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Abstract

Scattering resonances are the eigenvalues and corresponding eigenmodes which solve
the Schrodinger equation Hiy = E for a Hamiltonian, H, subject to the condition
of outward going radiation at infinity. We consider the scattering resonance problem
for potentials which are rapidly varying in space and are not necessarily small in a
pointwise sense. Such are of interest in many applications in quantum, electromagnetic
and acoustic scattering, where the environment consists of microstructure, e.g. rapidly
varying material properties. Of particular, interest in applications are high contrast
microstructures, e.g. large pointwise variations of material properties.

We develop a perturbation theory for the scattering resonances and eigenvalues of
such high contrast and oscillatory potentials. The expansion is proved to be conver-
gent in a norm which encodes the degree of oscillation in the microstructure. Next,
we consider the concrete example of two-dimensional microstructure potentials. These
correspond, for example, to a class of photonic wave guides with transverse microstruc-
tures. The leading order behavior is given by the scattering resonances of a suitable
averaged potential, as predicted by classical homogenization theory. We show that the
next term in the expansion agrees with that given by higher order a homogenization
multiple-scale expansion, with an error term determined by the regularity of the poten-
tial. The higher order corrections, which take into account the detailed microstructure,
have been shown by the authors to be important for efficient and accurate numerical
computation of radiation rates.
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1. Introduction and overview
1.1. Scattering resonances and microstructures

Consider the time-independent Schrodinger equation
Hy = Evy
where H is the Hamiltonian
H=-A+V(z). (1.1)

Scattering resonances of (1.1) are solutions (E, ), with ¢ # 0, which satisfy an outgoing
radiation condition at spatial infinity. The condition of outgoing radiation is a non-selfadjoint
boundary condition and therefore the scattering resonance energies, E, are typically complex
numbers. A precise formulation of this radiation condition and the scattering resonance

problem is given in section 4.

In this paper, we are interested in the scattering resonances for equation (1.1) in the case
where the potential, V() has a background (slowly varying or “mean”) part, V5(z), and a

rapidly oscillatory perturbation, §V'(x), which is not necessarily pointwise small:
V(z) = Vo(z) + 6V (2). (1.2)

We call such potentials potentials with microstructure, and refer to 6V (x) as the microstruc-
ture part of the potential. If the variations in the values of the potential are large, we refer to
a high contrast potential. The Hamiltonian with potential V() will be denoted Hy and that
with perturbed potential is denoted H. A consequence of the results of this paper is a rig-
orous analytical foundation for the work in [7], where we derived a multiple scale expansion
for certain microstructured potentials, which arise as photonic microstructures, and used it
as part of an accurate and efficient scheme for numerically computing scattering resonances;
see subsection 1.2. A detailed discussion of the application to photonic microstructures as
well as an announcement of some of the current analytical work is contained in [8].

The scattering resonance problem is of great mathematical interest and physical impor-
tance, arising in quantum, acoustic, elastic and electromagnetic scattering. A basic problem
in each field is to consider the situation of a compact region of space which is occupied by
a collection of inhomogeneities or “scatterers,” while outside this region the medium is ho-
mogeneous. Thus, outside this compact region the elementary propagating states are plane

i(k-z—wt)

waves, e’ , where w = w(k) is the dispersion relation of the homogeneous medium

(k = |k|, K =27/, A = wavelength). For fixed wavevector, k, one considers a plane wave



incident on a collection of inhomogeneities or “scatterers” and calculates the scattered field.
The mapping from incident to scattered field is determined by the scattering matrix, S(k).
In many situations, S(k) can be analytically continued from the positive real axis into the
complex plane. Its poles in the lower half plane are called resonances. Corresponding to
these resonances are (non-L?) solutions of (1.1) with E = k2. The scattering resonance en-
ergy plays an important role in the dynamics of waves. Namely, a general spatially localized
initial condition incident on our collection of scatterers will typically interact for some time,
and give rise to a spray of radiation. The local energy, in a neighborhood of the scatterers,
will die away as time evolves. The long time transient exponential rate of local energy decay
is determined by the imaginary parts of the resonances. In particular, one expects this decay
to be limited by the resonance with the smallest imaginary part. For a given resonance, one
refers to its imaginary part as the line-width or reciprocal lifetime of the associated state.

Being based on the Schrédinger equation (1.1), the analysis of this paper applies to a
non-relativistic quantum particle in a rapidly varying landscape [13], the acoustic propa-
gation of small amplitude pressure fluctuations about an equilibrium in an inhomogeneous
medium [17], and to electromagnetic waves, in the scalar approximation, propagating in an
inhomogeneous dielectric medium [24, 14].

Our initial motivation comes from the electromagnetic context, where there is a great
deal of interest in the analysis of optical properties of media comprised of micro- or nanos-
tructures. Recent advances in fabrication technology have made possible, through variations
in material contrast and distribution of microfeatures, the manipulation of optical properties
of composite media in a manner analogous to the way the electrical properties of materials
have been manipulated for many years. Examples range from engineering the dispersion
properties of photonic waveguides [20, 11] to cavity QED experiments, with a view toward
applications to quantum computers [26]. Scattering resonances are central importance in
the behavior of such structures. The real parts are relatively insensitive to the detailed
microstructure and are approximated by an averaged potential model, leading order homog-
enization theory. As illustrated below, and extensively in [7], the imaginary parts are highly
sensitive to the detailed microstructure, and we require higher order homogenization theory
to estimate them accurately. Imaginary parts of scattering resonances of these structures

correspond to the “Q-factor” of the effective cavity resonator.

1.2. An application

A specific example, considered in detail in [7] is an optical fibre waveguide with transverse
microstructure. Such waveguides are often called photonic crystal fibres or holey fibers. In

the scalar approximation, the modes of the waveguide are governed by the Helmholtz wave



equation:
(A + k*n®(z)) ¢ =0, (1.3)

where k = 27 /A, A denotes the wavelength of light, and n(z) denotes the refractive index
profile. Let n, denote a background refractive index. Then, the Helmholtz equation can be

rewritten as a Schrédinger equation (1.1) with the definitions:
V(z) =k (n} —n’(z)), E=kn)—p (1.4)

Here, x denotes the 2-dimensional spatial coordinate in the plane transverse to the waveguide.
A class of examples corresponding to a large family of microstructured waveguides of

interest, treated in detail in section 6, is:
Vi(z) =Vy(z) = Vo(lz]) + V n(z) = Vo(r) + 6V (r, NG). (1.5)

Here, (r,6) are polar coordinates for x € R?. The potential defined by (1.5) corresponds to
a N-fold symmetric structure. The functions Vj(r) and 6V (r, ©) are compactly supported
locally L? functions. The parameter N is a positive integer. When N is large, the potential
Vy is a rapidly varying perturbation of V. This perturbation does not tend to zero pointwise,
but does tend to zero in a weak sense. Examples of such high contrast microstructure
potentials appear in figures 1 and 2.

We have derived and numerically implemented homogenization and corrected homog-
enization theories of scattering resonances and compared the results with direct numerical
simulation [7]. Numerical results indicate that the real parts of scattering resonances are well
approximated by those associated with the averaged potential, V(7). However, the situation
with imaginary parts of scattering resonances is very different. Figure 3 contrasts predictions
for the imaginary parts of scattering resonances for structures of the type illustrated in fig-
ure 1. Shown are results for five different structures parametrized by N and “fill fraction”,
f. The imaginary part of a scattering resonance is plotted as a function of wavelength,
A. The crosses correspond to direct numerical simulation. The two curves correspond to
predictions obtained from the average potential (dashed curve) and the 2°¢ order corrected
homogenization theory (solid curve), proved in this work; see discussion below. Corrected
homogenization gives excellent agreement with direct numerical simulations over wavelength
ranges of interest in the particular application. For structures of the type shown in figure 2,
the corrected homogenization theory gives an a even more dramatic improvement over the
averaged (homogenization)theory. Clearly and in general, numerical methods informed by a
analytical estimates on resonances can play an important role in finding optimal structures,

e.g. maximizing “Q-factors”.
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Figure 1: (a) Black regions form the support of an N— fold symmetric potential (N = 20).
V(z) takes on one constant value on these regions and is zero outside. (b) The averaged

potential Vy(|z|) = (2m) ' [V (r, 0)dO, where V (z) = Vy(r) + 6V (r, NO)

The current work implies analytical justification for the homogenization expansion and
numerical approach summarized above and presented in detail in [7]. In particular, Theorems
4.1 and 7.1 imply validity of second order homogenization provided a particular norm of the

perturbation, |||0V y|||, is sufficiently small. By Theorem 6.1, this smallness condition can

be expressed as

1 1
2N - C, sufficiently small, (1.6)

where the constant C, = sup,, M |||6V || (see Theorem 6.1), which depends on the details
of the microstructure. Our analysis applies to the case of fixed A and N sufficiently large.
However, the condition (1.6) suggests validity for fixed N (fixed microstructure) and A large.
Results which encompass this limit as well will be presented in a separate publication.

