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POLLING SYSTEMS IN HEAVY TRAFFIC:
A BESSEL PROCESS LIMIT

E. G. COFFMAN, JR., A. A. PUHALSKII, anp M. |. REIMAN

This paper studies the classical polling model under the exhaustive-service assumption; such
models continue to be very useful in performance studies of computer/communication systems.
The analysis here extends earlier work of the authors to the general case of nonzero switchover
times. It shows that, under the standard heavy-traffic scaling, the total unfinished work in the
system tends to a Bessel-type diffusion in the heavy-traffic limit. It verifies in addition that, with
this change in the limiting unfinished-work process, the averaging principle established earlier by
the authors carries over to the general model.

1. Introduction. In classical polling models, M = 2 queues are visited by a single
server in cyclic order. Such models have many applications in the performance analysis
of communication systems, including token rings and packet switches, where a single-
server resource (e.g., a communication link) is shared among many demands on the
resource (e.g., traffic streams). An analysis of the 5SESS® switching system performed by
Leung (1991) is a modern example and a sequel to work of Kruskal (1969) on earlier
switching systems. Introductions to a massive literature addressing many different appli-
cations can be found in Takagi (1986, 1990) and Levy and Sidi (1990).

This paper focuses on polling with exhaustive service: The visit of the server to any
given queue terminates only when no work remains to be done at that queue. We number
the queues from 1 to M and assume they are served in that order. The time for the server
to switch over (or move) from queuei to queuei + 1isnonzeroin general, and isallowed
to be random and to depend on i .

An exact analysis of exhaustive polling systems is quite difficult; hopes for explicit
solutions are soon abandoned in favor of numerical methods and approximations. A recent
study of asymptotic behavior derived from heavy-traffic (diffusion) limits has been a
promising approach, onethat leadsto relatively simple formulaswhichin turnyield useful
insights. The cornerstone of the theory is an averaging principle proved in Coffman,
Puhalskii, and Reiman (1995). In arecent application of this principle, Reiman and Wein
(1998) study set-up scheduling problems in two-class single-server queues. Olsen (1995)
provides a heuristic refinement of the averaging principle that improves the quality of the
resulting approximation for waiting time distributions in moderate |oading.

A limitation of the results in Coffman et al. (1995) is the often untenable assumption
of zero switchover times. The main contribution of this paper is a proof that the tota
unfinished work in the general two-queue system tends, in the heavy-traffic limit, to a
Bessel type diffusion rather than the reflected Brownian motion in the case of zero switch-
over times. We verify that, asacorollary, the averaging principlein Coffman et al. (1995)
carries over to the general model. The remainder of this section describes the averaging
principle and gives a heuristic argument leading to the new diffusion limit for exhaustive
polling systems. Section 2 introduces notation and formul ates our main results. A threshold
gueue very similar to the one in Coffman et al. (1995) is analyzed in 83. Results for this
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gueueing system supply bounds for the polling system which lead to the averaging prin-
ciple, as shown in 84. Further preliminaries are taken up in 85, where the tightness of a
number of basic processesis proved. The development of 883—5 culminatesin the proofs
in 86 of our main results. A critical element in the proofsisasemimartingal erepresentation
of the unfinished work process which allows us to use general convergence results
for semimartingales from Jacod and Shiryaev (1987) and Liptser and Shir-
yaev (1989).

Briefly, the mathematical model is as follows. Customers arrive at the ith queue in a
renewal processwith rate \; and interarrival-time variance s . The service rate parameter
at the ith queueis y; and the service-time variance isc3. Let d; be the mean switchover
time from queuei to queuei + 1. Define p = py + - -+ + pu, Where p; = N/ isthe
traffic intensity at queueii.

We first review the case of M = 2 queues and zero switchover timesd, = 0, 1 = i
= M, adapting the presentation of Coffman et al. (1995), which was for queue lengths,
to the context of unfinished work. Let U;, t = 0, denote the total unfinished work (service
time) in queues 1 and 2 at time t. Then since the process (U;, t = 0) is the same as the
unfinished work process in the corresponding £GI/G/1 system, we can extend the heavy-
traffic limit theorem of Iglehart and Whitt (1970) as follows (see also Reiman (1988)).
Consider a sequence of systems indexed by n, and let p" denote the traffic intensity of
the nth system. The heavy-traffic limit stipulates that p" — 1 as n — o with

\/ﬁ(p”—l)zc”—w asn—ow, —o < C<®,

(As in the standard set-up, we also assume that \' =\, > 0, (o2)2 > 03 asn— =, i
= 1, 2. There is one more technical assumption that we defer until later; it implies that
the Lindeberg condition holds.) For the scaled processV) = n Y2U%, n=1,0=t =1,
under the above conditions, V"% V, as n — «, where V is reflected Brownian motion
with infinitesimal drift ¢ and variance

O'ZE

(o5 + ptos) >0

E

The averaging principle proved in Coffman et al. (1995) deals with queue lengths; con-
verted to unfinished work, the principle states that, for any continuous function f : R,
— Randany T > 0, we have

(1.1) LTf(V{‘")dtiJ: <L1f(uvt)du)dt, i=102

v(yhere VM is the time scaled and normalized unfinished work at queue i and the symbol
— denotes convergence in distribution. Extended to general M, the corresponding aver-
aging principle for sojourn times W;(i) at queuei is given by

T _ a Tt 1-p
(1.2) ff(YP")dt—»f f f( 'Vlu>dudt, 1=i=M,
0 o vo 0

Where Y{"i = Wﬂt(l)/\/ﬁ, n= 1, O =t= 1, and 0 = Elsj<ksM PjPk-

We now return to nonzero switchover times with the expected valuesd,, 1 =i = M.
While a similar averaging principle can be expected, the unfinished-work process is no
longer the same as in the £GI/G/1 system, so the limit diffusion V may be different. To
see what this limit process should be, we give the following heuristic argument. The
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purpose of the remainder of the paper isto formulate the argument precisely and to prove
rigoroudly that it is correct.

Consider the same sequence of systems as before, assuming in addition to the previous
conditions that d! — d;, 0 = d; < . As before, VI = n~Y2U". The drift c(x) of the
limit process V at point x is the limit A — 0, n — « of

CA(X) = ATE[VRa — VI V] = x> 0].

Work enters the system at rate p" per unit time. We assume that A is small enough that
V' does not reach zero during [t, t + A]. With nonzero switchover times, work leaves
the system at a rate less than 1, which we calculate as follows. Let r"(x) denote the
fraction of time the server spends doing useful work (not switching) when V¢ = x. Then
r"(x) isthe rate at which work leaves the system. Since there are O(«/ﬁ) cycles per unit
of “‘diffusion’’ time, we can write

E[ useful work done over a cycle]

) = E[ duration of a cycle]

For simplicity, let M = 2 and start the cycle at the moment the server switches to queue
1. On average, it takes time x/ﬁx/(l — p1) to empty queue 1, d; to switch to queue 2,
x/ﬁx/(l — p») to empty queue 2, and d, to switch back to queue 1. The useful work is

nx \/HX

— + ,
1_p1 1_p2

so we have

nroy w(Xx)
"= Tt d b

But in heavy traffic, p; + p, = 1, so alittle agebrayields

X
13 "xX)=———,
(42 T o

where d = pip,(d; + d,). Extending the calculation to general M gives the same result
with d generalizedtod = o(d, + - -+ + dy). Now cA(X) = \/ﬁ[p” —r"(x)], sothelimit
A — 0, n—wyields

CA(X) 2 c(x) = c + d/x.

Note that the seemingly innocuous addition of a O(1) switchover time to a cycle which
takes O(\/ﬁ ) time (before normalization) produces a dramatic change in the form of
the drift.

A heuristic calculation along the above lines shows that the infinitesimal variance is
unaffected by the addition of switchover times. We are thus led to expect that V" — V,
where the limit process V is a one-dimensional diffusion with state dependent drift c(x),
and constant variance 2. This fact is proved rigorously for M = 2. The limit process is
a Bessel process with negative drift. When 2d/o2 < 1, the process can hit the origin, in
which case it instantaneoudly reflects. When ¢ < 0, V is positive recurrent and has a
stationary distribution with density
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_a(ax)’e ™

“Tern (=0

(1.4) 7(X)

wherea = 2| c|/o?, § = 2d/o2. Thisisthe gamma density of order 3 and scale a.
We further verify that the averaging principles (1.1) and (1.2) hold for M = 2, with V
the above Bessdl process. Extended to general M, we have

1fT ) leﬂ'J\l (1_Pi >
— | f(YM)dt—= f Vu | dudt,
T)ofomas] ) (= v

so if we let V, have the stationary distribution (1.4), then

E_IE_J‘OTJ:f<1_Qpi Vtu>dudt: J:E;((E;X—)fel)x [J:f(% ux)du]dx.

For example, if f(x) = x, we find that the limiting sojourn times have the means

B+11-p
a 20

2. Results. We begin with notational matters. In the standard set-up for heavy traffic
limits, we consider a sequence of two-queue polling systems. For the nth system, denote
by M =¢M+ - + M i = 1,1 =1, 2 thetime of the ith arrival to the | th queue in
terms of interarrival times ¢,
™, i=11=1, 2, theith service timein the I th queue,
sM,i=1,1=1, 2, theith switchover time from the | th queue.

We assume that ¢, i = 1, n™,i=1,sM,i = 1,1 = 1, 2, are independent i.i.d.
sequences, and that ¢ > 0, i = 1. Asin the previous section, we introduce, for n = 1,
2,...andl =12,

N = (EEE) Y, w=(BEnd)t, dl=EsY,

Instead of dealing with the variances (¢3)? and (¢3)?, it is more convenient here to
introduce

(eM?=E(n} —pre?)?,  1=12
Asin 81, we assume the limits,asn— e« for | = 1, 2,
(2.1) N =N, u' = >0, o= o >0,
(2.2) dr—d,

and assume the heavy traffic condition
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(2.3) limvyn(p"— 1) = c.

The Lindeberg conditions mentioned earlier are, for | = 1, 2, ¢ > 0,

(2.4) lim E(£1)%1(¢7' > eln) =0,

(2.5) lim E(n$')* (7' > eln) = 0,

(2.6) lim E(s}')> 1(s' > eln) = 0.

Also let

(2.7) 02 =N0o2+ No3 >0, o=Nuw,1=1,2

Recall that U7 isthetotal unfinished work in the nth system at timet, with U g independent
of {¢M,i=1,{nM,i=1,and{s!M,i=1},| =1, 2 and that

1
(2.8) Vi=—=UR t=0 V"= (VI t=0).

n
Recalling that d = p1p»(d; + d,), let the process X = (X;, t = 0) solve the equation
(29) dX =[2(d + c(X V 0)Y3) + a2]dt + 20(X; v 0)2dW,, X, =0,

where W = (W, t = 0) is a standard Brownian motion, and X, and W are independent.
Next, define V = (V,, t = 0) as the diffusion process on [0, «) with the generator

Lg(x) = <c + g) %(x) + %a

where the domain of L is

d2
2d7§(x),

D(L) = {g € Ck([0,=)) : g(x) = §(x*) forsomeg € CE([O, ))},

2([0, )) being the space of twice continuously differentiable functions on [0, ) with
compact support.

A proof of the following technical result is similar to the proof of the existence of the
Bessel diffusion (Ikeda and Watanabe (1989), Chapter 4, Examples 8.2 and 8.3).

Lemma 2.1. For given X, and Vo, the processes X and V exist and are uniquein law.
If V, isdistributed as \/% then the distributions of V and VX coincide.

In the main result below, and throughout the remainder of the paper, all processes are
assumed to have right-continuous with left-hand limits sample paths and considered as
random elements of the Skorohod space D[ 0, ) (see, e.g., Jacod and Shiryaev (1987),
Liptser and Shiryaev (1989)), and convergence in distribution for the processes is un-
derstood as weak convergence of the induced measures on D[O, «). By S we denote
convergence in distribution in an appropriate metric space. Also, 5 denotes convergence
in probability.
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THEOREM 2.1. Assume that VJ S Vo, as n — «, where V, is a nonnegative random
variable. If conditions (2.1) —(2.6) hold, then

vr 3y,

Theorem 2.1 allows us to get the averaging principle for unfinished work. Let U}, t
= 0, denote the unfinished work at timet at queue | = 1, 2, and define V] = un/yn, v
= (VM, t=0).

