=1

(Z |XN(0)] + sup

AN(t) - )\Nt‘
t<T

VN

Therefore, (3.37) would follow by (3.36) and

+puBIT + \/—Z sup | M (t )I)- T (5.5)

lim lim P | sup —|AN() ANt > A) =0
A—o0 N—co t<T VN

The latter holds by the fact that the AN satisfy a functional central limit theorem (see, e.g.,
[1]). Limit (3.36) is proved as in the proof of Lemma 2 by using the Lenglart-Rebolledo
inequality (3.34) except that we do not have the bound (3.35). However, since by (5.4) and
Lemma A1 (recall that as in the proof of Theorem 1 we can replace subscript BN (s) in the

integral on the right of (5.4) by AN (s) 4+ @~ (0) and AN is F-predictable),

(AN (1) = pil1 - i) / EQN )< N | daV(s) < AN (),

the hypotheses of Theorem 3 easily imply that

AN (1)
N

LA (5.6)
and by (3.14) and (3.18), for some 7' > 0,
(MB ;)(t) < v'Nt, (MEI)(#) < r'Nt,
it follows by (5.2) that
fim Tm P (= (MM (1) > A) =
Al—Iknoo Nl—I>noo N ¢ N

Though the latter is weaker than (3.35), it is enough to deduce (3.36) from (3.34). This
completes the proof of (3.37) and Lemma 2. Lemma 3 follows from Lemma 2 by the same

argument as above.
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In the rest of the proof we use the new o-algebra

fN(t) = ngN(t)_H v U{QéV(O),C:)fV(O), Sfj(s),al, <o AAN (1) 1QN (0)
1<i<K;0<j<K,1>1,0<s<t}VN,

and filtration BV = {FN(¢), t > 0}. Defining AN(¢) as in (3.41) we let

MMty = AN(t) — p; AN(1). (5.7)

Representation (3.44) allows us to apply the second part of Lemma Al to conclude that
the MM = (MN4(1), t > 0),1 < i < K are FN¥-locally square-integrable martingales with

predictable quadratic covariations
<1MN’i>(t) = pi(1-— pi)AN(t). (5.8)

Since by the same lemma (M N+ MNY(t) = (pi+pi ) (1—pi—pir ) AN (1) and (MN4, MN7Y (1) =
1/2((MN* 4 MNEY(t) — (MNAY () — (MN4')()), we have that

(M MY (1) = —pipe AN(1), i £ (5.9)
Let
AN(t)+1
MN(@y = Y (1= AN,
=2

Since we can equivalently write

1
MN(1) = /0 (1= A€V (1) AN (),

by Lemma A1 the process MN = (M™N(t),t > 0) is an FV-locally square-integrable martin-

gales with predictable quadratic variation
(VY1) = (AN )2(oN 2 AN (1), (5.10)

(Another proof of this result can be found in [5]).
In analogy with the derivation of the predictible covariation of MN* and MY ’il, it is

easy to see that

(MN, MN9(t) = 0. (5.11)

Therefore, we can write

AN = pANt+ MN () + 4N (1), 1<i< K, (5.12)
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where MN = (MN(t),t > 0) is the FN-locally square-integrable martingale given by

MN(t) = MM () + pi M (1) (5.13)
and
AN (t)+1
O Nt . (5.14)
7=2

We note that since 0 < E]A:Nl(t)H E;V -t< fjAYN( MV/N — u, (2.18) and (5.6) hold,

£)+1
Wl e
sup — — 0. 5.15
N (5.1%)
By (5.13), (5.8), (5.9), (5.10), and (5.11), the predictable covariations of the M} are
(MY)(1) = (pi(1 = pi) + pIAN)2 (™)) AV (1), (5.16)
and
(MM, MIV(t) = pepir (WV)2(a™)2 = 1) AN (1) (5.17)

With representation (5.12) playing the role of (3.42) in the proof of Theorem 1, we can now

write, in analogy with (3.47),

K ¢
XN = XNO) - ppbt+ S / KN (s)ds

=1,

» N AN
— i | XN(s)ds+ —=—+ L 1<i<K, 5.18
o [ KN 2 0y << (5.15)
where M (1) are defined by (3.46), using MN (1) from (5.13).
Using (5.16), and (5.17) we obtain
MN)(t) p MN MYy p
w = (pi(l —-pi)+ p?uZUZ) ut g(t) = pipi,(,u202 — 1)put. (5.19)

N N

As in the proof of Theorem 1, in view of (5.19), the processes {NIZN/\/N, ngij/\/ﬁ, 1=
1,....K,j=0,...,K,j# i} converge jointly in distribution to the processes {V;, VailiiWi g,
i=1,...,K,7=0,...,K,j# i} so that by the continuous mapping theorem the processes
{M}/\/N,1<i< K} converge jointly in distribution to the processes {¥;,1 <i < K}. In
view of (5.15) and the assertion of Lemma 3, the proof is completed by the same argument

as in Theorem 1.