We conclude this subsection with a discussion of two observations on departures of ap-
proximate theories from direct numerical simulation. (1) Note that as the wavelength is
decreased, there is an increasing departure of approximate theoretical results from simula-
tion results. The effect is most pronounced for the structure whose parameters are N = 3
and f = .8. This trend can be understood by noting that for a fixed structure, as the wave-
length is decreased, one approaches the regime of geometrical optics, where the ray picture
rather than an average wave picture. Nevertheless, we find good agreement in our simula-

tions for a ratio of wavelength to microfeature size of about 3/2. (2) The plots in figure

6
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Figure 2: (a) An 18-hole subset of a hexagonal lattice (N = 6) with (b) The averaged
potential Vy(|z|)
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3 show a systematic underestimation of the “exact” imaginary parts. Note that there are
two essential mechanisms of scattering loss: free space diffraction or ballistic propagation -
propagation concentrated on rays where the potential is zero in between the barriers, where
V' is positive and tunnelling - propagation along rays which impinge on regions where V is
positive. Homogenization theory replaces a problem in which both mechanisms are present
by an effective problem, defined by the effective potential barrier, V(|z|), for which tunnel-
ing is the only mechanism. Although, still rooted in homogenization ideas, our higher order
theory gives a very significant improvement in the approximation even for relatively small
values of N and wavelength to microfeature size ratios. Though we have found a natural
small parameter, |||0V|||, for measuring the “size” of the microstructure perturbation, we
believe a related mode-dependent intrinsic parameter exists, which should give yet deeper

insight. This is currently under investigation.

1.3. An illustrative and elementary example

In this subsection we present a simple example which motivates our approach to spectral
problems with high contrast microstructure. We present only a sketch of the ideas. All
analytical details are contained within our full implemention for the resonance problem,
which is far more involved.

Consider the Schrodinger eigenvalue problem with periodic boundary conditions for an
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Figure 3: Imaginary parts of scattering resonances, corresponding to scattering attentuation
rate in the optical waveguide context, for the lowest order (fundamental, or LPy;) resonance.
Calculation is for N— fold symmetric structures of the type shown in figure 1, for different
fill-fractions, f, and N = 3 and N = 6 . The calculations were performed for a range of
wavelengths, A. Solid curves are attenuations computed using 2" order, O(N~2), homog-
enization, proved herein to valid for large N. Dashed curves correspond to leading order
homogenization (averaging) theory. Crosses correspond to the results of direct numerical
simulation in presented in figure 3a of [19].



eigenfunction u € L?(S') and eigenvalue, E:

Oqu(0) + V(0)u(®) = E u(f)
u(0) = u(l), Opu(0) = Jyu(1) (1.7)

Here, V(0) € L We rewrite (1.7) the equivalent equation of Lippman-Schwinger type:

periodic*

(I — A+E){I-9) " )U + Qv U = 0,
U = (1—83)%11
QU = (I-8) VI -2) 2 U (1.8)

Using the implicit function theorem, one can prove:

Theorem 1.1. Let (U, Ey) be a solution of the eigenvalue problem (1.8) with potential V;
and consider the perturbed eigenvalue problem with potential V. Let 6V =V — V, denote
the perturbation. If the mapping U — QU has small norm as an operator from L? to L?,

i.e.
| (I —03)"26V (I — 2)~* ||s(z2) sufficiently small, (1.9)

then eigenvalues of the eigenvalue problem with potential V = V;(6) problem perturb ana-

Iytically, to nearby solution, (U(V'), E(V')), of the eigenvalue problem.

Remark 1.1. While the operator norm in (1.9) can be small if §V is pointwise small, e.g.
dV(0) =eQ(f), 0 <e << 1, it can also be small if V is pointwise large (high contrast) but
sufficiently oscillatory (microstructure). For example, if 6V x(6) = Q(N®), then the operator
norm (1.9) is O(N 1) by the following Lemma (see also Theorem 6.1):

Lemma 1.1. Let f(0) be a 2 period function. Then,

The mapping f(8) — €™’ f(#) has L? norm one
The mapping f(0) — (35) " €™ (35)" f(0) has L? norm O(N™')  (1.10)

1.4. Goals, results and overview

Perturbation problem: Suppose the (Fjp, 1) is a solution to the scattering resonance
problem for the Hamiltonian H, with potential Vj(z). Our goals are to address the following

issues.



(1) For 6V (z) is sufficiently oscillatory (has sufficiently fine microstructure) and high con-
trast, show that the scattering resonance problem for H with potential V' (z) = Vy(z)+6V (x)
have a "nearby” solution (E(V),¢(V)).
(2) Develop a resonance perturbation theory in terms of a natural parameter, measuring the
fineness of the microstructure?
(3) Relate (1) and (2) to homogenization theory.

In sections 3 and 4 we reformulate the scattering resonance problem as a “preconditioned”

Lippman-Schwinger type equation (Theorem 3.1):
(I +Tgr(E)Tv)V =0,

where the operators Tg(F) and Ty are defined in section 3. We then obtain a stability
and perturbation theory of scattering resonances in a norm appropriate for the study of
microstructure perturbations which are not necessarily pointwise small (Theorem 4.1). The
norm of the perturbation, |||dV||| gives a natural measure of the degree of fineness of the

microstructure and is defined for a compactly supported L? perturbation, 6V by
I Tov llsy = [l 6V Il = [ (DY~ V(D)™" |llsew); (1.11)

see also (4.1). Here, 6V = x '0Vx !, x(z) = O(e @), for some o > 0 and (D) =
(m? — A)2.

If 6V is pointwise large but very oscillatory ||| 6V ||| may be small due to the oper-
ator (D)~ which gives small weight to the part of 6V supported at high wavenumbers;
see the discussion of section 1.3. For the class of examples represented by (1.5) we have

(Theorem 6.1):

1
lovall = o)

(Note that the norm defined in (1.11) can be small as well even when §V is not microstructure-
like.)

The main results of this paper are the following:

1. Theorem 3.1 introduces a characterization of solutions to the scattering resonance prob-
lem, (non-normalizable) scattering resonance modes and complex scattering resonance

energies, as solutions of a “preconditioned” Lippman-Schwinger equation defined on
L?.

2. Theorem 4.1 is a stability theorem showing that if the potential, Vj, is such (¢(V5), E(Vp))

is a (simple) scattering resonance pair and Vj is perturbed to a “nearby” potential

10



V, i.e. |||V — Vil|| is small, then the scattering resonance problem with potential
V' has a nearby scattering resonance pair (/(V'), E(V)). Furthermore, the mapping
V= (¢(V), E(V)) is analytic in V. The norm, ||| - |||, has been constructed so that
if V' — V4 is not pointwise small, but is very oscillatory, then |||V — V4||| is small. In
Theorem 4.2 we treat the case of degeneracies arising when Vj is a radial potential,

Vo =Vo(r).

3. Theorem 7.1 demonstrates the connection with homogenization theory. For the class
of microstructures, corresponding to high-contrast microstructures of the type aris-
ing in physical problems, we show that the N2 corrections to homogenization theory
agree with the resonance perturbation theory of Theorem 4.1 with an error of order
N=2="_ 7 > 0. The number 7 depends on the regularity of the potential. In particular,
if V is C? then 7 = 2, but if as is often the case in applications, V has jump disconti-
nuities ( e.g. an interface between two different materials at which there is a jump in

refractive index), then 7 = 1.

4. Theorems 2.1 and 2.2 encompass the (simpler) perturbation theory of eigenvalues for

microstructure potentials.

Although, the problem of stability of eigenvalues for self-adjoint operators (see sections
1.3 and 2) has many of the structural features of the resonance problem, the resonance

problem requires a much more technical treatment for the following reasons:

e While eigenvalues of a self-adjoint operator, H, are poles of the resolvent (Green’s
function) (H — E)~!, scattering resonance energies are poles, E (SE # 0), of the
analytic continuation of the resolvent across the continuous spectrum (branch cut) to

a “non-physical” sheet; see section 3.

e Solutions of the eigenvalue equation Hvy = FEv, where F is a scattering resonance

energy do not lie in L? and in fact grow exponentially at infinity.

e For high contrast potentials (V' pointwise large), resonances are complex numbers E
with very small imaginary part. These resonance energies very close to the continuous
spectrum of H, the branch cut for (H—E)™'. A theory which is useful for high contrast
potentials requires very detailed information on the analytic continuation of (H — E)~!

in a neighborhood of the branch cut.

Overview

e In section 2 we discuss microstructure perturbations of the eigenvalue problem.

11



e In section 3 we formulate the scattering resonance problem.

e In section 4 we state and prove our theorem on microstructure perturbations of scattering
resonances.

e In section 5 we explicitly calculate the expansion of the scattering resonance pair (E(V), (V)
about the case V = V.

e In section 6 we show that the theory applies to potentials of the form V' = Vy(r)+dV (r, N9),
where Vg(r) supports scattering resonances and N is sufficiently large.

e In section 7 the homogenization expansion of [7] is reviewed and it is proved that the leading
term and lowest nonzero correction in N~! agree with those of the expansion displayed in
section 5. As demonstrated in [7] the imaginary parts of scattering resonances (leakage rates)
are very sensitive to the detailed microstructure. Therefore, it is important to understand
the corrections to leading order (effective medium) homogenization theory. Our second order
homogenization expansion leads, in examples of physical interest, to an efficient and accurate
numerical method, giving very good agreement with full simulation by Fourier methods and
multipole methods. The real parts of scattering resonances are far less sensitive to the specific
microstructure, and often the first term in the expansion (the averaged or homogenized

problem) gives a good approximation.