THEOREM 2.2. Letf(Xx), x = 0, be a real-valued continuous function. Then, under
the conditions of Theorem 2.1, for t > 0O,

f;f(Vrs”)ds—d»fot <J:f(uvs)du>ds, =1 2

To conclude this section, it is instructive to compare the result of Theorem 2.1 with a
related Bessel process limit obtained by Yamada (1984, Theorem 1). (An example of
this type for point processes is considered by Y amada (1986). Rosenkrantz (1984) con-
siders an alternative approach to the problem studied in Yamada (1984).) Note that the
process of total unfinished work satisfies the equation

t
(2.10) ur = U8+S{1—f 1(U? > 0)aids,
0
where
Ap!
(211) S =S+ §%, S'=3qaM 1=12
i=1
AM = (AM t = 0),| = 1, 2, are the input processes, i.e.,

AM = max(j : Jz e < t> ,

i=1

and «¢ istheindicator of the event that the server is not switching over (i.e., is serving)
a times.

According to (2.10), if Ug > 0, then the instantaneous rate at which work leaves the
system is ag. The heuristic argument of 81 shows that it is reasonable to replace as by
r"(Uyg), i.e, consider the process U" = (U7, t = 0) defined as the solution to

t

(2.12) up = ug+sp—f 1(U2 > 0)r"(UD)ds
0

as an approximation for U". Equation (2.12) is of the type studied by Yamada. The
conditions of our Theorem 2.1 allow us, with some reservations, to apply his Theorem 1,
the limit process that this gives us turns out to be the same as the one in Theorem 2.1.
This comparison justifies our guess that r"(UZ) can be substituted for ag in (2.10).
Moreover, it is plausible to conjecture that one can weaken the much more restrictive
conditions of Yamada' s result. Indeed, the techniques developed in the proof of Theorem
2.1 can be applied to prove the following generalization of Y amada s result. In this gen-
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eralization, we assume that U" = (U, t = 0) is a nonnegative process satisfying (2.12),
where r"(x), x = 0, is a nonnegative bounded function, not necessarily from (1.3). We
further let V] = Uﬂt/x/ﬁ, t=0, V"= (V¢,t=0) and ™ = sup,=o "(X). The previous
notation is preserved.

THEOREM 2.3. Assume that r"(x) satisfies the following conditions:

(r1) lim x(rm —-r"(x)) =d,
(r2) sup x(f" —r"(x)) < oo.

Assume that, asn — o, Jﬁ(p” — ™) — c and conditions (2.1), (2.4) and (2.5) hold. If
Va5V, then V" S V.

The main improvements over Yamada s result are that we do not need the input pro-
cesses to be Poisson (Y amada conjectured that this extension holds, but did not give a
proof) and that we do not assume the condition p" = ™. In addition, r"(x) does not have
to be nondecreasing, the initial condition Uj does not need a second moment and the
increments of S7 do not need fourth moments.

3. A Threshold Queue. In this section we prove an averaging principle for asingle-
server queue, called the threshold queue, which is central to our analysis. The threshold
queue is basically the standard FIFO single-server queue described in Coffman et al.
(1995) except that the threshold operates on the unfinished work, not the queue length.
For a given parameter h = 0, busy periods of the threshold queue begin only when the
unfinished work first exceeds h; busy periods terminate in the normal way, when no
unfinished work remains. We say that the server switches on when the busy periods begin
and switches off when the busy periods end. Those periods during which the server is
switched off are called accumulation periods; such a period includes the usual idle period
plus aperiod during which arrivals are accumulating in the queue. An accumulation period
and its following busy period make up a cycle.

Threshold queues correspond in the obvious way to the queuesin our two-queue polling
system; for example, the accumulation periods of the threshold queue representing queue
1 correspond to the busy periods of queue 2. In our general approach to the proof of the
averaging principle (cf. Theorem 2.2), thetimeinterval [ O, T] isdivided into subintervals
sufficiently small that the total unfinished work in the system remains approximately
constant during each. Then, during a subinterval, the behavior of the unfinished work at
each queue is approximated by that of a threshold queue. The main result of this section
(Theorem 3.1) shows that a threshold queue also obeys an averaging principle; the av-
eraging principle for the polling system is derived as a consequence of the averaging
principles for the threshold queues defined for the subintervals.

We use the notation of Coffman et al. (1995). Consider a sequence of threshold queues
indexed by n. The generic interarrival and service times are denoted by ¢" and n" re-
spectively. The threshold for the unfinished work in the nth queue is h" = vna", where
a" is agiven constant. We are assuming that

(31) sup E(£")? < oo, sup E(n")? < =,

and, letting \" = (E¢")"*and " = (En")*, assume that
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(3.2) [Im\"=x>0, limuy"=p>0 lima"=a>0, \<uu.

oo

As in Coffman et al. (1995), within each busy period, at most one of the interarrival
periods is alowed to be exceptional, i.e., to have a distribution other than that of ¢".
Specifically, for eachi = 1, weintroduce anonnegative random variable£! and aninteger-
valued random variable x{' which correspond to the ith cycle. If there are at least x|
arrivals in the ith busy period, then the (x[')th arrival has an exceptional interarrival
period whose duration is taken to be €. If the busy period has less than x ! arrivals, no
exceptional arrivals occur. We assume that there exists a family of sequences { {['(r), i
= 1}, r > O, of identically distributed nonnegative random variables such that

aVno
(3.3) —Ql(r)—>0 asn- o, r>0,limlim z PEM >N (r)) =0, t>0,

o0 oo

and that thejoint distribution of {[" (r), the normal interarrival times, and the servicetimes
in theith cycle does not depend on i. We allow for two interarrival timesto be dependent
if one is taken from a busy period of the ith cycle and the other is taken either from
another cycle or from an accumulation period of the ith cycle. However, interarrival
(except for the exceptional ), as well as service, times within each accumulation or busy
period are assumed to be mutually independent. We also assume that the time of the first
arrival, which we denote by £7, may have a distribution different from that of the generic
interarrival time, and that

£o.

(3.4)

Byl

Introduce X"(t) = Y"(nt)/\/ﬁ, t = 0, where Y"(t) is the unfinished work at t, and assume
that X"(0) = 0.

The following result is well known and will be used several timesin the remainder of
the paper (see Iglehart and Whitt (1970) for a proof).

Lemma 3.1. Let {{]',i = 1}, n = 1, be a triangular array of nonnegative i.i.d.
r andom variables such that, for any ¢ > 0,

lim E(CD)2-1(27 > eln) =

Let N", n = 1, be nonnegative integer-valued random variables such that, for some g

> 0,
Nn
limPl —>q| =
imp( > a)
Then asn — o,

— max ("5 0.

\/_ 1=i=N"

THeEOrReM 3.1. Letf(X), X € R,, denote a bounded continuous function. If conditions
(3.1)—(3.4) hold, then for any T > O
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T o 1
f f(X”(t))dt—>Tf f(au)du asn-— oo,
0 0

Proor. We proceed asin the proof of Theorem 3.1 in Coffman et a. (1995). Define
the times

v =0,

ai =inf(t >y, X"(t) > 0), =1,
(3.5)

BM =inf(t >y, : X"(t) > a"), =1,

Yy =inf(t > 8P : X"(t) = 0), i=1

Note that the 87" start and the y' terminate busy periods. We prove that

(3.6) Yo a<1+ ),ut asn— o,
Noop—NA
and
¥ Mo p 1 1 a
(3.7) f f(X”(s))ds—»ut<— + >f f(u)du asn— oo,
0 Nop—N)Jdo

which immediately give the assertion of the theorem.

For i = 2, denote by £!" the time between y!, and the first arrival after y,, i.e., €7
= a — y!'4; and denote by {¢ME, k = 1} and {£P?, k = 1} thei.i.d. sequences, with
generic random variable £", from which normal interarrival timeson [af, 8] and [ 8T,
al], respectively, aretaken. Similarly, let{ 1, k= 1} ,i = 1,1 = 1, 2, be the sequences
from which service times of requests arriving in[a', 81'] and [ 8], v['], respectively, are
drawn. Note that, by the conditions of the theorem, the distribution of { {]'(r), &M, o™,
| =1,2, k= 1} doesnotdependoni =1, 2, ....

Inasense, the €', i = 2, also represent exceptional interarrival times. By Lemma 3.1
in Coffman et al. (1995), we know that they satisfy conditions similar to those imposed
on&l, e,

o
(3.8) limlim % PEM > C'(r)) =0, t >0,
= e j_p
where
Cr(r) = max_ &M, i=2 r>0.
1=k=[n0O
Moreover, asn — o,
(3.9) Py =2 r>o0
n

Definefori = 1
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(3.10) AM(t)=1(E"=t) + % 1(2? + % M = t> ,
k=1 j=1
AN (t) = Xf 1(% &2 = t) + 1<X'zlg,J + &N = t>
(3.11) R "

k
(3.12) Sk =M, k=12..., I=12
j=1

For homogeneity of notation, we further set £7(r) = €7. Asin Coffman et al. (1995), by
(3.3) and (3.8), it is enough to prove (3.6) and (3.7) on the events
0o

r(r) = Ol {&r =L (n), & =T (N}
Define the interval lengths

ut =g —yit, vl =i -BF, =1,

so that by (3.5) and (3.10)—(3.12)

W=mﬂ}>&%ﬁwwﬂm»>w}
(3.13) n

v = inf {t > 0: \/iﬁ[nt — SM?(AM(nt))] > \/iﬁsin,l(A:’l,l(nuin))} ,
and
(3.14) vy — vyl =ul + .

Inanalogy with (3.10) and (3.11), define (sincer isfixed, it isomitted in the new notation
below)

Awm=1@mmso+zl@mm+sz—ﬁ,

AM(t) =1+ % 1<Z & = t) :
(3.15) T
APty =1+ 3 1(2 €2 < t) ,
k=1 \j=1

<N%0=21@H0+é§%50,

and define asin (3.13) and (3.14)
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ar = inf {t S0+ SM(AM (nt)) > an} ,

\/_
up =inf {t > 0 iS“l(Anl(nt)) > a }
(3.16) in
o = inf {t > O \/i_ — SM(AM(nt))] > \/%SPvl(KP'l(nLT{‘))} :
ot =i {1 0TIt 24 (n0)] > =S (AR () |
and

(317) ¥ =3 (@ +7), =3 (U +v), i

v
P
2|
[e)=]

Il

=
[@)=]

Il
o

Note that since u], ar and u! are defined in terms of the same process S, we actually
have AM (nuf') = AM (na7') = AM (nul') so that

(3.18) SM(AM (nuf')) = SM*(AM(nat)) = SM(AM (nul)).

Since € =20 (r), & = ¢ (r), 1 =i = tyn, on T"(r), we have by (3.10), (3.11) and
(3.15) that

AM(t) = AM (1) = AP (1),
(3.19) B
A (1) = AT (1) = AP2(1),
on T"(r), and hence by (3.13), (3.16) and (3.18), for 1 = i = t/n,
(3.20) u'=u =at,v = =97,
onI""(r), and then by (3.14) and (3.17),for 1 =i = tn,
(3.21) Y-yt =yl —yla=y -y,
onT""(r).
Now we prove (3.6) for ¥ %rnand yhme; this will imply (3.6) for yfmnon I"(r).