31



Appendix

In this appendix we state and prove a lemma about thinnings of compound point processes

and a lemma about deriving waiting-time asymptotics from queue-length asymptotics.

Lemma Al: Let A = (A(t),t > 0) and D = (D(t),t > 0) be point processes on (2, F, P)
adapted to filtration ¥ = (F(t),t > 0) such that jumps of A occur only at the times of jumps

of D. Let (1,02, ... be identically distributed, nonnegative and integrable random variables
such that, for everyt > 0, the random variables B, ..., Bp) are F(t)-measurable, and the
random variables Bp(y)41, Bp(t)+2; - - - are independent of F(1).

Let A = (A(t),t > 0) denote the F-compensator of A and T; denote the times of jumps
of A. Then the process B = (B(t),t > 0), defined by

/ﬁps)dA ZﬁDﬂ,

is F-adapted, and has F-compensator B = (B’(t),t > 0) of the form
B(t) = EBy A(t).

If, in addition, E(% < oo, then the process L = (L(t),t > 0), defined by

L(t) = / (B — Efr) dA(s),

is an F-locally square integrable martingale with the predictable quadratic variation process
(L)) = Var By A(t).

Proof. The fact that B is F-adapted easily follows from the hypotheses. To derive its
F-compensator, let us first introduce filtration H = (H(¢),¢ > 0) by H(t) = F(t) Vv G(¢),
where G(t) is the o-algebra generated by Bp(t)+1, BD(t)+2; - - -» and prove that B has the
H-compensator .

- / Biey1 dA(s). (A.1)
The process (ﬁD(s—)-}—l? s> 0) is H-adapted and left-continuous, hence, it is H-predictable.
Since the o-algebra G(t) is independent of F(t), the process A, being the F-compensator
of A, is also the H-compensator of A. Also, since D jumps when A does, we can rewrite
B(t) as

/ﬁD +1dA(s).
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Now the claim follows from properties of stochastic integrals (see, e.g., Liptser and Shiryaev
[13]).

Since F(t) C H(?) and the process B is F-adapted, its F—compensator is the same as
the F-compensator of B’. Since B is obviously F-predictable and nondecreasing, to prove
that B is the F-compensator of B’, we have to check that B’ — B is an F-local martingale.
Let 7P denote the times of jumps of D and let stopping times 7/ be defined by 7/ = 7P
if limy—oo D(t) > n and 7}, = oo if lim;o D(t) < n. Since 7 T co as n — oo, we can
take this sequence as a localising sequence; so, it is enough to check that the processes
(B'(tA7! )= B(tAT!),t>0),m=1,2,...are Funiformly integrable martingales, which,
in view of (A.1), the choice of 7/, and the definition of B, is equivalent to checking that, for

any F-stopping time 7,

TAT), B TAT), B
E/ Bp(sysr dA(s) = E/ Efi dA(s).
0 0

The argument of the proof of Lemma 3.12 in Jacod and Shiryaev [12] shows, in view of
F-predictability of A, that the above equality holds if for every F-predictable stopping time
o

E [Bp(o—yt1 o < AT ) (0 < 00)] = E[Ef11(0 <7 AT, )1(0 < 0)] . (A.2)
Since {o = 0} € Fy and p is independent of Fy, E[f11(c = 0)] = E[ES11(c = 0)] so that,
by the monotone convergence theorem, (A.2) would follow if for every N = 1,2,...

E [Bpoyp1l(0< o <7AT, AN) =E[EHI(0<o<TAT, AN)|.

Since o is a predictable stopping time, there exists a sequence {o,} of F-stopping times,
which a.s. monotonically converges to ¢ and is such that o, < ¢ a.s. on the set {o > 0}.