Finally, we wish to mention other work on spectral problems in the setting of microstruc-
ture. In [23] and [18] the validity of first order corrections to homogenized eigenvalues for
divergence form (self-adjoint) elliptic operators with rapidly varying coefficients on bounded
domains is analyzed. The problem of scattering resonances for the Helmholtz resonator

problem in [5], [6] and in other works cited therein.

1.5. Definitions, Notation and Conventions

All integrals are assumed to be over all space (R™) unless otherwise noted.
(r,0) denote polar coordinates in R?

Rz, the real part of z; Sz, the imaginary part of z

Both Zz and z* are used to denote the complex conjugate of z.

A* denotes the adjoint of the operator A.

[A,B] = AB — BA, the commutator of A and B.

The inner product for functions f,g € L?(R") is denoted by:

(f.9) = / F@g(x) da

12



For radial functions f(r),g(r) € L*(R") on R* we denote the radial inner product by:

(f,9)raa = /000 fr)g(r) ™t dr.

Fourier transform:

Flgl©) = 9(6) = / e (z) d,

o(@) = FFl@) = @) / ¢ €4(¢) de (1.12)
©=m+)"? e2=¢-¢

D = —iV, A = V-V, the Laplace operator

Functional calculus:

H(D)g = FUFO) = o [ r©a©) de (113
Dy = (m1-2)" g = G [0 ate) ae (1.14)

Exponentially localized weights: Let 0 < M < M.

x(z) = F7Yx] and x(z) = F~[x], where
X(€) = (M?+ €)™ and x(§) = (M? + &)~ (1.15)
Note that 0 < x(z) = O(e~Ml#l and 0 < ¥(z) = O(e M), The exponential upper bound

follows from deformation of the £ integral contour. Note that x(z) is essentially the Bessel

potential Gg(z), which is strictly positive; see equation (26) in [25].

For a radial function, ¢(r) defined on R?,

f(D)g = e f(D)e"g

1
l2 2

(o) = (1-2, + %)
Young’s inequality: Let a %  denote the convolution of functions o and f.

leex Bllzr < llallz18]lze, p = 1. (1.16)

Bessel functions: For any integer /,

—f e
J(z) = — | e*%cos(¢h) db. (1.17)

13



Fourier transform of uniform measure on S"! See, for example, [3]. For, n > 2

1 . 1
. Wy = —— Ju 1.18
(27)% /Sn_le e 25 (121 (118)

Acknowledgments: The authors acknowledge stimulating discussions with R.V. Kohn,

G.C. Papanicolaou and M. Vogelius.

2. Microstructure perturbations of eigenvalues
We will study the time-independent Schrodinger equation
Hip = Ey) (2.1)
where
H=-A+V(x).

Throughout this paper, we require fairly stringent conditions on the potential, namely that
V(z) € L*(R") and V(x) has compact support. Minor modifications in our arguments can
be made to treat the case of potentials which decay exponentially as || — oco. For simplicity,
we will work in spatial dimension n = 2 or 3, though we believe that generalization to higher
dimensions can be done. Standard arguments [21, 9] imply that H is self-adjoint on the
domain D(H) = D(—A) = H?(R"), and the essential spectrum oess(H) = o(—A) = [0, 00).

In this section we focus on the eigenvalue problem for equation (2.1), requiring ¢ € L? and
for the remainder of the paper the scattering resonance problem, corresponding to equation
(2.1), with ¢ “outgoing” at co.

The class of potentials we consider can be written as
V(z) = Vo(z) + 0V (x)

where Vj is “slowly varying” and 6V is a perturbation which is “rapidly varying,” but possibly

a pointwise large perturbation, in a sense which is made precise below.
A solution to the eigenvalue problem
(—A+V)y = Ev (2.2)

is a pair (F, ), where 1) is nontrivial and ¢ € H?(R").

14



We now reformulate the eigenvalue problem in a manner which is well-suited to treating
microstructure perturbations; see section 1.3. Let F = p®. For Su > 0 (E ¢ [0,00)),
(—A — )71 is bounded on L? and so (2.2) implies

o+ (A=) VY =0
or equivalently

I+ (=A=p)"'(I=A) (D)7'V(D)™ [(D)y (2.3)

Sr(w) Sv

Therefore, we have the following simple correspondence between solutions of (2.2) and a

Lipmann-Schwinger type integral equation:

Theorem 2.1. The pair (E = p?,4)) is a solution to the eigenvalue problem if and only if
(11,0, where 1) = (D)tp € L?, solves

(I + Se(w)Sy )4 = 0. (2.4)

If Ej is an eigenvalue, then Ey = p2 < 0, for some 1 on the imaginary axis in the upper

half plane. We have the following perturbation theorem for simple eigenvalues:

Theorem 2.2. (a) Let Vj denote a potential for which |||Vp|||1 is finite, where

IVolll = lISvellszzy = NI (D)™ Vo(D) llsze).- (2.5)

Let (Ey, 1) denote a solution of the eigenvalue problem corresponding to the potential,
Vo(z), and assume that E, is a simple eigenvalue, for which Yo = (D)1 correspondingly

spans the null space of I + Sg(p0)Sv,. Assume that

(Svoto, Sk (10)Svetho) = || Ro(1o)Votholl3 # 0. (2.6)

Then, there exists gy such that for any potential V satisfying |||V — V;||| < o, there corre-
sponds a unique solution (E(V'), (V) of the eigenvalue problem which lies near (Fy, 1p).
(b) The mapping

Vi (B, ) € R x H?,
which associates to a potential V' a solution (E(V),y(V)) of the eigenvalue problem, is

analytic in the norm |||V||| in a neighborhood |||V — V}||| < go of Vj.

15



The proof of this theorem is a very much simplified version of the proof of the analogous
result (Theorem 4.1) for the case of scattering resonances. We implement the ideas in the

latter context. However, we do make a few remarks presently.

Remark 2.1. The proofs are based on the implicit function theorem. Recall that an eigen-
value Ey of —A+Vj is such that Ey = u2, where y is purely imaginary and in the upper half
plane. Also, as can easily be seen using the Fourier transform, the operators 8&5 r(p), 7 >0
are bounded in L? in a neighborhood of p. Therefore, one expects the continuity of eigen-

values in the norm for potentials varying in a neighborhood of Vy in the norm (2.5).

Remark 2.2. The results worked out in sections 5- 7 apply as well for the case of the

eigenvalue problem of this section, which much simpler proofs. These include:
1. a convergent perturbation expansion of eigenvalues in the V — Vj; compare section 5

2. results for the special case of N— fold symmetric perturbations, V — Vy = 6V (r, N0);

compare section 6

3. a homogenization / multiple scale expansion of eigenvalues as well as comparison
and agreement with the eigenvalue perturbation theory through second order in N *;

compare section 7

3. Formulation of the scattering resonance problem
3.1. Elementary review of resonances

Our particular interest is in the resonances of H, which we will construct as perturbations of
the the resonances of Hy = —A+V}. Therefore, we must first consider the latter resonances.
Their existence for the restricted class of potentials we consider is well known [2]. We will
briefly review the arguments as they will serve as a starting point for the proofs of our main

results.

Proposition 3.1. The resolvent Ry,(n) = (—A + Vo — u?)™! can be analytically continued
from the half plane S > 0 to the entire plane C, when n is odd, or to the logarithmic
Riemann surface A when n is even. The analytic continuation of the resolvent is meromor-
phic in u, with residues at the poles corresponding to finite rank operators associated with

nontrivial solutions of
(-A+Vy—p*u=0 (3.1)
that satisfy either outgoing or incoming boundary conditions at infinity.
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The half plane S > 0 is often called the “physical sheet” and Su < 0, the “unphysical
sheet”. As seen below, poles of Ry,(u) on the physical sheet correspond to eigenvalues,
E =p?> <0 Rpe = 0,3u > 0). Those on the unphysical sheet correspond to outgoing
(Rp > 0,3u < 0) or incoming (R < 0,y < 0) solutions, which are not L?. These are
called resonances. See figure 4.

Proof of Proposition 3.1: It is shown in [10] that in the physical upper half plane Su > 0,
the resolvent Ry, is meromorphic, with poles possibly existing on the imaginary axis. Poles,
i, in the upper half plane correspond to eigenvalues, £ = p? < 0, of Hy. Away from its

poles, the resolvent Ry, (u) satisfies
(—A + Vo — i) Ry () = I
which, since the domains of —A + V, and A are equal, can be rewritten as

(I + Ro(p)Vo) Ry, (1) = Ro(p)- (3.2)

The kernel of the free resolvent Ry(u) is known explicitly [16]

n—2

N
Ralpi o) = 3 (5] Gl - ) 53)
where H & is a Hankel function [1]. In odd dimensions n > 3, this Hankel function is entire
as a function of 1, while in even dimensions it is entire on the logarithmic covering A of C.
The large |z| asymptotics of Hankel functions are displayed in appendix A. H ,(,1)(2) satisfies
an outgoing radiation condition as |z| — oo.