Consider only the upper bound process. The proof for y&miois similar.
First, note that by (3.15),

Ain'l(t) =inf (kz 0: zln(r) + % fln]l - t) ,

j=1
k+1
A2 (t) = inf (kz 0:Y &nf> t> + 1.
j=1

Since{eM, k= 1}, {nM, k= 1},1 = 1, 2, arei.i.d., we have by (3.1) and (3.2) that
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1 Ont0 p Gnt0 Pt

t
=3 aSs, =y s, 1=12
n gl I A n kgl I K

and hence, by (3.3), (3.9), (3.12), and Lemma 2.1 in Coffman et a. (1995),

1 1
Z ANty S M, =

n n

By Lemma 2.1 in Coffman et a. (1995) and (3.16), (3.2)

(3.22) S (A (Vnt)) i%t, =12

(3.23) Vnap 3% .

Hence, by (3.22), SM (AM (nLTi”))/x/ﬁ—P» a which gives us by Lemma 2.1 in Coffman et
al. (1995), (3.16), and (3.22)

(3.24) o 53 oy
w—=A

Then, by (3.17) and (3.23),

1 1 .
(3.25) G - 700 iaﬂ(‘ ; ) =1
N — N
Since
1 EU_tD
¥ o= = gl IR - i),

and sincey!! — ¥4, 1 = 1, are identically distributed by construction, we would have,
in view of Lemma 2.4 in Coffman et a. (1995),

_ P 1 1
(3.26) Y o™ aM(X + ﬁ)t
provided
(3.27) limlimynP(n (77 — ¥8) > k) = 0.
k= n—oe

By (3.17), this would follow from

lim lim VnP(¥na} > k) = 0,

koo nooe

(3.28)
lim limynP(+nv§ > k) = 0.

k= n—oe

Consider the first limit. By (3.16)
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P(Vna? > k) = P(Si (A (Vnk)) = Vna")
(3.29)

P(A*(Jnk) = $A"hk) + P(SPA(3M"NK) = vha").

A

By (3.12) we have, applying Chebyshev’sinequality and (3.1) and (3.2), that, for any ¢
> 0,

(3.30) lim lim Jﬁp<

k> N

S (kin) — %Jﬁ = k&) =0, I1=12

By an analogue of (3.30) for interarrival times, and by (3.15), in analogy with the proof
of (3.20) in Coffman et a. (1995),

(3.31) lim lim VnP(|A% (Vnk) — A\"kin| = kine) =0, 1 =1,2

Relations (3.29) —(3.31) prove the first convergencein (3.28).
For the second convergence, we first prove that

PR 1 n
(3.32) Iimlim\/ﬁP<w2>—<1—)\—n>k> =0,
k= n—oe 3 1%
where
n 1 nl/Anl n n
(3.33) wi = — Si*(Ar*(na7)) — a”.
n
Note that w? is nonnegative. By the inequality
.1
Wy =— sup n1j,
n 1=j=A%Y(na?)

we have

n

Jﬁp(wg > %(1 - %)k) = P > K)

+ VP (AR (Vhk) > p™nk) + M"nkP(ﬂ& > %(1 - %:)Wﬁ) :

We have proved that lim,_... [im JﬁP(\/HUE > k) = 0; by (3.31), since A < u, we have

n—o%

lim... im ynP (AT (vnk) > x™nk) = 0. Finally, by Chebyshev’s inequality,
1 A" 9
nl = A N - - nly2
”kp<”“ - 3<1 w‘)" ”) =@k R

and applying (3.1) and (3.2), we arrive at (3.32).



270 E. G. COFFMAN, JR., A. A. PUHALSKII AND M. I. REIMAN

Going back to the proof of the second inequality in (3.28), write, by (3.16) and (3.33),
in analogy with (3.29),

Pt} > k) = P(sup(Vnt — SI?(A?2(vVnt))) = Vnw! + yna")

= P(SP2(A?(Vnk)) = vVn(k — w?) — Yna")
P(AT2(k) > S(\" + w)ik) + P(wg > 1<1 _ "_n>k)
2 3 "

+ P(SQ*2<%()\“ + m)@) = Jﬁ((é + %)\—)k— a)) .

Putting together (3.30), (3.31), (3.32) and the inequality A < u yields the second con-
vergence in (3.28). Thus, (3.26) has been proved. The proof of (3.6) is done.

To prove (3.7) onT""(r), we apply Lemma 2.4 in Coffman et al. (1995), i.e., we prove
that

A

IA

f(X (s))ds

1 ElntD
I|m— ({
e 4N i= 1

1 1 J‘a
_M<>\+/t—>\> 0f(u)du >

(3.34)

6}0F"(I’)> =0, e >0,

and

(3.35) lim lim Bf%({f

k- nowe

fy f(X"(s))ds

Yi-1

> k} N F”(r)) =

Note that (3.35) is easy. For, by the right inequality in (3.21) and the boundedness of f,
we have, letting || || denote the sup norm,

anto

fy f(X"(s))ds >k}nr (r)) <I|m Z PONG! =72l >k)

Yi-1

ﬁ[gmp({ﬁ

e i=1

which tends to 0 as k — « by (3.27) and by the fact that the (' — ¥'4), i = 1, are
identically distributed.
By (3.14), (3.34) would follow if

I|mi [EDP({

™ yNn =1

_E[°
S )\fof(u)du>

e} N F”(r)) =

and
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Jﬁfv'nf(xn(w BM))ds

1 [lEtD
lim— S P
AU <{
(3.36)

ILL a
———— | f(u)du
P A (u)

> e} N F”(r)> =0.

These limits have similar proofs; we prove only (3.36), which is more difficult.

First, by the second set of inequalities in (3.20) and the fact that {7}, i = 1} and
{vl, i = 1} each consist of identically distributed random variables, for 6 > 0, 1 < i
= tvn,

P({ ’m} - a—“‘ > 5} N F”(r))

w—=NA
5P<

\/ﬁﬂ—i‘>6>+P<
[T

and hence

o L E o[- 2o

oo

(3.37)

stIimP<

n—oe

a —
\/ﬁi'{——”‘>6>+tl|mP<
Y i

vl — i ‘>6>=0,

w—=NXA

where the last equality follows by (3.24) and its counterpart for vi. Next,

P({ \/HJ:.”f(Xn(S+ﬂ?))ds_ﬁf:f(u)du >€} m]"“(r)>

AL (2o
oo (a3
+P<{Ilfll'

Sum the second term on the right overi = 1, .. ., tnDOand divide by . By (3.37),
the result tends to O in probability as n — «, so the proof of (3.36) will be finished by
proving

du > E} N F”(r))

n ay € n
Jnu! —M_)\‘>2}ﬂl“(r)>.
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1 Hmo ol Aad (u—\) u
im L 5 o({ i [ (x0( 2 0))
e 4N Zl Y \/ﬁ

e (31

(3.38)

du > 5} N F”(r)> =0.

We prove first that, for n > 0,

(3

(2

S (A (nu)) — nu

1 dnto
lim— % P _sup
n \/ﬁ i-1 u=vVrl'A ap/(u—N\)

> n} N F”(r)) = 0.

By construction,

X" (u+pgl)y=a"+w + , uei[o ],
n
where W' is defined in analogy with (3.33), so,
u A
P({ _sup X"<—+ﬂi”>—<a—<l——>u> >n}ﬂl“"(r)>
u=vnvAau/(u—N\) \/ﬁ 1%

_ S2(A2(I) A |7 )
[z, [ oo

n n
+Plw'>5|+1({|a"-a|l >3 ].
(v=5) 31—l -3)

Since the distributions of (A (t), t = 0), (AM?(t), t = 0) and (S™?(t), t = 0) do not
depend on i, we conclude from (3.32), (3.2) and (3.19) that the left-hand side of (3.39)
is not greater than
n
> 3)

+tﬁP< sup

n—o u=au/(p—N\)

— 1
tlim P< sup | —=
n

n—o u=au/(p—N\)

Sp?(A2(Vhu)) — % u

1

SSE(AFCW) - % u

U
>3>

which is zero by (3.22) and an analogous relation for SI2( A2 (Vnu))/Vn; (3.39) is
proved.
Now on the event
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{23 <o}

we have that X" (u/\/_+ ) =a+nue]0, Vno! A aul/(pn — N)], and therefore, for
ue [0 Vynv A ap/(u — N,

Oe(Ge)) e (-0

where w (6, T) is the modulus of continuity of f on [0, T] for partitions of diameter 6.
This implies by the continuity of f that, for all » small enough and for al i,

cfen) (o (-39
(= g m) (e (-39
so for n small enough
({7 () (- (-
= P({U<Vm§g}8(#x) X”(\/%Jr ﬂ{‘) - <a— <1 - %>U> > 7]} N 1"n(r)> ,

and so (3.38) follows from (3.39). Thus (3.36), (3.34) and (3.7) are proved. This com-
pletes the proof of the theorem. O

Sup
u=vVnulaau/(u—X\)

= wi(n,a+n),

_ Su
u=vnvAau/(u—N\)

€
dusé},

du > 5} N F”(r))

4. An averaging principle for the unfinished work. In this section, having in view
the averaging principle, we derive a limit theorem for the integral fo f(vpt)dt, where
f (x) isareal-valued continuous function on the positive half-line, assuming that V" SV
for some continuous process V. This s carried out by providing suitable upper and lower
bounds for the unfinished work at an individual queue in analogy with the contents of §4
in Coffman et al. (1995). The main result is the following.

THEOREM 4.1.  Assume that, in addition to the conditions of Theorem 2.1, V" S \
where V = (V,, t = 0) is a nonnegative continuous process such that, for any T > 0,
fOT 1(V, = 0)dt = 0 P-a.s. Then, for any continuous function f (x) on R, ,

LTf(V{"l)dt—d»LT (J.:f(u\?[)du>dt.

Proor. We first assume that f(x) is bounded and nonnegative. We note that it is
enough to prove that
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T T 1
(4.1) f f(VPM)-1(6 = VP = K)dt—d>f (f f(u\N/l)du>-1(6 =V, = K)dt,
0 0 0
for any 6 and K, 0 < 6 < K, such that
T ~ ~
(4.2) f [1(V; = 8) + 1(V; =K)]dt =0 P-as.
0

The argument is given in the proof of Theorem 2.1 in Coffman et a. (1995). So, we
prove (4.1) assuming (4.2) . Theideaof the proof isthe same asin Coffman et a. (1995).
Note that if considered in isolation an individual queue in our polling system passes
through alternating periods of accumulating and serving requests, thus its behavior resem-
blesthe behavior of the threshold queue above, the distinction being that here the threshold
isarandom process. the queue starts being served when the unfinished work at this queue
becomes equal to the total amount of the unfinished work in the system. According to the
assumptions of the theorem, the (properly normalized and time-scaled) process of the
total unfinished work is a continuous process in the limit. Therefore, we can divide the
time axis into (random) intervals small enough for the total unfinished work during an
interval to be close to a constant. Then during such an interval an individual-queue un-
finished work is well approximated by the unfinished work in a threshold queue with the
associated constant as a threshold. The proof of the theorem implements this program.

Asin Coffman et a. (1995), choose e € (0, 6/2) suchthat N = (K — §)/e isan integer
and, givenr(e) < e/2,let,for0 =i = N,

a(e) =0 +le,
Bro(e i) = (ai(e) = r(e), a(e) +r(e)),
Ciole i) =(0,a(e) —e+r(e)) U(a(e) +e—r(e) =),
Co(e, 1) =0,
TR(e, 1) =inf(t > e, 1) 1 VP € By(e, 1)), k=1,
Ci(e, i) = inf(t > 7(e, i) : VI € Cole 1)), k=1,
Cole, 1) = 0,
m(e i) = inf(t > Geae, 1) 1 i € Biy(e i), k=1,
Gle, i) =inf(t > 7 (e, 1) : i€ Cy(e, 1)), k=1
Thus, [7§(e, i), (e, i)] are intervals during which V{ **does not vary too much.”

For the sequel, we note that, since V is conti nuous, the argument of the proof of Lemma
4.1 in Coffman et al. (1995) appliesto V" and V to give that

(e, 1) < (e, i) P-as. on{ry(e, 1) < o},

(4.3) lim P(min Li(e, i) =T) =0,

O=i=

and that r (e¢) can be chosen so that, asn — o,
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(V" (7R(e 1) A T, 006 1) A T eromion)
(4.4)

SV (relen 1) A T, Gelen 1) A Teesomion)

where convergence in distribution isin D[ 0, o) X R (Billingsley (1968)).