Therefore, by the dominated convergence theorem the above equality would follow from
E [Bpy+1l(on AN <1 AT, AN)| = E[EB (0, AN <T AT, AN)|. (A.3)

We prove (A.3) by approximating the o,, by piecewise constant stopping times. Let, for
k=1,2,...

i fi-1 i
nk = —1 <-—1.
Ik z_;k ( 2 = k)
Then the o, ) are F-stopping times and

E|:6Dg k+11(an7k<r/\7'7’n/\N)}
1 i\ (i ,
_ZE /k)-}-ll T<Un§k 1 E<T/\Tm/\lv .

33



Next, since 1((i — 1)/k < 0, < i/k)1(i/k < T A7), A N)is F(i/k)-measurable by the fact

that o,,7 and 7/, are F-stopping times,

E |:ﬁD(i/k)+1 1 (% <o, < %) 1 (% <TATLA N)]
= F |:1 (% < Op S ) 1 (Z < TA T7/n A\ IV) E(ﬁD(Z/k)+1|f(l/k’)):|
! )

e

where the latter equality holds since 8p(; )41 and F(i/k) are independent. Thus,

|

IN

1
k
% <TATLAN ]Eﬁl,

| o

FE {ﬁD(Un,k)-Hl(o-nvk <TA T;n A JV)}

al i—1 i\ [
= E|1 n< =11 = '"ANN)|E
; [ ( < _k) (k<T/\Tm/\ )] 51

= P(onr <TAT, AN)EB.

Since oy, | 0, AN as k — oo, it follows by the dominated convergence theorem that
E Bp@eny+1l(on AN < T AT, AN)| = P(0n AN <T AT, AN)Ep,

proving (A.3) and, hence, (A.2). The first part of the lemma is proved.
The fact that L is an F-local martingale follows by the part we have just proved. Next,
by Ito’s formula, the definition of L and the fact that jumps of A are of size 1
t ¢ t
L(t)? = 2/ L(s=)dL(s)+ Y _ (AL(s))* = 2/ L(s—)dL(s)+ / (Bp(s) — Ep1)* dA(s).
0 0<s<t 0 0
The first integral on the rightmost side is an F-local martingale; the F-compensator of the
second integral by the first part of the lemma is equal to (£(8; — Eﬁl)Z%I(t),t > 0), which
ends the proof. [

In the next lemma we consider a sequence of queueing systems with a single input
stream and a single output stream of customers, and the FIFO service discipline. For the
Nth system, we denote by QN (#) the queue length at t, by w'(¢), the virtual waiting time
at ¢, by w;N, the waiting time of the ith customer, by AV (), the number of arrivals by ¢, and
by DN (t), the number of departures by ¢. We introduce the processes KN = (KN (t),t > 0)
and LV = (LN(t),t > 0) by KN(t) = QN(t)/V'N and LV(t) = (AN(t) — ANt)/v/N, where

AN are real numbers. We assume that AN(0) = DN (0) = 0.
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Lemma A2: If the processes (K, LN) converge jointly in distribution on D([0,0), R?)
to processes (K, L), where K = (K(t),t > 0) and L = (L(t),t > 0), and AN/N — X > 0,
then the processes (V Nw™(t),t > 0) and ( N'w]L\]f\,tHl,t > 0) converge in distribution on

D([0,00), R) to the respective processes (K(t)/A,t>0) and (K(t/X)/A,t>0).

Proof. The proof follows the argument used in the Example considered in [16]. Since
QY(1) = QY(0) + AY(1) - DV(1),

the hypotheses of the lemma imply that the processes (U™, V), where UN = (UN(t),t > 0)
and VN = (VN(#),t > 0) are defined by UN(t) = (DVN(t) — ANt)/v/N and VV(1) =
LN(t) + KN(0), converge in distribution in D([0, 0c), R?) to processes (U, V), where U =
(U(t),t>0),V=(V(t),t>0),U(t)= L(t)+ K(0) — K(t), and V(t) = L(t)+ K(0). Since

DN(1) p
N

QN(0)+ A1) P

whN(t)+t=1inf(s > 0: DN(s) > AN(1) + Q™ (0)), + =M,

|

A,

an application of the Corollary in [16] shows that (v Nw™(t),t > 0) converges in distri-

bution to (K (t)/A,t > 0). The second convergence follows by the equality w][\]wal =

wN (Tg\ftj-u)? where TZ»N is the arrival time of the ¢th customer, the fact that Ti\]iftj+1 Ll t/A

and the random time change theorem. [J
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