In order to analytically continue Ry (p) from the physical half-plane to Sp < 0, it is
evident from (3.3) and the asymptotic behavior of HY, (A.4) that we will need to work in
a larger Hilbert space, since H))(u|z — y|) maps the space of square integrable functions,
which are compactly supported in |z| < 7o, L2(ro) to e**IL2(R?), with a > [Spu|. It is
possible to formulate the analytic continuation in L?(R") by explicitly introducing localizing

functions x(z) satisfying
0 < x(z) = O(e™@; (3.4)
see (1.15). Multiplying (3.2) on the left by x(x), we obtain

(I + xRo(p)Vox ") xRy, (1) = xRo(p). (3.5)

Both sides of (3.5) are considered as mappings from LZ(R"), the space of compactly supported
L? functions, to L?(R").
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For |Spu| < «, it can be shown by direct estimation of the kernel associated with the
operator xRoVox ! using (3.3) that [2]

XBo()Vox *  L*(R") — L*(R")

is Hilbert-Schmidt, and therefore compact. Furthermore, it is also analytic in this region, and
its norm tends to zero as Spu — +oo in the physical sheet Therefore, the analytic Fredholm
theorem [22] tells us that (I + xRoVox ') ! is meromorphic in the domain of analyticity of
i, and that the residues at the poles are finite-rank operators. From (3.5) and (3.3) is it
clear that y Ry, (u) inherits the analyticity of (I + xRo(u)Vox™") " xRo(u).

Furthermore, if p is at a pole, then
(I +xRoVox ) Fo =0 (3.6)
has a nontrivial solution Fy € L?(R"). Setting vy = x~'Fy, we see that

o = —Ro Voo (3.7)

which is equivalent to (3.1). Also, if the analytic continuation in p is from the physical
half-plane to the fourth quadrant across the positive real axis, then (3.7) along with the
asymptotic behavior (A.4) of the Hankel function in (3.3) allows us to conclude that the
solution is outgoing at infinity; if the continuation is across the negative real axis to the

third quadrant, then it is incoming. [J

3.2. Resonances of microstructure potentials

We can now begin our study of resonances of microstructured potentials V =V, + V. The
guiding intuition is that a resonance pair (Ey, 1) of V; should perturb to a nearby pair (E, 1)
of V, if 6V is sufficiently oscillatory, depending on the pair (E, ). To make these statements
precise, we take (3.6) as the starting point. We assume that (u?, ) are a resonance pair,
with ¥ € L?(R?), and write ¢ = x~'¥. We then introduce the smoothing operator (D)~!

and its inverse, (D), given in (1.14) to obtain

(I + DIxBo(Wx(D) (D) Xx"Vx”{D)™) (D)x¥)) (3.8)
Tr(u) Ty

Theorem 3.1. Resonances are solutions (¥, u), with 0 # ¥ € L?, and Su < 0 of
(I + Te(W)Tv ) ¥ = 0, (3.9)

where Tg(p) and Ty are defined in (3.8).
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Remark 3.1. (1) The properties of Tg(u) and Ty, which validate (3.9) as an alternative
formulation of the resonance problem are stated and proved below.

(2) The localizing operators x are used to transfer decay from the potential to localization of
the free resolvent, which facilitates analytic continuation in p to the lower half plane, where
resonance energies are found.

(3) The operators {(D)~' and (D) transfer smoothness from the free resolvent Ry to act on
the microstructured potential V. This latter property enables the perturbative treatment of

high contrast microstructures, as explained in section 1.3.

To prove Theorem 3.1 and to work with the formulation (3.9) we require the following

two lemmas:

Lemma 3.1. The operator
Ty : L*(R") — L*(R")
is Hilbert-Schmidt, and therefore compact, for n < 3.
Lemma 3.2. Assume n < 3 and let k > 0 be arbitrary. The operator
OuTr(p) : L*(R") — L*(R"),
is defined, analytic and bounded for Sy > —M > —m.
Corollary 3.1. The operator
TrTy : L*(R") — L*(R")
is compact for Sp > —M > —m and n < 3.
Proof of Lemma 3.1: Let
V=xVx! (3.10)
Note that V has the same support as V. To prove that Ty is compact, note that
(D) V(D) f = [ Ka9)1(w)

where

T = d§ ﬂei(w-ﬁfy-n)w
K= | oy GION (@-11)
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where (D)~! = (m? — A)7Y2 and (£) = (m? + £2)Y/2. We claim that

// K (z,y)|* dzdy < oo, (3.12)

implying that Ty is a Hilbert Schmidt operator and therefore compact on L2
We now verify (3.12). The Fourier transform of K (z,y) is given by:

V(E+n)

K(&n) = > i 3.13
& = ) e ) (319
By the Plancherel theorem
/ drdy |K(zy)f = (2n)™ / de dy | K (€, )
e V(€ +n)?
= (@) / W 2 T 1E2) (m2 1 [P)
n 1 >
= (27) /mdf/|v(ﬂ+f)|2mdn (3.14)

The inner integral (dn) is the convolution of an L' function, \‘7\2 and, for dimension n < 4,
an L? function, (n)~2, and is therefore in L?(dn) by Young’s inequality, (1.16). It follows
that the integrand of the outer integral (d€) is the product of L? functions and by the
Cauchy-Schwarz inequality

/dﬂf:dyIK(ﬂv,y)\2 < (20”113 VI3 < oo (3.15)

Lemma 3.1 now follows. [
The following lemma, concerning analyticity properties of the free resolvent kernel, is

central to analytic extension of Tx(u) into the lower half plane and the proof of Lemma 3.2.

Lemma 3.3. Let n > 2. For j =0, 1, the operator

L;i(1) = Ro(u)(D)’ (3.16)

has a kernel L;j(p;x,y) that can be analytically continued from the (physical) upper half

plane to the lower half plane, with a branch cut starting at —im. The kernel is given by

Li(p;x,y) = m " 2Gyj(m(z — ) + (m® + p2)ym?* " Gy (m(x — y)) + Ri(w; 2, v)-
(3.17)

Here, G,(z) denotes the kernel associated with the Bessel potential (I — A)~%, define in
terms of the Fourier transform [25]

A

Ga(6) = (m*+&)7%. (3.18)
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For p in the physical upper half plane, R; is defined by

(m? + u?)? Jié-(a—) d§
Gy (€= ) + ST

The first two terms in (3.17) form a quadratic polynomial in p and is therefore an entire

Ri(p;x,y) =

function of p. The analytic continuation of R;(y; x,y) from Su > 0 to Spu < 0 is given by

Ri(wz,y) = Ri(—wz,y)+

n—2

oy () T el -l (319

where J,, is the Bessel function [1]. Furthermore, R;(u; x,y) satisfies

Ri(p;2,y) = (m? + p2)2Ro(u; 2, y) + R (113 7 — ) (3.20)
where, Ry(u;z,y) denotes the free resolvent kernel given by (3.3) and
ER) (1; 2, y)| < C(b, k)™, S >0 (3.21)
for any b < m and any k > 0.

Proof of Lemma 3.3: For Su > 0 we represent the kernel of £;(u) using the Fourier

transform:

de 2 | £2Vj/2
Ly = [ rgese it 3:22)

Using the algebraic identity

1 1 m2 +
62 _ ,112 = m2 +§2 + (52 _ Mg)(mg +§2)a (323)
we have
. _ A€ ie.(a- 1 (m* + p?)
Li(psz,y) = / e £(a-y) E T Tt 1 @i
(m? + p2)2
+({:2 — u2)(m? + 52)2]'/2]'

The expansion (3.17) now follows from definition (3.18).
The first two terms of (3.17) are entire in y. To analytically continue the remaining term

R;(w; z,y) we will adapt an argument in [15]. We begin by rewriting R; as

. (m +:u’ nlzpw(w y) 1
Rl 2. y) = (7 ot ™), Cdo (0% — p2)(m? + p?)? i/
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We now focus on the p integral. Its integrand is analytic in p except for poles at p = +pu
and, for the case of j = 1, a branch cut starting at p = +im. Let yu; = y' + ie; and
po = —p' + i€y, where 1/ € Ry and €; > 0, denote points in the first and second quadrants.
We begin by considering R(u1;z,y) and R(uq; z,y) separately. R(u1;z,y) can be expressed
as an integral over the contour in figure 5, part of which is the lower half of a circle about
u' traversed counterclockwise, v (u'). R(pe;z,y) can be expressed as an integral over the
contour in figure 6, part of which is the upper half of a circle about y' traversed clockwise,
v+ (") In this representation of R(us9;x,y), we let €3 approach —e; (us — —p1) to obtain
a representation of R(—puq;z,y), in terms of integration over a contour containing 7, ; see
figure 7. The difference, R(u1;x,y) — R(—u1;x,y), has an integral representation over the
contour homotopic to v_(u') —v4 (1), a circle about p' traversed counterclockwise; see figure
8. Thus

Rj(p1; 7, y) — Rj(—pa; 2, y)

. 1
=+ BPem [ dod dppriene
gn=t Y+ -

(p? — i) (m? + p?)2-/2

— (i) 2m) " [ et
Sn—1

n—2

= (m? + i em) ™ () Gl - ) (324

In the second equality of (3.24), we have performed the contour integral and in the third we
have used the well-known expression (1.18) for the Fourier transform of the uniform measure
on the sphere, S"' in terms of Bessel functions. This completes the proof of (3.19).