Let nk](i, k), j = 0, denote the successive times after n7i (e, i), when the unfinished
work at queue 1 becomes equal to 0. These are times when switchovers from queue 1 to
queue 2 start. We also let 9¢ denote the number of accumul ation-service cyclesfor queue
lin[rg(e, i) AT, Ck(e, i) AT], e,

s [MING RG> e D) AT, RN K) = L D) AT,
“ o, if k32(i, k) > C0(e, i) A T.

We now define two threshold queues approximating queue 1 on [72(e, i) A T, (e,
i) A T] whose unfinished work processes bound the unfinished work process of queue 1
from below and from above, respectively. We begin by introducing a threshold queue
associated with queue L on [7R(e, i) A T, Ck(e, i) A T].

Fixing i and k, we denote k' = (i, k) and let né}', j = 1, denote the successive
times after nkg when the server starts serving queue 1; obviously, 'y < 0] < «J, j
= 1. Let the arrivals to queue 1 on [nkg, o) be numbered successively starting from 1.
Let £7 denote the time period between nk} and the first arrival. Denote by £7', | = 2, the
times between the (1 — 1)th and | th of these arrivals. Obviously, {£]", | = 2} isasequence
of i.i.d. random variables with the distribution of the generic interarrival time for queue
1. Introduce independent replicas{ ¢[i", | = 1},j = 1, m = 1, 2, of the interarrival time
sequence at queue 1 and independent replicas {#", | = 1},j = 1, m = 1, 2, of the
service time sequence at queue 1.

Given h > 0, let

pf =inf(t> kL VP> h) A 0], j=1,
gpr=inf(t> 67V =V, =1

Note that if vg}ql = h, then o' = ¢ = 6. Let x|, j = 1, index the last arrival to queue
1 occurring no later than at ny|' and let v}, ] = 1, denote the time between ny/|" and the
(x} + 1)th arrival. By definition, o) = £3n,1.

Construct as follows a threshold queue with the threshold h" = Vnh. In the first cycle
the interarrival timesin the accumulation period are taken from the sequence{£1, £3, . . .,
ENg, ENpeq, €0, €74, -+ -} . The associated service times for arrivals 1 through 7 are
those of corresponding arrivals to queue 1 and the subsequent service times are 171,

n,1
771:2, e
Denoting the threshold queue normalized and time-scaled unfinished work at t by
VM define

A1 =inf(t>0:VM>h).

Then nA31 ends the first accumulation period. Obviously, 87 = 1 — k¢ if V% > hwhich
happensif V¢ > h, inthiscase &%y, 4, €31, €14, - - - are not actually used as interarrival
times and n1, n13, --- are not used as service times. At n39 service switches on. If
Vi = h, which happens if Vi = h, then interarrival times after ng? are taken from
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{€%2, 1 = 1} and service times after n37 are taken from {n7?, | = 1} until time n¢?,
where

¢1=inf(t> B1: VPt = V).

We then take £12, to be the last random variable in the sequence { £13, €13, - - -} that is
actually realized asan interarrival timein[nA4, n¢4]. Inthe casethat Vi > h we define
¢ = B1and set ¥ = £72; = 0. In both cases, the first arrival after n¢f is made to occur
at timeng? + v{ and bring the same servicetime asthe (x| + 1)th arrival in queue 1 so
that its interarrival time v} satisfies the inequality v] = o7 + €720.; = €001 + 02414,
The subsequent interarrival times are €75, . . ., £y, and the service times are the same
as for arrivals x1 + 2, ..., x5 in queue 1, where x5 is the index of the last arrival in
gueue 1 occurring no later than at ny5. Arrivals x5 + 1, x5 + 2, - - - havetheinterarriva
times&ny,q, €51, €54, - - - and the servicetimes 31, n33, - - - until (and unless, i.e., these
times are not used if V% > h) the threshold has been exceeded. After this has happened
at ng5, where

A% =inf(t > y1: Vit > h),
and
vy =inf(t> g7:Vr =0),
and until n¢ 5, where
¢35 =inf(t> B3: VP = V%),

the interarrival times are £5%, £33, - - - and the service times aren3?, n%3, - - - (as above
these are not used if V3 > h and hence¢>2 = [5). After ng 35, the next arrival brings the
same service time as the arrival in the original queue terminating the interarrival time
£"y., and occurs at time n¢3 + v3 (in both cases V71 > h and V7% = h) so that its
interarrival time satisfiesv) =13 + §2X5+1 = §X5+1 + £5%5.1, Where £52, denotes the last
random variable from {£5%, ¢3%, -- -} that is redlized as an interarrival time in [nj33,
N3] (again x5 = €325 = 0if V% > h). The subsequent interarrival timesare£%y.,, - - -
and the service times replicate those of queue 1 until the unfinished work hits O after
which the cycle resumes.

That this is indeed a threshold queue with generic interarrival and service times dis-
tributed as in the original queue follows by Lemma 4.2 in Coffman et al. (1995). The
exceptiona arrivals, if any, are the ones occurring at n¢{ + v', j = 1. Note also that if

gjhl = h, then Z;Jnﬂ is used for constructing interarrival sequences in both accumulation
and busy periods so that these sequences, generally, are dependent. This explains why we
emphasised this assumption in Theorem 3.1.

We now check that V™! satisfies the conditions of Theorem 3.1. We need focus only
on the part related to exceptional interarrival times and the time of thefirst arrival. Define

Gy = max &+ max &7
1=k=Onr O 1=k=COnr O

where x [ indexes the first arrival in the original queue after «j.;. Noting that {EQM, k
= 1} isdistributed as{ £}, k = 1} and that v = Z;Jnﬂ + §ﬂ§p+1, one can prove in ana ogy
with Lemma 3.1 in Coffman et al. (1995) that the sequence { v]", {J'(r), j = 1} satisfies
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the conditions of Theorem 3.1. Informally, this follows by the fact that since the number

of arrivals in an accumulation-service cycle is of order Jn, “with high probability’’ the
exceptional arrival isamongthefirst\/ﬁr arrivalswhenr is*‘big,” similarly, £'2n,; belongs

totheset{¢'7, ..., Jngﬁr } “‘with high probability’’ for r ‘‘big.”” By asimilar argument,

£q/ vn 5 0. Thus, the conditions of Theorem 3.1 hold for the associated threshold queue.

We now define a process V" as the process V™! corresponding to the threshold h
= a(e) — € and a process V™! as the process V™! corresponding to the threshold h
= a(e) + ¢, and check that they represent a lower and upper bound, respectively,
for vt

Since on the interval [7}(¢, 1), CR(e, 1)), the process V" stays in the strip (& (¢) — ¢
+r1(€),a(e) + € —r(e)),theprocess V" up-crossesthelevel a (¢) — e inevery interval
[kiL1, «]'] belonging to [Tk(e, i) A T, Ck(e, i) A T], so the construction above yields

vn!l _ {Vp;li/{‘1+xjr‘1| te [i/jn—lf Bjn)l 1= ] = 7-9{1,'12-;
t = ~ .

Vipgp,  tE[B]F]),  1=j=97k,
where, in analogy with the proof of Theorem 3.1, nA" denotes the j th time a busy period
for V™! starts and ny " denotes the j th time when the queue empties. By the fact that fis
nonnegative, we then get

on CR(ei) AT

(4.5) f(VP)dt = f f(vP)dt,

0 TR(eI)AT

where 9" = ¥ .
Similarly, since V" does not exceed a; (¢) + e on [7R(e, i) A T, CR(e, i) A T], the
construction above implies that

nl _
t

{\A/p’l,(]nfr:”nl, te [« o), 1=j=9N%,
Ve nan, te e, k), 1=j=9X%,

where ¢ is defined as ¢ above corresponding to h = a (¢) + € and n§ " isthe jth time
when the queue empties. Again, since f is nonnegative,

CR(ei) AT KBAT
f F(VPLYdt = f F(VMYdit

TR(ei) AT TR(ei) AT
(4.6)

n
ni
Koy Tienr

CR(ei)AT 9N .
+ f f(vt)dt + f(vM)dt,
0
where 9" = 4.
Thus, recalling that || || = sup, f(X), by (4.5) and (4.6) we have the bounds

o CR(ei) AT
f(Vrhydt = f f(VrY)dt

0 TR(eI)AT

"
(4.7) = f fVM)dt + [kBA T — 7R(e, i) A T]|f]|
0

+ [Ck(e, 1) AT — kfpa A TIIEL



278 E. G. COFFMAN, JR., A. A. PUHALSKII AND M. I. REIMAN

We next apply Theorem 3.1 to V™! and V" to get the asymptotics of the bounds on the
right and on the left.

Define
(4.8) Ofic=min(j: Y1 > CR(e, 1) AT = 7R(e, 1) A T),
(4.9) Me=min(j: Yyt > CR(e, 1) AT —7R(e, 1) AT).
Obvioudly,
(4.10) I =9 = O

Let UR(e, i) and Vi(e, i) denote respectively the lower bound in (4.7) with 9" (=73n2)
changed to " = Y3y, and the upper bound in (4.7) with 9" (=%%pa) changed to &"
= %% By (4.10),

CR(ei) AT
(4.11) Ul(e, i) = f F(VPY)dt = VE(e, 1)

TR(e)AT
We now show that, asn — o,

(412)  UR(e,i)>Ude i), Vi(ei)>Vi(e i), k=1,0=i=N,

where
FRLCLE 2 e AT e AT [ @@ - o
Wite) = M Gy AT e i) AT [ Hutato +

Let

(419) B0 = minGj = 0: 374 > 1

and

(415) DR(Y) = minG = 0: 37, > 1).

Note that

(416) B = LR ) AT = 7ie ) AT,

(4.17) =0, 1) AT —7R(e, i) AT).

In the course of proving Theorem 3.1 we established (3.6). Since V™! and V" meet
the conditions of Theorem 3.1 and the %' and §' are analogues of the y|' from (3.5), we
can write for these processes, in analogy with (3.6),
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e 1 1 o 1 1
Yimn ~ Ha@(e) - 6)H1<)\—1 + ﬂ) v Vi > t(a (c) + 6)#1(;1 T )\1> :

By Lemma 2.1 in Coffman et a. (1995) and (4.14), (4.15),

() P t <1+ 1 )1
(4.18) h o om@E - \M oM\

() e t <1 1 )l
- —F+— .
o om@le) +e) \ M - N
Lemma 2.2 in Coffman et a. (1995) then yields

Pa(e)—e

(4.19) Yo~ 2 F e v

By Theorem 3.1 applied to V"* and V" and (4.19),

Vino L a (e) —
f(V”l)ds—> f(u(a (e) — €))du,
(4.20) fO ai(e) + e f

7o 01y e 5 & () +e. [*
f (U3ds S 2 S Etfo f(u(a (¢) + €))du.

0

In view of (4.16), Lemma 2.2 in Coffman et a. (1995) shows that (4.4) and (4.20)
imply

da(e) —e

a(c) + c = (Gle 1) A T = 7ile, ) AT)f f(u(a (e) — €))du,

f f(V0ydt >

f f(V{‘l)dt E ; (Ce(e, 1) AT — 7€, i) A T)f f(u(a () + €))du.

Since [k3 A T — 70(e, i) A T| > 0and [£(e, i) A T — &% A T| > 0 obviously hold,
(4.12) is proved. Moreover, the same argument shows that

(Vn, (UE(G, i))kzl,OsisN) _d’ (\7, (Uk(ea i))kzl,OsisN)a

(4.21) . .