To prove (3.20), we rewrite the kernel R; as

. de .
Ri(wz,y) = (m”+ )" / —(2:)“615'(“‘”) & i 7t (3.25)
d . 2 NG/2-2 _ (2 2\j/2—2
(mZ +u2)2/ (27f)n€zf-(ac—y) ((m +¢ )] o /(;’L T H )] ) )

We recognize the first term in (3.25) as a multiple of a Hankel function, which for Su > 0,
by a contour deformation decays exponentially as |x — y| — oco. It is therefore proportional
to the outgoing Hankel function. The integrand in the second term, along with any number
of derivatives with respect to u, is analytic in £ in a strip around the real axes, and has
sufficiently rapid decay as |{|] — oo so that a Paley-Wiener type theorem (e.g. Theorem
IX.13 of [22]) applies to prove (3.21) for n =2,3. O
Proof of Lemma 3.2

For S > 0 the boundedness of Ty in L? follows from bounding its Fourier transform,

which is simple because the resolvent kernel decays exponentially for Su > 0. However,

22



the analytic continuation of the resolvent kernel to Su < 0 grows exponentially, so we must
proceed more carefully. We use a combination of techniques; see, for example, [2], [15].

By commuting (D), we rewrite T as a sum of operators, whose kernels can be analytically
continued. The proof uses two technical results, Lemmata 3.4 and 3.5, which are stated and
proved at the end of this section.

First consider the case k = 0.

Tr = (D)xRo(p)x(D)
= (x(D) + (D), x])Ro(1) ({D)x + [x, (D)])
= X{D)Ro(D)x + ([(D), x]x~*) (XRo(D)x) + (Xx{D)Rox) (X"*[x, (D)])

+((DY, x]x ) (XRox) (X' [x, (D)])
= A+ A(a) + Ag) + Amp (326)

and estimate each of the terms in succession.
We begin with A;. For p in the upper half plane, the Fourier representation of Ro(u) is
valid, and we may therefore commute one of the (D) operators through the resolvent and

apply the identity

XRo(1)(D)?x = xIx + (m* + p*)xRo(1)x. (3.27)

The expression (3.27) enables us to carry out the analytic continuation of A; from the upper
half plane to the lower half plane. Boundedness on L? in the required region, follows from
Lemma 3.4 with £ = 0 below and (3.3).

Moving to the next two terms, we observe that it is sufficient to discuss only one of Agl)
and Aﬁ’), since (D) commutes with Ry in the upper half plane, and the analytic continuation

is given by Lemma 3.3. We decompose

AP = (DY, XIx™Y) (XRo(D)x)

and note that the first term is bounded by Lemma 3.5. We show boundedness of the second
term in two steps. We first consider S > 0. Then (3.17) and (3.20) allow us to express
Ry(1){D) as a sum of four operators. The two containing Bessel kernels are clearly bounded,
while the term containing R, is bounded by Lemma 3.4. That R;Q) is bounded can be seen
by computing the L' — L° norm of its kernel, using (3.21).

Next, choose p such that Sy > —m. Then (3.19) allows us to express Ro(u){D) as a
sum of two terms, the first of which, Ry(—u){D), we have already bounded, and the second
of which is bounded by Lemma 3.4.

Finally, the last term Ajp is bounded by application of Lemmas 3.5 and 3.4.
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The result for £ > 0 is obtained by differentiating the kernels Ry and £; in (3.26) and
proceeding as above, noting that Lemmas 3.3 and 3.4 can be applied for any £ > 0. O

Lemma 3.4. The operator mapping L*(R*) — L?(R"™) given by the kernel

o [X(x) (52) " Tl = uhaty (3.25)

z -yl

is Hilbert-Schmidt, and therefore compact and, in particular, bounded, for Su > —m and
any k > 0. In (3.28), J may be any of the Bessel functions J, Y, HY or H®.

This result, for dimension n = 3, follows from the proof in [2]; see, in particular, the analysis

of the operator denoted 7T,. The case of general n follows the same line of argument.

Lemma 3.5. Let x and x be exponentially localized functions with exponential rates M
and M as introduced in (1.15). Then, the operator

C=[D),x]x"": L*(R") — L*(R") (3.29)
is bounded when M < min(m, M/+/2). For any f € L*(R")
Cf=Cf. (3.30)
The adjoint of C, C*, is given by
C*=x"D. (D) (3.31)

Proof of Lemma 3.5: We first show that C is bounded. Let f denote any member of
L?(R™). Then

Cf=F(z)= / dy / (;f)n (;?)n TR — ) ((€) — ()X (W) f (v)- (3.32)

Since ||Cf|lz = ||F]|2 it suffices to show that | F||, is bounded above by C||f]|; for some
postive constant, C. The integrand in (3.32) is analytic in ¢ varying over the product of
strips around the real axes, —oo < (; < 0o, and has sufficient decay as |(j| — oo so that we

may shift the ¢ contours {; — (; + i7v;, with |y| < min(m, M). We next write

)NC_l(y): Z lsgn(y)=s(y))~<_l(y)

sE{—l,l}"

and define v; = 7;(s) = —vs; where v is chosen to satisfy

n Y2M < v < n Y2 min(m, M). (3.33)

24



We note that the first inequality in (3.33) will ensure that!

1 Lsgny=s(¥) X (@) e FW)ll2 < ClIf s (3.34)

while the second ensures that |y| < min(m, M), so that the contour shift is permitted.

After the contour shift, we have

“YR(E —n —iy(s)) ((€) — (n+iv(s))) x

]-sgn(y):s (y)f(il(y) efv|y\1 f(y)

To continue, we define

and carry out the dy integral:

= > dn n X(E —i72£<€>—<n+iv>l§s(n)- (3.35)
se{-1,1}7 Fl ;(2

We may bound F; of (3.35) as follows. Choose v? = (§/2)M?, with § € (0,1), and set
x =& —mn. Then

|M? + (z — iv)*[ (M? + 2%)% +4* — 29°(M? + %) + A(z - 7)°

> (M*+2%)(M* + 2" = 27)
> ((1—6)M? +22)°. (3.36)
and it follows that
IRy < (1=8)M* + (6 —n)*) ", (3.37)

We bound Fj of (3.35) as follows. Write Fy = Fi" + F\?, with

F2(1) _ (m2+§2)1/2 _ (m2+772)1/2
F2(2) _ (mQ +772)1/2 _ (m2 +(n+ i’y)2)1/2_

We observe that |F | < C|¢€ —n|. We may bound |F | by noting that it can be written as

=Inl(1+ fi(n) — In| (1 + f2(n))

'Fory € R” |yly = |ya| + - + |ynl-
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where

LA <007, 1f2m)] < O(nl™).

Then clearly |F2(2)\ is bounded by a constant, and
[F2| <C+ 1§ =l (3.38)
Finally, we assemble (3.37) and (3.38) by writing

FEOI<@m)™ > (h*lal)(©)

se{-1,1}»
with
E—n) = ((1=8)M*+(E—n))" (C+I[¢ —nl).
Then by Young’s inequality

ICFllz = I1Flle <7 " [Ihlly sup  [1gsllz < Cllflle-

56{_111}n

The expression (3.30) follows from (3.32), as does (3.31) for the adjoint C*, along with
the fact that C is bounded. O

4. Perturbation theory of scattering resonances

In this section we state and prove a perturbation theorem for solutions of the scattering
resonance problem. We first consider the case where the resonance subspace being perturbed
has dimension one. This result can be generalized in a straightforward manner to higher
multiplicity. We then turn to the case the two-dimensional radial case, V5 = Vj(r) and
show how the perturbation theory of degenerate pairs of resonances ( occuring for angular
momentum |/| > 1) can be reduced to the above case. The latter results are straightforward
to generalize.

4.1. Perturbations of simple scattering resonances

Theorem 4.1. (a) Let V; denote a potential for which |||V,||| is finite, where
IVolll = 1 Twllseey = I (D)™ Vo(D) s (4.1)
Let (Ey, o) denote a solution of the corresponding scattering resonance problem. Assume
dim {ker (I + Tg(Eo) Tv,)} =1 (4.2)
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and this subspace is spanned by the function

Uy = (D) xtho;

(see (3.8)). Furthermore, assume the condition
(Ty, Ty, Th(Eo) Ty, Wo) # 0. (4.3)

Then, there exists gy such that for any potential V satisfying |||V — V;||| < o, there corre-
sponds a unique solution (E(V'),¥(V)) of the scattering resonance problem which lies near

(E()a wO)
(b) The mapping

Vi (E,¥) € C x H' (x(z)dx),

which associates to a potential V' a solution (E(V'),%(V')) of the scattering resonance prob-

lem, is analytic in the norm |||V'||| in a neighborhood |||V — Vyl||| < €g of V.

Remark 4.1. In the application of section 6, we take V = Vy(r), r = |z|, = € R%. Radial
symmetry of the potential implies a degeneracy of modes corresponding to non-trivial angular
momentum, i.e. Yy = ,eX%°. In Theorem 4.2 we show how this kind of degeneracy can be

treated by a reduction to Theorem 4.1.