(Vn, (Vrk\(e! i))kzl,OsisN) - (V1 (Vk(ei i))kzl,OsisN)'
Next, defining
(4.22) U"(e) = Z Z Ug(e, i), V'(e) = Z Z Vi(e, i),
we need to prove that
(4.23) (V" UN)) > (W UCe)), (V7 V() > (V, V(e)),

where
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©

(4.24) U(e) = E T Udei), V()=73 5 Vilei).

k=1i=0 k=1i=0

We prove the first convergence result in (4.23); the proof of the second uses the same
reasoning.
Since UR(e, i) = 0if 70(e, i) = T, we have by (4.3) and (4.4),

H_mﬁp< E % Ul(e, i) — U"(e)| > o)
(4.25) = lim limP(min (e, i) A (T+1) <T)

= lim P(min Gu(e, i) A (T+1)=T) =0.

O=i=N

Analogously,

(4.26) TS U(e i) o U(e)  (M—),

k=1 i=0
Next, by (4.21) and the continuous mapping theorem, we have
M N d " M N
(4.27) <V”, > > Uk(e, i)) - (V, > Y Ude, i)) .
k=1 i=0 k=1 i=0
The convergence (V", U"(¢)) 5 (V, U(¢)) then follows from (4.24) —(4.27) and The-

orem 4.2 in (Billingsley (1968)).
Now by the definition of 7¢(e, i) and (e, i),

J; f(VM)-1(6 = V! = K)dt — g > fo fVPY)-L(t € [TR(e, i), CR(e, 1)) dt

k=1i=0

.
s||f|\f [1(6—e=VP=68)+1L(K=V]=K+¢)]dt
0
so by (4.11), we obtain from (4.22)
T
U"(e) — ||f|\f [1(6—e=VP=68)+1L(K=V]=K+¢)]dt
0
.
(4.28) = f f(VMH-1(6 = VP = K)dt
0
.
=V"(e) + ||f||f [1(6 —e=VP=6)+1L(K=V]=K+¢€)]dt.
0

Therefore, if we provethat ase — 0
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U(e) > fT (flf(u\z)du> 1(6 = ¥, = K)dt,
(4.29)

V(e) ifOT (Llf(u\?t)du>1(6 =V = K)dt,

then by applying Lemma 2.3 in Coffman et al. (1995) to (4.29) and taking into account
(4.23), (4.2), we will then obtain (4.1). As before, we prove only the first of the results
in (4.29); the proof to the second is similar.

In fact, we prove convergence with probability 1. The argument is amost identical to
that in Coffman et a. (1995), but we give it here sinceit is used once again below. Since
a (¢) > 6, we have from (4.13) and (4.24)

N

U - 5 5 [ fu@ e - ndte ) A T ne ) AT < ST

k=1i=0%0

Thistendsto 0 as e — 0, so we prove that

|im£ S [Ge i) AT = 7i(e, i) /\T]fof(u(ai (¢€) — €))du

0 k=1 i=0

(4.30) T om
- f (f f(u\N/t)du> 1(6 = V, = K)dt.

We can write

> 2 [Gle, ) AT = 7i(e, 1) AT] J.O f(u(ai(e) —€))du

(431) = z z [ (ff(u(a(d - e))du)olm(e, i) =t < G(e, et

C..

o

Notethat if X,y > 6/2, | X — y| < 2¢, then

J:f(ux)du - f:f(uy)du

- ‘)—:tf:f(u)du - %f:f(u)du

f:f(u)du

=

8¢
=—|f].
= £

E—EU‘ f(u)du+l
X Y|Jo y

Since\N/t elale) —e, ale) +¢],fort e [r(e, i), L(e i)), wethen have



282 E. G. COFFMAN, JR., A. A. PUHALSKII AND M. I. REIMAN

fo f(u(a(e) — e)du-1(t € [7x(e, i), Lk(e 1))

- f:f(uf/t)du'l(t € [7i(e, 1), Gu(e 1))

= 2t € rde 1), Gle D)),
so by (4.31)
© N T 1 - 8E
C - f(uvy)du |- 1(t k(e 1), (e, 1)))at| = — || F|T,
53 [ ([ tewan) a e e, weeimad = S
whence

C. — J.OT <J:f(u\~/t)du>-1(6 =V, = K)dt‘

.
s||f\|f [1(65\7t55—e)+1(Ks\~/tsK+e)]dt+%||f||T.
0

Since by (4.2) the right-hand side of this inequality tends to 0 as e — 0, we have proved
(4.30). This completes the proof of the first assertion of Theorem 4.1 for bounded non-
negative f (x). The general case is handled via a localization argument as in the proof of
Theorem 2.1 in Coffman et al. (1995).

5. Tightness results. The purpose of this section is to prove severa results on the
tightness of some processes closely related to the normalized and time-scal ed unfinished-
work process V" defined in (2.8). We start, however, with a simple fact.

Introduce

e — pi'nt e — Nt
(5.1) Bp = Sx —eint Sl

where S and S were defined in (2.11), and let B™ = (BM, t = 0), 1 = 1, 2, B"
= (B, t = 0).

LemmA 5.1. Asn— o,

l Ont0 1 ChtO An,l
=3 s Sdt, =Y sModt, O, 1=1,2
n i=1 n i=1 n
n,l d 1/2 | _ n d
B _’)\| O'|W, |—1,2, B _’(0'\/\/(+Ct,t20),

where W', | = 1, 2, and W = (W, t = 0) are standard Brownian motions.
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Proor. We give proofs of the first and second convergence results in the first line.
Since, for € > 0, Var s = E(s?)21(sY > eVn) + e/nd?, it follows by (2.2) and (2.6)
that Var si'/Vn — 0 asn — «. Hence,

1 D/ED(SnI dn) P 0 1 EhtD(Snl dn) P 0
— i — dr) >0, - i — d) 0L,
\/H i=1 n i=1

and both convergences follow by (2.2). o

The third convergence follows from the convergence 1/n X ™7 ¢M — N\*t, which is
proved similarly, and properties of the first-passage-time map (Whitt 1980; see also Coff-
man et al. 1995, Lemma 2.1). The claimed convergences in distribution hold by the
Donsker-Prohorov invariance principle and (2.3). O

Let A7 denote the indicator of the event that the server is switching over at nt, i.e.,
Bt = 1 — ap. Then definitions (2.8), (2.11), (5.1) and Equation (2.10) imply that V{
satisfies

t t
(5.2) VD= V0D + Bl + Jﬁf 1(V? = 0)ds + Jﬁf 1(V? > 0)B0ds.
0 0

We study properties of the processes on the right. For ¢ > 0, we define the processes K™~
= (KM, t = 0) by

(5.3) ne = \/ﬁft 1(VI > €)Bnds.
0

Though the K™ have continuous paths, we still consider them as random elements of
D[O0, «).

Recall that a sequence of processes { X", n = 1} in D[0, ») is called C-tight if it is
tight and all weak limit points of the sequence of their laws are laws of continuous
processes (Jacod and Shiryaev (1987), V1.3.25). Below, we repeatedly use the fact that
{X", n= 1} isC-tight if and only if, for all T> 0andn > 0O,

limlimP(| X3| > H) =0,

Ho% noo

limlimP(  sup |[X{ - X2 >7)=0

6—0 n—ow st=T,|s—t| =6

(thisfollows, e.g., from Jacod and Shiryaev (1987), V1.3.26).

Another technical tool used below is the concept of strong majorization (Jacod and
Shiryaev (1987), VI1.3.34): Say that a process X = (X;, t = 0) strongly mgjorizes a
process Y = (Y;, t = 0) if the process X — Y = (X, — Y;, t = 0) is nondecreasing. If a
sequence { X", n = 1} of processesis C-tight and each X" strongly majorizes a process
Y", where X" and Y" are both nondecreasing and start at O, then the sequence {Y", n
= 1} is C-tight (Jacod and Shiryaev (1987), V1.3.35).

LEMMA 5.2. Thesequence { K™, n = 1}, where K™ = (K<, t = 0), is C-tight for
every e > 0.

Proor. Denoteby[uf*,v]and[ul?,vP?],i = 1, the respective successive switch-
over periods (i.e., times during which the server is switching) from the first queue to the
second and from the second queue back to the first. Let 9 be the number of switchovers
from queue | started in [0, nt]. By (5.3),
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2 9pt mulant

(54) Kie==5Y Y 1(U > eVn)ds.
\/ﬁ| 1i=1 YuMant
So, if we define
o 1 2 1‘)[” ur"l
(5.5) Kpe = = >y 1ur> eVn)ds,
ni=1i=1Yut
then, obvioudly,
o 1
(5.6) sup| K2 — K| = —max max (v —uM).
s=t n =12 1=i=9p

Note that since

19n,| t+ 1 Ch(t+1)/d0
P<7t > T) = P< z Sin’l = nt) )
|

i=1

Lemma5.1 implies that

(5.7) lim P(ﬁnm b l) -0

- d
Recalling also that
(5.8) oM —uM =8,

we get by Lemma 3.1 and (2.6) that the right-hand side of (5.6) tends in probability to
0 asn — . Thus the C-tightness of { K™, n = 1} will follow from the C-tightness of
{K", n=1}.
Define
9p!

(5.9) Kpel = Jlﬁ.zl s -1(Uh > eln),  1=1,2

SinceU¢ cannotlncreaseon[u. , v, we have from (5.5) that K "< is strongly majorized
by K™ = K"<! + K"2, where K"<' = (KP', t = 0), | = 1, 2. Therefore, it is enough
to prove that { K™, n = 1} and { K2, n = 1} are each C-tight. By symmetry, we need
only prove that { K™, n = 1} is C-tight.

Let
_ l vpl
(5.10) pel= = 3 §M-1(Ulm > eln/2),
\/ﬁ| 1
, 10
(5.11) pel= =3 §M-1(Uln > e, Ul = eln/2).

\/ﬁ|1

By (5.9), K" is strongly majorized by K™ + K™%, where K1 = (K”el t = 0) and
Knel = (KMl t = 0). We prove that { K™, n = 1} is C-tight and that K{** tends in
probability to O uniformly over finite intervals as n — oo, Thiswill conclude the proof of
the lemma.
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We begin with the property of K™<1. Since there is no service on [uP*, v ], we have
by (5.11) and (2.11),

,1

, 1
Rpel < = S SM-1(Sh — Sip > eln/2)
i=1
1 o
== Zl s 1(Sih — S > eln/4)
1
+ = S M- 1(SiA — SiE > ein/4),
ni=1

so by (5.8), for 6 > 0, since uji: = nt,

, 9 t+1 1
P(KP* > 0) = P( — > ) + P(— sup st > 5)
n d, \/ﬁlsisEh(Hl)/dlD
(5.12)
+P( sup |SM—SM| >eln/d)+P( sup | S — S?| > eln/4).
OSVUfurl&\s‘ﬁ OS\EZNE

The first term on the right of (5.12) goesto 0 asn — « by (5.7). The second term tends
toOasn— o by Lemma 3.1 and (2.6).

Next,
P( sup |SM— S| > eln/4)
Osulisuriésfﬁ
Sht_ 50 St H0nu
=P sup \/_plv_ \/_pl +p2\/ﬁ(v—u) >§>
u=t
(5.13) 0=ih(v-u)=5 " "

Sk — pinv  Si — pinu

Vn Vn

A

€
Pl su > = pio
<ust,ue|sy 4 P >

=F’< sup | B} — By >i—p2 )

u=t,|u—v|=y

where y > 0 is arbitrary and n is large enough. Since by Lemma 5.1, B™* convergesin
distribution to AY20,W?, and since the functional X—  sup | X, — X.|, X € D[0, ),

u=t,|u—v|=vy
is continuous almost everywhere with respect to the Wiener measure ( Liptser and Shiryaev
(1989)), we conclude from (5.13) and (2.3) that

limP( sup |S™ — St| > e/n/4)
e Osvujjn;é\/ﬁ

= P( sup (W - W[ = M”Zall(z - p16>> ,

u=t,|u—v|=vy
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which goestoOasy — 0, if 6 < e¢/4p,, by the continuity of Brownian motion. We have
thus proved that the third term on the right of (5.12) tendsto O as n — o« if ¢ is small
enough. A similar argument applies to the last term on the right-hand side of (5.12).
Therefore, since K™ is nondecreasing,

lim P(sup K2<! > 0) = 0,

n—oe s=t

as required.