Proof of Theorem 4.1: We formulate the problem so the result follows from the implicit

function theorem For |||V — V||| small we seek a solution of the scattering resonance problem

(I +Tr(EYTy)¥ =0 (4.4)
in the form:
E = Ey+JF (4.5)
U = Y499, (4.6)
where
(I +Tr(Eo)Ty,) Yo =0. (4.7)

Substitution of (4.5,4.6) into (4.4) and use of (4.7) yields:

(I + Tr(E)Ty,) 6 = —Tr(Eo)Tsy Vo — 6Tx(Ey, $E)Ty, Vo
—Q(6V, 0V, 0E; Vo, ¥o, Ep). (4.8)
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with
0Tr(Ey,0F) = Tgr(Fo + 0F) — Tr(Ey)
and Q consisting only of the quadratic and higher order terms:

Q(8V,6V,6E; Vo, Uo, Eg) = (Tr(Eo)Tsv + 0Twr(Eo, 0E)Ty, )00
+6Tr(Ey, SE)Tsy (¥g + 67). (4.9)

We will apply the analytic Fredholm theorem to (4.8). The solvability condition requires
an understanding of the adjoint operator: I + T;OTR(EO)*. Note that since Vj is real valued

Ty, is self-adjoint.

Lemma 4.1. Under condition (4.2) of Theorem 4.1, the adjoint operator I + Ty, Tr(Eo)*

has a one dimensional null space spanned by the function
U# =Ty, 0. (4.10)
Therefore, the inhomogeneous problem
(I +Tr(Eo)Tv,) U =S
has a solution for S € L? if and only if
(Ty, ¥p, S) = 0 (4.11)

Proof of Lemma 4.1: Since Tg(Ey)Ty, is compact the dimensions of the null spaces of
I 4+ Tr(Ey)Ty, and I + Ty, Tr(Ep)* are equal [12].

To construct the adjoint null space, observe that an element of the null space satisfies:
(I + Tr(Eo)Tv,) ¥o =0 (4.12)
Applying the operator Ty, we get
(I + Ty, Tr(Ey)) Ty, ¥y = 0. (4.13)

Taking the complex conjugate of (4.13) yields:

TVO\IIO + TVOTR(EO)TVO\IJO = 0 (414)

The lemma follows from the observation that Ty, f = Ty, f, since V; is real-valued, and the

conclusion of Lemma 4.2. O
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Lemma 4.2. For any € C\ {0} satisfying Spu > —M > —m and f € L*(R"),

Proof of Lemma 4.2: We employ the decomposition (3.26) of Tg. We first note that the
result for A; follows from the use of the identity (3.27), Lemma 3.4, and the fact that the

free resolvent is symmetric, as can be seen from (3.3). We next consider
An = AP + AR = C(RL1(n)X) + (LL()R)C"

where we have used the notation of (3.29) and (3.16). The result follows from Lemma 3.5,
which tells us that Cf = Cf for f € L?; Lemma 3.3, which tells us that £; has a symmetric
kernel; and Lemma 3.4, which tells us that ¥£;(u)x is a bounded operator from L? — L2
for Sp > —M. The result for Ay follows similarly. O

Continuting with the proof of Theorem 4.1, we note that (4.11) gives us an implicit
condition for the solvability of (4.8) for 0¥, obtained by setting the inner product of the
right hand side of equation (4.8) with Ty, ¥, equal to zero:

(T, W0, 0TR(Eo, 6E)Ty, Wo) + (T, Yo, Tsy ¥o)
+ <TV0$07 Q(éV, 6‘1]7 JE’ %7 \1107 EO)> =0 (415)

We now view the task of scattering resonance problem as that of seeking a solution (¥(V'), E(V))

of the system of equations (4.8),(4.15). In compact form we write:
F(6V,6¥,0F) =0, (4.16)
where F = (F, F) and

Fi(6V,60,6E) = (I +Tr(Eo)Tv,) 0¥ + (Tr(Eo)Tsv + 6Tr(Eo, 6E)Tv,) ¥o

+Q(8V, 8%, 6E; Vo, Wo, Ey) (4.17)
FQ(éV, 5@, 5E, ) = <TV0§07 (TR(E())TJV + 5TR(E0, 6E)TV0)\IIO

We verify that the hypotheses of the analytic implicit function theorem hold for F :
X XY — Z, with

X = {V € L?(R") of compact support}
L*(R™) x C
Z = {(f,z2) e )(R") x C:z=(Ty, Vo, f)}

s
I
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and with the norms |||V||| for V € X, ||¥||z: + |E| for (V,E) € Y, and ||f]|zz + |z| for

(f,2) € Z.
We first compute the differential DF evaluated at a point zy = (\7, 0, E) in a neighbor-

hood of the origin:

Dsy suseFi(x0) = DsyFi(x0) + DswFi(x0) + DspFi(z0)
= Tr(Eo)Tsy Vo + Tr(Eo)Tsv ¥ + 6Tr(Eo, E) Ty (Vo + )
+[I + Tr(Eo)Tv, + Tr(Eo) Ty + 6Tr(Eo, E) + 6Tr(Eo, E)Ty] 6%
+Tx(Eo + E) [Ty, U + Ty ¥ + Ty (¥ + ¥)]|6E
Dsv swouFo(x0) = DsvFa(xo) + DswFo(xo) + DspFao(zo)
= <TV0TOa
Tr(Eo)Tsy o + Tr(Eo)Tsy ¥ + 6Tr(Ey, E)Tsy (T + )
+[Tr(Eo)Ty + 0Tr(Eo, E) + 0Tr(Eo, E)T;]6%
+T4(Eo + E) [Ty, o + Ty, ¥ + Ty (¥ + )| 0E).

By Lemmas 3.1 and 3.2, we see that
|1Dsv sw,65F (z0)llz < C[l[6V]|] + C[|6¥]| + CISE]

for g in a neighborhood of the origin, and therefore F is analytic there. We observe that
F(0,0,0) =0, and consider the differential evaluated at the origin.

(4.19)

!
DJ\IJ’JEF(O’ O, O) = ( I + TR(EO)TVO TR(EO)TV()\IJO ) ‘

0 (Ty, Vo, Th(Eo) Ty, o)

We now verify that the inverse of Dsy s5F(0,0,0) is defined and bounded on Z. Consider

the system of equations:

(I + TR(EO)TV()) 5\11 + T}IZ(EO)TVE)EO 5E - f1
<TV0$05 T}IQ(EO)TV()\I’O> 5E == <TV060, f1> (420)

By Lemma 4.1, this system can be solved uniquely for (§¥,6F) € L? x C of a function of

0V. The conclusions of Theorem 4.1 now follow from the implicit function theorem.

4.2. Perturbation theory of degenerate scattering resonances for V; symmetric

Suppose V =V = Vy(r), with (r, ) polar coordinates in R?. For any [ = 0,41,42,..., set
Yy(r)e. (4.21)
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Substitution into equation (1.1) yields
12
(- -5 v - B Ju=o (422
r

In general, there is a discrete set of solutions {%g i (7; Foum) : m = 0,1,...}, and corre-
sponding resonance energies Fy ,, satisfying equation (4.22) and the outward going radiation
condition at infinity. Fix some value of [. To simplify the formulae we shall, when there is
no ambiguity, denote the resonance mode by g ,(r; Eo;) and resonance energy by Ej.

Note that the there is a degeneracy, Ey; = Ey_; = Ep i, because equation (4.22) is invari-
ant under the change [ — —I[. Thus, the scattering resonance problem has a two dimensional
subspace of solutions for energy Ey i, which is spanned by the functions v (r; E0,|l|)eiw and
Pou(r; Eo,m)e*’w. The perturbation theory of each of these degenerate modes can be carried
out independently.

To see this, first consider equation (4.4), the equivalent nonlocal formulation of the scat-

tering resonance problem. Setting
\ = ewl ( \Ilo’l(T; E()’|l|) + 5‘1&(7‘) ) (423)

we have, after commuting factors of e,

(I + TRﬂl(EOM)TVo,l) 5\Ifo,l
= Tru(Eoju) Tigv¥o + ( Try(Eou+ 0E) = Tra(Eoju) ) Tvon¥oy
+ QW 0E, 0V Woy, Eouy, Vo). (4.25)

The |— indexed operators in (4.25) are given by:

Try(E) = e ™ TR(E)e™ = (D)x(—Ar— Ey) " x(Dy) (4.26)
Tvi = e Ty = (D) 'x 'Vx YD), (4.27)
where
2?2
(D)) = (I - A, + 72) , Ay = (D)% (4.28)

Finally, we introduce the [— dependent norm:

TVl = (D)™ X VX (D)™ [lsere)- (4.29)
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Proposition 4.1. The adjoint operator I + Ty, ;Tr;(Eo;)* acting on radial L* functions,

has a one dimensional null space spanned by the function
UE(r) = T Uio(r) = Tyou Wio(r; Ep). (4.30)
Therefore, the inhomogeneous problem
(I + Tri(Eoy)Tvy ) U = S
has a solution for S € L*(r dr) if and only if
(Tvou Yoy, S>rad =0 (4.31)

The proof parallels that of Proposition 4.1.
Therefore, we have obtained a reduction to the case of simple (dimension one) scattering

resonance and Theorem 4.1 applies. We have

Theorem 4.2. (a) Let Vi = Vi(r) denote a radial potential defined on R? for which |||Vpl/|;
is finite. Let Ey | denote a doubly degenerate scattering resonance energy corresponding to

the pair of scattering resonance modes 1 (r)e™ and 1o (r)e™"°. Assume the condition
(T %oy, T (Eog)Tvy You) # 0. (4.32)

Then, there exists €y such that for any potential V (not necessarily radial) satisfying |||V —

Vollli < €0, there corresponds a pair of solutions

Voo (B (V) (s V)e®)
Vo (BL(V), 0z V)e ™) (4.33)

of the scattering resonance problem which lie near (Ey , o +:) in the norm |z| + [|[V]]|.
(b) As in Proposition 4.1 the mappings V +— (Ey(V), ¥x(z; V)er") are analytic.