We now prove that { K"<!, n = 1} is C-tight. Call a switchover from queue 1 to queue
2 sound if at the time when it starts, the total unfinished work (which at that moment is
the unfinished work at queue 2) is greater than en/2. Let 37 be the number of sound
switchovers started in [0, nt]. By (5.10),

- 1
(5.14) Kpel = = 5 s,
o 2

where S is the duration of the ith sound switchover. Note that the soundness of a
switchover is determined at its beginning, so the §*, i = 1, arei.i.d. and distributed as
thest!, i = 1.

We have by (5.14),fort > 0,6 > 0,n >0,y > 0and A > 0,

P( sup R =Ry > )

uy=t,|u—v| =6

sP(T9{”>AJﬁ)+P( sup |1_93'1—1_93'1|>'y\/ﬁ)

v—d=u=v=t
> n) .

Now, if 90 — 93 = m, then the amount of work executed by the server at queue 2 in
the interval [nu, nv] is no less than (m — 1)e\/ﬁ/2 which takes time (m — 1)6\/5/2.
Hence (m — 1)eVn/2 = n(v — u) which leads to the estimate 3 — 3% = (2Vn/e) (v
— u) + 1, so that, for al n large enough,

(5.15)

owWnO

+P  sup
v—y=u=v=A

e

i=Onn o1

_ _ 3Vn — 3vn
sup |90 — 9 = {5; Mt < it.

v—d=u=v=t €

Taking in (5.15) A = 3t and y = 26, we get

OwWnO

\/Hi:m‘zﬁml

limP(  sup |KMet — Koet| > p) = lim P< sup s

uy=t,|u—v| =6 v—36/e=u=v=3t/e

).

where the latter limit, by Lemma 5.1, is zero if (36/¢)d; < n. Therefore,

limlimP(  sup |KMl — Kiel| > p) =0,

620 nooe uv=t,|u—v|=6
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which, since Ki<! = 0, proves the C-tightness of {K™!, n = 1}. The lemma is
proved. O

We next prove that the two rightmost processes in (5.2) are asymptotically bounded
in probability.

LemmA 5.3. We have

7 t
(5.16) IimIimP(x/ﬁf 1(V? = 0)ds > A) =0,
Ao nox 0
- t
(5.17) lim lim P(Jﬁf 1(V? > 0)B2ds > A> = 0.
Ao oo 0
Proor. Let
(5.18) QP = VP — Vi — BP — KM,

By (5.3), (5.2) and the inequality 0 = g7 = 1, we havefor 0 < s < t,

t t t
tp{‘—tp2=\/ﬁf 1(v3=0)du+Jﬁf 1(0<v351),33dusdﬁf 1(V" = 1)du,

S0, since V| = ¢y + Bj by (5.18),

t
w?—«pSSJﬁf 1(¢l=1- B})du.

Therefore, by Lemma 1 in Coffman, Puhalskii, and Reiman (1991)

0" = sup(1 — BY) v 0.
s=t

Since the sequence { B", n = 1} is C-tight by Lemma 5.1, we conclude that

limlimP(p? > A) = 0.

Ao N

Since by (5.2) and (5.18)

t t
o + KM = Jﬁf 1(V? = 0)ds + Jﬁf 1(V? > 0)Ands,
0 0
an application of Lemma 5.2 completes the proof. |
We are in need of two more technical lemmas. Introduce the processes
Al +1

(519) MM=='Y (@M —preM), 1=1,2  M!=MM+ M2
n i=1

and recall that 7™, i = 1, 2, - - - denote arrival times for A™', | = 1, 2.
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LemmAa 5.4. Define the filtration F" = (F?, t = 0) by F! = FM v F? Vv o(sM, i

=1,2,...,1=1,2) vV o(V3) vV X, where F} = GRly.1, GM = a(nM, M, 1 =j =),
| =1, 2, and &is the family of P-null sets. Then F" is well defined, the 7™ /n, i =1, 2,
..., | =1, 2 are F"-stopping times, the processes (A%, t = 0), | = 1, 2, are ™

predictableand M" = (M7, t = 0) isan F"locally sguare-integrable martingale with the
predictable quadratic-variation process

1
(M™), = - [(o)?AN + (05)*AN].

Proor. The proof is almost the same as the proof of Lemma 2 in Coffman et al.
(1991). In particular, the martingale property of M" and the formula for its predictable
quadratic-variation process is deduced from the fact that the processes (2K, (nM
— pMeM), k= 0), | =1, 2, are locally square-integrable martingales which have the
predictable quadratic-variation processes ((¢]') %k, k = 0) relative to the respective flows
(GM, k= 0). O
Note that the processes B", (8¢, t = 0) and V" are [ "-adapted.

Introduce

n nl

(520) eM = LN Anglg."vl —ntl| = i nl | =12 n_ nlg n2

. t = i - T AN +1, =4, 4 €t = € €t .
vt [~

n

Let AM? denote the jump of M" at s.
LeEmmA 5.5. Under the hypotheses of Theorem 2.3, for t > 0O,

(MY So%t, Y (AMD)? 5 o7, wg|ez|io,

O<s=t

asn— o,

Proor. The first convergence follows by the expression for (M"), in Lemma 5.4,
Lemma 5.1, (2.1) and (2.7). For the second, note that since M" is a process of locally
bounded variation by (5.19), it is a purely discontinuous local martingale (Jacod and
Shiryaev (1987), 1.4.14; Liptser and Shiryaev (1989), 1.7), so its quadratic-variation
process ([M", M"];, t = 0) is the sum of the squares of jumps: [M", M"], = 2.,
(AM2)2? (Jacod and Shiryaev (1987), 1.4.52; Liptser and Shiryaev (1989), 1.8). By
Lemma5.5.5in Liptser and Shiryaev (1989), (2.4), (2.5) and Lemma 5.1 imply that the
convergences[M", M"],— ¢?t and (M"),— o ?t are equivalent, so the second convergence
of the lemma is a consequence of the first. The third convergence results from the in-
equalities

ARl +1

0= Y &M —nt= &b,
i=1

conditions (2.4) and (2.5) and Lemmas 3.1 and 5.1. O
Let

(5.21) VP = VD — el

Since V" is F"-adapted and €] is FP-measurable by (5.20), V" = (V!,t = 0) is ™
adapted. By (5.1), (5.2), (5.19) and (5.20), we get the representation
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t
\7?:\73+Jﬁ(p”—1)t+Jﬁf 1(V? = 0)ds
0

(5.22) t
+ Jﬁf 1(V2 > 0)4%ds + (M} — MY).
0

Now sguaringin (5.22), we have by Ito’sformula(Theorem 2.3.1 in Liptser and Shiryaev
(1989)) that

t t
(VM2 = (VD)2 + 2n(p" — 1) fo Vids + 2Jﬁfo Vo1 (V2 = 0)ds

(5.23)
+ 2J_f VoL(VD > 0)Bnds + zf VidMI+ 3 (AMD)?,
O<s=t
where V2_ denotes the left-hand limit of V" at s.
LemmA 5.6. Thesequences{V",n = 1} and {V", n = 1} are C-tight.
Proor. By (5.16), (5.17), the C-tightness of { B", n = 1}, and the convergence
V3§ — Vo, the right-hand side of (5.2) is asymptotically bounded in probability, i.e.,

(5.24) lim lim P(supIV"I > A) = t>0.

A N

Then (5.21) and Lemma 5.5 yield

(5.25) I|mI|m P(wp|V"| > A) = t>0.

We now check that, for any T > 0 and n > 0, we have that

(5.26) limlim  sup I:‘(SUIOI(VW)Z (V)? >n)=0

50 now 7€Sr(FM)

where S;(F") is the set of all F"-stopping times  not greater than T.
Since the processes

<J.t\72dM2,tzO) and <z (AMD)2 — (M"Y, tzO)

O<s=t

areF"-local martingales (Liptser and Shiryaev (1989), Ch. 1, 88, Ch. 2, 82), the Lenglart-
Rebolledo inequality (Liptser and Shiryaev (1989), Theorem 1.9.3) yields, in view of
(5.23), fore > 0O,
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P(sup|(V},,)? — (VN)?| > ) = <
t=6 77

T+ T+6
(5.27) +P<2Jﬁ|p“—1|f |\73|du+2¢ﬁf V|1 (V2= 0)du

T+6
s [ VIV > 0)85au + (M), — (M), > e) |

By (5.25) and the assumed limit \/H(p” — 1) — ¢, we have

- t
(5.28) lim lim P<2J5|pn—1| sup |\73|du>5> =0.
60 o Is—t|=5 Vs 4
s=T

By (5.21), we see that [V2|1 (V2 = 0) = |e2]1 (V2 = 0), s0 (5.16) and Lemma 5.5
yield

to_ P
(5.29) 2dﬁf V0|1 (V2 =0)ds— 0(n—x), t>0.
0

Next, for e’ > 0,0 < s < t, we again use (5.21) and obtain

t
2\/ﬁf |V 1(V? > 0)A0du

t
(530) = 2/n sup|et| f 1(V" > 0)A"du

u=t

t t
+ 2Vn sup| V| f 1(Vh > ¢')ANdu + 2ine’ f 1(V > 0)Andu.

u=t

The first term on the right tends in probability to 0 asn — « by Lemma 5.5 and (5.17).
The third term tends in probability to 0 as n — « and then ¢/ — 0 by (5.17). Finaly, by
(5.3), Lemma5.2 and (5.24), we have for y > O,

PR t
|im|imP<2Jﬁsup|v3| sup l(Vﬂ>e’)ﬁ3du>7> =0.
-0 now u=T |s—t| <6 Vs

s=T

Thus, by (5.30),

P t
(5.31) lim lim P<2\/ﬁ sup |\73|-1(Vﬂ>0)ﬂﬂdu>§) = 0.
6—0 n—ox |s—tj=6 Vs
s=T

Lemma 5.5 easily implies that
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(5.32) |imﬁp< sup [(M") = (M")q| > >= 0.
60 N |s—t|<
s<T

Applying (5.28), (5.29), (5.31) and (5.32) to (5.27) shows that (5.26) holds.

Now, by Aldous condition (see, e.g., Liptser and Shiryaev (1989), Theorem 6.3.1),
(5.25) and (5.26) imply that the sequence { (V")?, n = 1} and hence { V", n = 1} is
tight for the Skorohod topology. By Proposition V1.3.26 in Jacod and Shiryaev (1987),
it remains to prove that

up|AV| D0,  T>o.

t=T

In view of (5.19),

sup|AVt|—sup|AM |<max[ max nM 2 e en }

1
t=T 1=1,2 ‘/ 1=i=Al+1 ,/ 1=i=AN +1

which tends to 0 in probability as n — « by Lemmas 3.1 and 5.1 and (2.3), (2.4) and
(2.5). Thisprovesthat { V", n = 1} is C-tight. The sequence {V", n = 1} isthen C-tight
by Lemma5.5 and (5.21). |

By Prohorov’s theorem, Lemma 5.6 makes it certain that there exists a subsequence
{V", n’ = 1} and a continuous process V such that V"' = V. The next two lemmas deal
with implications of this fact.

Lemma 5.7. We have, for n > 0,

t
limlim P(f 1(Vi < e)ds > 77) =0.
0

>0 nox

In particular, if the law of a process V = (V,, t = 0) is an accumulation point of the
laws of {V", n = 1}, then

t
f 1(Vs=0)ds=0 as
0
PrOOF.  Since V™ >V for a subsequence (n"), we have, for e > 0 and n > 0,

limp t1(vg'<e)o|s>77 =P t1(\7S<e)o|s>77 ,
) )=Al. )

n—o%

and the second assertion of the lemma is a consequence of the first. To prove that, intro-
duce the processes 2" = (Z7,t = 0) by

t
Z=Vi+ B+ [ 10z t=0,
0

so that (5.2) is equivalent to
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t
vy=zp+¢ﬁf 1(V? = 0)ds.
0

Since VY is nonnegative and n fé 1 (V2 = 0)ds increases only when V{ equals 0, we
conclude that V" = R(Z"), where R : D[0, «) — D[ 0, «) is Skorohod’s reflection map.
In the one-dimensional case it is well known to be equivalently defined by (for C[ 0, ),
the result is in Ikeda and Watanabe (1989), the result for D[ 0, «) is a special case of a
more general result in Chen and Mandelbaum (1991))

(5.33) R(X) =X —infX;A 0, t=0.

s=t
Now, if we define

(5.34) Z’=V5+B!), t=0 = Z"=(ZMt=0),
and introduce

(5.35) V" =R(Z"),

then the process Z" — Z" is increasing and (5.33) implies that V' = V7, t = 0. Hence,
fore > 0O,

(5.36) F><ft 1(VD2 < €)ds > n) = P(f 1(V? < €)ds > n) .

Now, by (5.34) and Lemma5.1, {Z", n = 1} converges in distribution to the process Z
= (Vo + oW, + ct, t = 0), where V, and (W, t = 0) are independent. Bg/ the continuity
of the reflection (Whitt (1980), Theorem 6.4), we then deduce that V" = R(Z), i.e., by
(5.36),

e>0 nox e>0 nox

- t o t
lim IimP(f 1(Vi<e)ds> 77) = lim IimP(J. 1(V? < €)ds > 77)
0 0

= lim p(fl 1(R(Z)s = €)ds = n) = P(fl 1(R(Z)s = 0)ds = n) .

0 0 0

Since R(Z) is a reflected Brownian motion, the latter probability equals O. ]
The next lemma shows that, ‘‘on average,”’ n Bt behaves as d/V{ substantiating the
heuristic argument of 81.

LEMMA 5.8. Under the conditions of Theorem 2.1, for T > 0,

§
limyn | Bovidt = dT.
0

n—o

Proor. We rely heavily on the argument in the proof of Theorem 4.1. The notation
in that proof is used here. Again let a continuous process V = (V,, t = 0) be an accu-
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mulation point of {V", n = 1} . By Lemma 5.7, the conditions of Theorem 4.1 hold, so
the results developed in the proof of Theorem 4.1 apply.
As in the proof of Theorem 4.1, it is enough to prove

T T
(5.37) Jﬁf VIAP-1(5 = VP = K)ds—d>df 1(6 = ¥, = K)dt
0 0

for any 6 and K, 0 < 6 < K that satisfy (4.2). To check this, note first that, for n > 0,

- T

(5.38) lim lim P(Jﬁf VA 1(VP = 6)dt > n) =0,
6—0 n—ow 0
- T

(5.39) lim lim P<\/ﬁf VB -1(Vi = K)dt > n) =0.
K=o n—o 0

Limit (5.38) follows from (5.17). For (5.39), write

.
P(Jﬁf VIBR-1(VP = K)dt > n) = P(sup V! = K)
0 t=T

and observe that the latter goes to 0 as h — « and K — « by the tightness of {V", n
= 1} . Theorem 4.2 in Billingsley (1968) then impliesthe desired result by (5.38), (5.39)
and the fact that, by Lemma 5.7 and the continuity of V,

T T T
lim 1(\~/t56)dt=f 1(V,=0)dt=0,lim| 1(V,>K)dt=0, P-as
0

50 0 K- 0

So, we next prove (5.37) assuming (4.2).

Recall that (i, k), j = O, arethe successivetimesafter nt (e, i), when the unfinished
work at queue 1 becomes equal to 0, and 9" isthe number of cycles accumulation-service
forqueue lin[7g(e, i) AT, CR(e, i) A T]. We dencte the switchover times starting after
nti(e, i) by si*(i, k), s?(i, k), .... Obviously, they are independent and distributed
as st*. We introduce a similar notation for queue 2: n«{**(i, k), j = 0, denote the suc-
cessive times after nT(e, i), when the unfinished work at queue 2 becomes equal to O,
YPZ denotes the number of cycles accumulation-service for queue 2 in [73(e, i) A T,
CR(e, i) A T, sB2(i, k), st2(i, k), -- - denote the switchover times from queue 2 to
queue 1 that start at n«d2(i, k), nk22(i, k), . . . . We note again that s32(i, k), s?2(i, k),

. . are independent and distributed as s72.

Let w™* (whichis®¥?! in the notation of Lemma5.2) and w™? (whichis9¥%? in Lemma
5.2) denote the number of respective switchoversfrom queue 1 to queue 2 and from queue
2 to queue 1 started in [0, nT]. By the definitions above (recall in particular that of = 0
if the server is switchingover att), fork=1,0=i = N,

I z9ﬂk2 n(CR(ei)AT)
Y sti(i, k) + Y s, k) = f (1-af)dt=( max st + max sP?)
j=0 i=0

n(7R(ei)AT) l=j=w™ 1=j=wn?

9+ 1 9N+1
A(rR(e, ) <T)+ Y stt(i, k) + > st(i, k),
j=0 j=0

so, sinceVi € [a(e€) —¢,a(e) + efon[7R(e 1), CR(e, 1)) and 87 = 1 — apy, we get
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L@ - e)<1z' (i, K) + z (i, k))

=
CR(ei) AT
=V |  povid
(540) TR(eI)AT
= (a(e) + ) 1(7k(e, 1) <T)—( max sM + max_s?)
\/H l=j=w™ 1=j=w"?
1 79{?!}*1 19ﬂk2+1
+=(a(e) + 6)< > st k) + 3 s, k)) :
n j=o0 j=o
Introduce

opd o2
(5.41) Al(e, i) = J—_(a (e) — e)<z sMi(i, k) + z s (i, k))

Ark‘(e,i)z\/iﬁ(ai(e)-l-e)( pACH GRS s}‘z(i,k))

(5.42) + (& (e) + €)-1(rR(e i) < T)OM,

where 91t and 9! are defined by (4.8) and (4.9) respectively, 97 and 372 denote their
counterparts for queue 2 and

- 1
w"z—( max sMt+ max sP?).

l<]<u,"1 1<J<un2

It was shown in the proof of Lemma 5.2 (see (5.7)) that P[(w™'/n) > (T + 1)/d,] = 0,
| =1,2 asn— . Then, using (2.6) and Lemma 3.1, we get

(5.43) &"—P>0(n—>oo).

Also, inequalities (5.40) and (4.10) (an analogue of the latter holds obviously for queue
2 aswell) yield

CR(ei) AT .
(5.44) Al(e, i) <J’f Bvrdt = Al(e, i).

R(ei) AT

Next, (4.18), (4.16), and (4.17), and their analogues for queue 2 imply, in view of (4.4)
and Lemma 2.2 in Coffman et a. (1995), that

l”_n,l d Ck(e,i)/\T—Tk(e,i)/\T<l 1 )1
(5.45) (\/ﬁﬂ.,k> - < () -« PR >0<i<N, :

k=1,=12 k=1,1=12
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(5.46) (\/iﬁﬁno L 9 <Ck(e, i) /\aL; ikie, i)AT (% N 1%/))1) .

k=11=1,2 k=11=1,2

Hence, by (5.41) —(5.43), Lemma 5.1, the equality p, + p, = 1 and again Lemma 2.2
in Coffman et a. (1995),

(5.47) (Bi(e,1))ocion = (Auler D)ozizn,
and

(5.48) (i 1))ozion = (e D)ocio,
where

~ o a(e) —« . _ .
(5.49) Ale i) = 7& () + ¢ (Cu(e, i) AT — 7(e, i) A T)prpo(dy + dy),

(550)  Aderi) = 2L (G AT = e i) A Thpupa(ds + ).
Introduce

(5.51) A"(¢) = g _j Al(e, i),  A"(e) = z z (e, ),
(5.52) A(e) = % g Adle i), Ae) = g ; Ad(e, i).

Note that the sums are P-a.s. finite (use (4.3) for the second line), so that the variables
above are well defined.

Relations (5.47) and (5.48) imply, by the continuous mapping theorem, that for every
M=12...,

33 ADET 3 A,
PRSPPI

asn— o,
On the other hand, in a manner similar to (4.25),

IimIimP(

M- N

Z _i Al(e, i) — A"(e)| >

0) -0



296 E. G. COFFMAN, JR., A. A. PUHALSKII AND M. I. REIMAN

lim P< % NEA}(E, i) — Ae)| > o) -0,
M- k=1 i=1
and Theorem 4.2 in Billingsley (1968) yields
(5.53) A'(e) S A(e) (n— ).
Similarly,
(5.54) A'(e) S A(e) (n— ).

Next, in analogy with the proof of (4.29), we get in view of (4.2) that, ase — 0,

(5.55) A(€) > pipa(dh + ) fOT 1(6 = V(1) = K)dt,

(5.56) Ae) > pipo(ch + ) foT 1(6 = V(1) = K)dt.

Also, it is not difficult to see, using the definitions of 73 (¢, i) and {R(e, i), that

o N-1 CR(ei) AT T
Sy Jﬁf BV dt = Jﬁf BIVE-1(6 = V! = K)dt
0

k=1 i=1 TR(eI)AT

% N CR(ei) AT
=35 Jﬁf BIVidt,

k=1 i=0 TR(ei) AT

so by (5.44) and (5.51)

.
An(e) = Jﬁf BIVE-1(6 = V! = K)dt = A"(e).
0

The latter and (5.53) —(5.56) imply (5.37) by Lemma 2.3 in Coffman, Puhalskii, and
Reiman (1995). a

6. Proofs of theorems.

ProorF oF THEOREM 2.1. By (5.23) and (5.21),

t t
(6.1) (VD)2 + 60 = (V8)2 + 2/n(p" — 1)f Vids + (2d + o2)t + 2f Vo dMme,
0

0

where
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t t
5?:2¢ﬁf €n-1 (V2 = 0)ds + 2¢HJ. enB-1(VD > 0)ds
0 0

t
+ 2dt — 2\/Hf BVids + ot — 5 (AMY)?.
0

s=t

By (5.16), (5.17), Lemma5.5 and Lemma 5.8,

(6.2) sup|ée| —P>O(n—>oo), t> 0.
s=t

We denote the left-hand side of (6.1) by X{. Let X" = (X{, t = 0). We next prove that
X" converges in distribution to X as n — «. By (6.1), the process X" is an F"-locally
sguare-integrable semimartingal e (Jacod and Shiryaev (1987), Ch. I1, 82b)). The process
X as defined by (2.9) is alocally square-integrable semimartingale as well with respect
to the filtration generated by it (Jacod and Shiryaev (1987), 111.2.12). We prove the
convergence by applying Theorem 1X.3.48 in Jacod and Shiryaev (1987) which gives
conditions for convergence in distribution of a sequence of semimartingales to a semi-
martingale in terms of their predictable characteristics (Jacod and Shiryaev (1987), Ch.
I, 82). Therefore our first step is to identify the characteristics. Let B'" = (B{", t = 0)
denote the first characteristic without truncation of X", let C'" = (C{", t = 0) denocte its
modified second characteristic without truncation and let »" = (¢v"(ds, dx)) denote its
predictable measure of jumps (Jacod and Shiryaev (1987), 11.2.29, 1X.3.25). Then by
(6.1)

t
(6.3) m=2Vn(p" - 1)f Vods + (2d + o2)t,
0

(6.4) Cir=a [ (7au,

Define next, for a = (ay, t = 0), an element of the Skorohod space D[ 0, «),

(6.5) B(a) = 2¢C J-t (as vV 0)¥2ds + (2d + o2)t, t=0,
(6.6) Ci(a) = 402 ft (as Vv 0)ds, t=0,
(6.7) ([0, 1], ) (a) = 0, t=0, I' isaBorel subset of R,

and let B(a) = (Bi(a), t = 0), C(a) = (C(a), t = 0) and v(a) = (v(dt, dx)(a)).
According to the definition of Xin (2.9), itstriplet of predictable characteristicsis(B(X),
C(X), v(X)). Since X is continuous, thistriplet does not depend on atruncation function;
in particular the triplet without truncation is the same.