5. Scattering resonance expansion

In the previous section we proved that if the scattering resonance problem has a solution
(Ey, 1) corresponding to a potential Vj, then for all potentials V' = V446V in a neighborhood
of Vo (|||6V]|| small) the scattering resonance problem has a solution (E(Vy+dV), ¥ (Vo+4dV)).
Moreover, we have that E (V') and ¢(V) can be expanded about the V; case. In this section
we compute the first few terms of this expansion. In the first subsection we give general
results for the case of simple scattering resonances. In the second subsection, results for the

case of degenerate scattering resonances for a radial potential in R? are given.

32



5.1. Expansion for simple scattering resonances
To find the explicit expansions of E(V') and 9 (V') we write:
E = Ey+6EY +6E® 4.
U = U+ 00 460 4 (5.1)

where terms with a superscript j are formally of order j. Substitution of (5.1) into (4.8) and
equating like orders or magnitude yields a hierarchy of inhomogeneous equations, the first

two terms of which are:

O(1): (I+ Tr(Eo)Tv,) 690 = — (TR(EO)TJV + 5E(1)T111(E0)TV0> Yy (5.2)
1 2
O©2): (I+Ta(Eo)Ty,)69? = — <5E(2)T}C(E0) + 5Th(Eo) (5E<1>) ) Ty Ug

. (TR(EO)TW + 5E(1)T§(E0)TVO> 5o
—SEWTL(Fy) Ty . (5.3)

At order @(m) in perturbation theory, §E™ is determined by the solvability condition:
(Ty, ¥y, right hand side of %™ equation) = 0. (5.4)
The equation for §E™ has the form:
(Ty, Wo, Th(Eo) Ty, Wo)0E™ = .. (5.5)

Therefore, the determination of SE™) at all orders depends on the non-vanishing of the

(m-independent) coefficient
Cag = (T, Vo, Tr(Eo)Tv, Vo) = (Votby, Ry(Eo)Votbo) - (5.6)

Consider the O(1) equation. By Lemma 4.1 a necessary and sufficient for solvability in

L? is:
(Ty, Wy, Tr(Fo) Ty Wo + 6 EVTh(Ee) Ty, ¥o) = 0.

Therefore,

sED — <TV0?OaTR(EO)T6V\IJO> 5.7)
<TV0‘1105 T;{(EO)TVOq]0>

or equivalently, using (5.6) and the definitions of Ty, Tk, and Wy,

<%EO ) 5V¢0>

SEM = - .
Voo, Ry (Eo)Votho)

(5.8)
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If E™ is chosen to satisfy (5.8), then (5.2) has a unique solution ¥,
Turning to the O(2) equation, we then substitute this into the right hand side of (5.3)
and find, via Lemma 4.1, that 6 E® is determined by the solvability condition
1 2,
CasdB? = —2 (5E(1)) (Tv, Ty, Th(Eo) Ty, U )
- <TV0$0, TR(EO)T5V5\IJ(1)> — 6EW <Tvﬁo, T;%(EO)T%5@<U>
—~8EW (T, W, Tp(Eo)Tsv Vo) - (5.9)

The procedure can be continued to obtain a solution to any order.

Special case: vanishing first order correction; SEM =0
We consider a expressions for E® | that we use in the application of section 6, where
we find EM = 0, a case of interest in section 6. In this case expressions for E® simplifies

considerably.

Lemma 5.1. Suppose EY) = 0. Then,

SE@ = ¢ <$0,TW5\I/<U> (5.10)
 {TovTo, (I + TalBo)Tro) T Bo) T To) )
(T, Ty, Th(Eo) Ty, Uo)
Proof of Lemma 5.1: If SEM) = 0, then (5.9) gives:
<Tvﬁo, SEQT! (Ey)Ty, Uy + TR(EO)TWN(”> = 0. (5.12)
Therefore,
SE® (Ty, Wy, Tp(Eo) Ty, W) = — <T%EO,TR(E0)T5V5‘I’(1)>
= — (T(Bo) Ty Wo, T 00" )
_ <$0,TW5\IJ<”> . (5.13)

The second equality in (5.13) follows from Lemma 4.2, and the third from (4.7). Finally,
(5.11) follows from (5.2). O

5.2. Expansion near degenerate scattering resonances for V|, radial

Let Vo = V4(r) be defined on R? and recall the nature of the degeneracy as explained in

section 4. We follow a procedure which parallels our reduction of the perturbation theoretic
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result for degenerate scattering resonance pairs (Theorem 4.2) to the result for the case of
simple scattering resonances (Theorem 4.1). The results are as in the previous subsection

with the following changes:

Ey — Eyu, E(V) — EL(V)
Tr(Eo) —  Tri(Eo)
Ty, — Ty
(fra) = ([, 9raa

We summarize the formulae thus obtained for the perturbed resonance energy:
Ey = Eyy + 6EY) + 0BG + ..., (5.14)

Note that in the case where V} is radial

(Tve1 %0, Tri(Eo) Tsv 1¥o,)

(Tvo %o, Thy(Eo) Tvo i Wou)
(Vovbo,41, 0V ntbo 1)

_ _ =0 5.15
(Tvo1 %o, Ty (Eo,) Ty, Yo,) (5-15)

JEY = —

because the #- dependence of §V n can be factored out and integrates to zero. Therefore,

Proposition 5.10 applies.

Proposition 5.1. The degenerate pair of resonances eiilewo,il(r) with energy FEq ;| perturbs

to two branches of resonances with energies:
E:l:l == E0,|l| + 6E£l:21) + ey (516)

where

SE® — (T You, (I + Tra(Eio) Tvog) Ty (Eio) Tsv Vi) (5.17)
* (Tvo Yo, Thyy (Eo)TveuYoyu) '

6. The Schrodinger equation with potentials with N— fold symmet-
ric (microstructure) potentials

Let 7 = |z| and @ € [0, 2] denote polar coordinates in the plane, R?. We consider V; =V,

the averaged structure and dVy, a microstructure perturbation

§Vn(z) = 6V (r, N9), (6.1)
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where 6V (r, ©) is 27-periodic in ©. Thus we have a structure with N-fold rotational sym-
metry.

We want to show that to any scattering resonance of the averaged structure, there is a
nearby scattering resonance of the perturbed structure, provided N is sufficiently large. In

order to apply the results of Theorem 4.1 we must show that as N — oc:
118Vie 1l = 11 Tova llscza) = 116D) "8V D) sz = 0. (6.2)

where 6Vy = x16Vyx L. We next prove this and, in particular, obtain the precise estimate
of ||| 0V ||| in terms of N.

Theorem 6.1. For some positive constant, C, depending on V and x:
1
IVl < O (63)

Corollary 6.1. By Theorems 6.1 and 4.1, there exists a positive integer N, > 0, such that
for N > N,, the scattering resonance problem for H = —A 4 V 4+ 0V has a solution
(En,¥n) with scattering frequency Ey near Ey.

To prove (6.3), we shall make use of the Fourier series of §Vy:

SV (-, 0) = V¥ (-)e’. (6.4)
k#£0

A similar expansion holds for §Vy with 6Vy*) replaced by (5VN(k) = x 1oV Fy

Proposition 6.1. Let K(A) denote a function of the Laplacian. Then,

K(A) e f(r) = e K(Ag)f(r) (6.5)
where
m:m-g (6.6)
In particular,
(DY~ e f(r) = e“0<lh>‘1f(r} (6.7)
(D™ = (m’I-4,) (6.8)

36



Proof of Theorem 6.1: We now estimate the norm of Tjy .

Then,

(D) oV (D) f = D (D) OV (D) fre®

£
= Y (D) 'Vye (D) f,
£
— Z <D>—1 6‘7N(k) ei(f+kN)9<De>—1 ff
2,k#0

= Y D, )T (DY) ! s

£,k£0

Taking the L? norm and using orthogonality of {e*’ : ¢ € Z} we have:

_ ~ ~ (k _
(D) 6V (D) 12 = 3 1 (Desen) 6V (Do) fe |12

£,k£0

= 3 11Dean) 16V 13 1602 sgu(6V ™) (Do) fe 2

£,k#£0

1 oo (B) L - (k)L _
< 0 HDekn) VN 12 gy 16V 12 (De) ™ I3z I fell72

£,k#0

Let f € L? be arbitrary.