Stated in another way, the distribution of X is the unique solution to the martingale
problem associated with (¥, X) and (L(X); B, C, v), in the sense of definition 111.2.4
of Jacod and Shiryaev (1987), where J¢ denotes the o-field generated by X, and .£(X,)
denotes the distribution of X,.
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Define next, as in 1X.3.38 of Jacod and Shiryaev (1987), for a = 0,
(6.8) S(a) =inf(t: || = aor |a,_| = a),
(6.9) Sh=inf(t: | XP| = aor | XL| = a),

where «,_ denotes the left-hand limit of « at t. Let also (Var B),(a) denote the total
variation of B(a) on [0, t] and C,(R) denote the set of continuous bounded functions
g: R— Rthat are equa to 0 in a neighborhood of 0.

By Theorem 1X.3.48 of Jacod and Shiryaev (1987), in order to prove that the X"
converge in distribution to X, we may check the following conditions (note that since X
has no jumps, in the notation of the theorem, B’ = B and ¢’ =0C):

(i) The local strong majorization hypothesis: for al a = 0, there is an increasing
continuous and deterministic function F(a) = (F;(a), t = 0) such that the stopped pro-
cesses ((Var B)ing, @ (@), t=0), (Cug (@), t=0) and (fo"* [ | x|?(ds, dx)(a),
t = 0) are strongly majorized by F(a) for al a € D[O0, «).

(ii) Thelocal condition on big jumps: for all a = 0, t > 0,

tASa(a)
lim sup f | x]21(] x| > b)v(ds, dx)(a) = 0.
R

b~ aeD[0) Yo

(iii) Local unigueness for the martingale problem associated with (¥, X) and (L(Xo);
B, C, v) (see Jacod and Shiryaev (1987), 111.2).

(iv) The continuity condition: themapsa = B;(a), a = C(a) anda = [; [rg(x) v(ds,
dx) are continuous for the Skorohod topology on D[ 0, =) for all t > 0 and g € C.(R).

(V) X5 Xo. i i

(Vi) [610e — RiT SV frg(x)v"(ds, dx) — [ [2 g(x)v(ds, dx)(X") > O for al
t>0,a>0andg e C,(R); o
[sup — Bloc] sUP|Blsy — Bsasa(X™)| = Oforalt>0,a>0;

s=t
[y = R]_Cifsy — Gug(X") > Oforall t>0,a > 0;
(6.9a) limTim P(J;"* [ | x|?1(| x| > b)r"(ds, dx) > ¢) = Oforallt > 0,a> 0and
b N

e > 0.
This last condition is Equation (3.49) in Jacod and Shiryaev (1987).

We now check these 9 conditionsin order. We have, by (6.5) —(6.8), for s < t,

(Var B)M%(a)(a) - (Var B)sA%(a)(a) = 2| C|a1/2(t - S) + (Zd + 0'2)(t - S),

Cirsue) (@) = Corgyey (@) = 4o?a(t — s),

J«msa(a) fR | x|2v(du, dx)(a) — J:ASa(a) fR | x| ?(du, dx)(a) = 0.

0
This verifies condition (i) with F(a) = K(a)t, where K(a) is large enough.

Condition (ii) holds since v = 0. Condition (iii) (local uniqueness) holds by Theorem
111.2.40 of Jacod and Shiryaev (1987) since the equation

t t
Y, = 2cf (Ys v 0)Y2ds + (2d + o)t + Zaf (Ys vV 0)Y2dW; + X,
0 0
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where W = (W, t = 0) is a Wiener process, has a unique (weak) solution (Ikeda and
Watanabe (1989), Chapter IV, Theorems 1.1, 2.4, and 3.2, Example 8.2) for any x € R,
and since one can set, in the conditions of Theorem 111.2.40 of Jacod and Shiryaev (1987),
pB=B,pC=C,prv =v=0.

Condition (iv) follows from (6.5) —(6.7) by the argument of the proof of Theorem
6.2.2 in Liptser and Shiryaev (1989) since Skorohod convergence implies convergence
at continuity points of the limit. ‘

Condition (v) holds by the assumption Vg — V,, (5.21), Lemma5.5 and (6.2).

Consider condition [ 6,,c — R, ] under (vi). Since v = O, it is enough to prove that

fof | g(x)|»"(ds, dx) = 0.

Since, by the definition of C,(R), for some e > 0, g(x) = 0if | x| < ¢, and g(x) is
bounded, the latter integral converges in probability to zero as n — = if v"([0, t], { | x|
> ¢}) — 0. By Lemmab.5.1 in Liptser and Shiryaev (1989), thisisimplied by

(6.10) SUp|AXD| S 0(n—>®),  t> 0.

s=t

By the definition of X", [AXZ| = A|VT|2 + |Aé7|, and (6.10) holds by (6.2) and the
C-tightness of V" (use Proposition V1.3.26 in Jacod and Shiryaev (1987)).

Next, we check condition [sup — Bi..] under (vi). By the definition of X", (6.3) and
(6.5),

t
sup| By — Bosg(X™)| = 271" — 1) — ¢ f V2 ds

s=t

t
w2lel [ 1V (V)7 + 03 v )2 ds
0

=2|Vn(p" — 1) — c|t sup| V2| + 2| c|t sup| 62 |2,
s=t

s=t

and the latter converges in_probability to 0 as n — «, since x/ﬁ(p” —1)—-c, {V,n
= 1} istight and sup|é2| — O by (6.2).
s=t

Now consider condition [y, — R,] under (vi). By (6.4), (6.6) and the definition of
Xn

|Cllsy — Consa(XM)|

(6.11)
+ 40t sup| 62 ].

[ wzacun, - o [ pa + ao s

= 4 sup
s=t

The last term converges in probability to 0 by (6.2). Since { (V")2, n = 1} is C-tight,
we have, for n > 0,
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limlimP( sup  [(VD)?— (VD)2 >1n) =0,

6—0 n—ow |lu—v| <é,uv=t

which, in view of the second assertion of Lemma 5.5, is seen to yield (the idea of the
proof isasin (Billingsley (1968), Problem 8, §2))

P
- 0.

[ @raqun, — o2 [ 7y

sup
s=t

In view of (6.11), this concludes the verification of [y[,. — R.].
Finally, consider condition (6.9a) under (vi). Define

t
EP=J.J. |x|2-1(| x| > b)r"(ds, dx), t=0.
0 VR
We havefore > 0, A > 0,

t
(612)  P(LP=e) = P(sup|V| > A) + P(f (V2 = A)dl? > e> .
s=t

0

The first term on the right goes in probability to 0 as n — « and A — o« by the tightness
of V".
Next, letting

nl _ 1 _nl n2 _ 1 _n2
Yt = nT Lh(at+1) D Yt = nT Lhut+1) D

we have for the second term on the right of (6.12), since A% = [h(\t + 1) Owhen y !
<t =12,

t ~
P(f (VR = A)dL? > e>
o]
1 1 1 1
= P(—A2;1> Mt + 1——) + P(—Aﬂi2> Aot + 1——)
n n n n

tAyPIayP2 -
+ P(f 1(VL = A)dL? > e) .

0

Again the first two terms on the right tend to 0 as n — « by Lemma5.1. It is thus left to
prove that the last term on the right tends in probability to 0 asn — .

Since »"(ds, dx) is the predictable measure of jumps of X", by (6.1) the process Lo
= (L7, t = 0) isthe F"-compensator of the processL" = (L¢, t = 0) defined by

(6.13) L =4 3 (V2)*(AMD)?1(2|VL [|AME] > b).

O<s=t

Accordingly, the process ( S ; 1(V2 = A)dL?, t = 0) isthe F"-compensator of the process
(fct, 1(VL = A)dL?, t = 0). Therefore, by (6.13) and, since, by Lemma 5.4, y* and
v ™2 are [F"-stopping times, the Lenglart-Rebolledo inequality implies that, for n > 0,



POLLING SYSTEMS IN HEAVY TRAFFIC: A BESSEL PROCESS LIMIT 301

tAy Ay P2 _ .
P(J. 1(Ve = A)dL? > 6)

0

s=tAyPAy P2 2A

(6.14) 51<77+E sup 4A2|AM2|2~1<|AM2|>£>>
€

+ P<4A2 )3 (AMQ)2-1<|AMQ| > 3) = n) .

O<s=tAypiayp2 2A

By the definitions of M" (see (5.19)) and yM, y!2,

b
E sup |AM2|21<|AM2|>—>

Sst/\yp’l/\y{‘*z 2A

0 b
=—E sp (nf* - p3e) (1€ - pinlt | > 1
N i=m(t+1)0 A
° b
FoEsp (08 = pBeP) (1612 — pint| > o
N i=mOut+1)0 aA

b
= 6(Mt + 1)E(ni™ — pT&?"l)z'l(IE?'l - pint*| > ﬂm>

b
# 60ut+ DE — p5612)1 16 = pti?] > 1230 )

which tends to 0 as n — « by (2.4) and (2.5). The third term on the right of (6.14) is
not greater than

6 Ch(nt+1)0 b
P<4A2[— > (&M —ani”’l)z'l(Ini”’l - pREM | >—Jﬁ>
n 5 4A

h(Apt+1)0

b
+— 3y (- pSé“i”'z)z‘l(Ifi”’z — poni > —\/ﬁ” = 77) :

n 5 4A

which again tends to 0 by (2.4) and (2.5). Therefore, by (6.14),

_ tAyPAyP2 . n
lim P<f 1(V2$A)d|_2>6> = -,
€

N 0

which completes the check of (6.9a) since n is arbitrary.

Thus, al the conditions of Theorem 1X.3.48 in Jacod and Shiryaev (1987) hold and,
by the theorem, { X", n = 1} converges in distribution to X, which by Lemma 2.1 is
distributed as V2. Since (5.21), Lemma5.5, and (6.2) imply

P(sup|(V2)? = XI| > é)—>0(n—>»), t>0  6>0,
s=t
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we have that (V")?2 S V2, and hence that V" SV since al the processes are non-
negative. O

ProoF oF THEOREM 2.2. The theorem follows by Theorem 2.1, Theorem 4.1 and
Lemmab.7. |

PROOF OF THEOREM 2.3. By (2.12) and the definition of V", a basic equation for V"
has the form

t t
VP = VD + B+ \/ﬁr‘”f 1(V2 = 0)ds + Jﬁf (V2 > 0)(™ — r"(YnV1))ds,
0 0

where

~ Sﬂt - rnnt

Br =
t Vn

The equation is similar to Equation (5.2) and the proof goes exactly the way it does for
{V", n= 1} . Wefirst prove the C-tightness of { V", n = 1} by following the same steps
asin 85. The only difference is that the K™ are defined this time by

KDpe = Jﬁf (V2 > ) (" = r"(VnV2))ds,

and Lemma 5.2 is trivial because of (r1).
As can be seen from the proof of Theorem 2.1 in 86, after the C-tightness has been
proved, the only additional fact that is needed is the convergence

t
JHJ. Vi42ds S d.
0
In the case of V", this amounts to proving that
t. ~ P
Jﬁf V(™ — rr(nVo))ds - dt.
0

This turns out to be a simple consequence of (r1), (r2) and an analogue of Lemma5.7
for V" which is proved in the same way. According to the latter result, for n > 0,

(6.15) |ianP<ft (V2 < €)ds > n) = 0.

>0 now 0

Then, for ¢ > 0,
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o

o[ IWAVE(FT — 1 (V) — d] - 1(VE < ¢)ds > 2
) 2

Jﬁf‘ V(™ — r(YnV2))ds — dt’ > n)

+P (f [VnVa(F — rr(nVg)) — d| - 1(V2 = ) ds > g)

= P((S:an X(F" — r"(x)) + d) £ 1(V0 < €)ds > g)

+ 1(t sup | x(F" —r"(x)) — d| > %).

x=1ne

The probability on the right-hand side tendsto 0 asn — « and € — 0 by (r 2) and (6.15),
and the indicator goesto 0 asn — » by (r1). O
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