(6.9)

(6.10)

Since the operators |5VNU€)|% (Dy)~! and (Dg)’1|(5VN(k)\% are adjoints, their B(L?) norms are

equal and we have:

where

Let

Note that

where

(DY 6V (D) 1172 < D Tevnnn Ten |l fell32,
50

(k)1 _
Lo = 10V 12 (Dg) ™ I(12)-

2%
Bg = <De> = <m21— AT + ’[‘_2)

o (k)1 —1p— 1
Lo = (@) 16Va[2 - (@) By Iy < we @)™ By 5,

- (k)1
7 = sup [[{@) [0V 7 [l < v
T
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(6.14)



where 7 is independent of k since V' (r, #) is bounded and has compact support in z. Therefore,

(D)™ 6V (D)™ 172 < 7* D @) " B ey 162" B ey Ifell7> (6.15)
£,k#£0

We shall bound (6.14) using the following

Proposition 6.2.

(@) 2B f e < (1+2) 3| f|e (6.16)

The proof is given in section 8.

We now conclude our estimation of |||V} |||. By Proposition 6.2 applied to the operators
By and By, n we have from (6.15)

1
1D Ve (DY I < 2 3 Y e o M

k>1 £

(6.17)

Consider the above sum over the the range £ > 1. The range k¥ < —1 is treated similarly.

ZZ1+ £+kN)2 1+£2 I fellze = XA:+ZB:+ZC:'

k>1

Here, we use the notation

2=2 > Aeh2=) 3 {hand

k>1 —2kN<e<—kN/2 k>1 £>—kN/2
2=2 2 ) (6.18)
k>1 £<—2kN

These three sums are estimated as follows:

DS +pnfeny_leL%nfenLQ_ O3 111

A k>1 —2kN<m<—kN/2 k>1
1
Y. < D —mw DL ol < Oz 1R
= k2N2 P L 2 L
B k>1 L+ 4 {>—kN/2 +£ N
1 1
<Y s S 1fell3> < C— 1£113
= 2\2 1472 2
Ie k211+kN eg—szl—i_g N

This completes the proof of Proposition 6.1. [J
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7. Comparison of perturbation and homogenization expansions

In previous section we showed the applicability of resonance perturbation theory to the class
of potentials Vy; see (1.5). In this section, we first summarize the formal homogenization
expansion [7], derived and used extensively to obtain an expansion and fast numerical al-
gorithm for computation of leakage rates (imaginary parts of scattering resonances) for a
class of photonic microstructure waveguides. We then prove that the this expansion of the

scattering resonance frequency, E(Vy), agrees through second order with the expansion:
E(V)=Ey+6EY +6E®
of the previous section.

7.1. Summary of homogenization/multiscale expansion

We begin with the a brief summary of the multiscale/homogenization expansion. For more

detail, see [7]. We seek solutions of the equation
(~A+Vy—E)¢ =0, (7.1)

that satisfy an outgoing radiation condition at infinity.

For simplicity, we take
Vi = Vi (r,0,N0) = Vo(r) + 6V (r, N6), (7.2)
where 8V (r, © + 21r) = 6V (r, ), and we define
SV (r,0) = 6V (r, N9). (7.3)

The more general case, where Vj is not necessarily radial, can also be treated.
As in [7], we view a solution of (7.1) as a function of slow variables r, # and a fast variable
© = N¢:

v =®(r,6,0). (7.4)

Equation (7.1) can be rewritten as an equation for ®(r,6, ©) by replacing 95 in the Lapla-
cian appearing in (7.1) by (95 + NOe)?. We then substitue into the resulting equation the
expansions:
1 1 1 1
Ny _— _ _ _ _
O = By + B+ 15y + 5By Pt

]' ]' omo,
EM™M — B+ B+ mEéh B4 .. (7.5)
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Equating like orders of N™! yields a hierarchy of equations of the form:

1
ﬁafp@j:}'j,jzo,m,... (7.6)
The solvability condition for (7.6) is
1 2
(Fida (1) = o i Fi(-,0)de =0 (7.7)

This hierarchy can be solved recursively. The equations from O(N?) through O(1) imply
that the leading order term is a solution of the scattering resonance problem for V; , (Ey, ¢y),

which we have taken in (7.5). Furthermore,

®y = (I)gp) (’I", 0, 6) + (I)gh) (Ta 0)5 (78)
where
o (r,0,0) = 957 [5(/7«2%] : (7.9)

At order O(N7'), we find F; = 0 and ®; = 0, and we can solve for ®3 in terms of
®P) . Finally, ES"™® is determined via the solvability condition for the ®, equation. This
solvability equation reads

(A — By + Vy) 0P = plhomee) yy <5Vag2(sv> (). (7.10)

av

Now Eéhomog) is to be chosen so that (7.10) has a solution satisfying an outward going
radiation condition at infinity. In [7] we implemented this construction of Eéhomog) and @,
for a class of “separable microstructures” as part of a numerical algorithm used to treat

general microstructures, oV.

7.2. N7? corrections: Homogenization vs. resonance perturbation theory

Eéhomog), obtained as a solvability condition

In this subsection we show that the expression for
for (7.10) is, up to higher order corrections in N~' the same as that given by (5.10) in
Lemma 5.1.
We begin by reformulating equation (7.10) in L?. First rewrite (7.10) as
(—A = Bo+ V%) 0" = —E{""™9 Ro(E)Voyy + (5705267 ) (r)ryo, (7.11)

av

where we have used the Lippman-Schwinger equation (3.7) to replace ¢y by —Ro(Eo)Voto-
For F with ®E > 0 and SE > 0, consider the equation

(~A=E+ V)R = —E{"" Ro(E)Vothy + (6706%7) (ri.  (7.12)

av
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Ry(E) is a bounded operator on L? and applying it to both sides of (7.12) gives

(I+ Ro(B)o)R = —E{"™® Ro(E) Ro(B)Vatho + Fo(E) (8V052V) (r)rvy

av

_E,éhomog)Rg(E) wao + RO(E) <(5‘~/862(5‘~/> (7")7‘2¢0

av

S (7.13)

Il

We then define
Ri=(D)xR;  Si=(D)xS
and introduce localization and smoothing operators into (7.13) to find
(I +Tr(E)Tv) Ry = Si. (7.14)

For E in the upper half plane (7.14) is always solvable. We now analytically continue across
the continuous spectrum, the half-line £ > 0 (corresponding to p € R), to the lower half
plane and, in particular, to a small punctured disc about £ = Ey, 0 < |E — Ey| < e. We
note that §; € L?(R"), since V; and <(5I~/8§2(51~/ (r) both have compact support. From
Corollary 3.1 we have that Tr(FEy)Ty, is compact, and therefore by Lemma 4.1 the solution
R1 of (7.14) exists for E = Ej if and only if the following solvability condition holds:

<TV0E01 G> = 0 (715)

We may read off Eéhomog) from (7.14). After recognizing that the coefficient of Eéhomog) is

exactly Cyg from (5.6), we find
Eéhomog) = Cup(Tv, Vo, Tr(E) Ty Vo)

= —CH(Ty, TyT,) (7.16)
where we have used Lemma 4.2 and (3.8), and defined
V(r) = r? <5f/a(;25f/> (r).
av

Theorem 7.1. When 6V is of the form (7.3), and has compact support,

SE® — N2 = O(N~-C+D),

where 7 > 0 depends on the details of 6V. In particular, if 6V (r,0) is twice differentiable in

r, then 7 = 2; if §V (r,0) has a finite number of jump discontinuities in r, then T = 1.
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Proof of Theorem 7.1: For ease of presentation, we make the simplifying, but inessential,

assumption
Yo = Po(r)-
We begin by expressing dE® from (5.11) as
SE® = —C) ( N2(PT,main) B N2(PT,rem)) (7.17)
where

NQ(PT’main) = <T5V60, TR(EO)TJV\I’0>
rem r -1
NP = (T W, (I + Tr(Eo)Ty,)  Tr(Eo) Ty, Tr(Eo) Trv o).

Car = (Tvw%o, Tp(Fo)Tv,Wo)
Estimation of the remainder NQ(PT’rem) : We begin by removing the smoothing operators:
(PT,rem) __ —Iv D (T \NST/ T —1\-1
Ny = (X" VoRo(Eo)dV iy, (I + xRo(Eo)Vox™") ™" xRo(Eo)dV ). (7.18)
7 A1 b

By the proof of Proposition 3.1, the operator (I + xRo(Eq)Vox~')~! is meromorphic with
finite-rank residues at the poles. Because we are evaluating it at a pole, we must verify
that ¢ | ker A* and f | ker A. Under our assumption that ker A is the one-dimensional
space spanned by xg, it is easy to see that ker A* is also one-dimensional, and spanned by
X~ Votb,. We may then compute

(X Votbo,9) = (Ro(Eo)"Votho, 8V o)
= 0,

which follows because RO(EO)*VOEO is a radial function while 6V 1)y is mean-zero in #. Simi-

larly, we may verify that (f, x1y) = 0, and conclude that

(£, A7 gy < C|fll2llgll2
= Cllx "Vox~" xRo(Eo)*Vtoll2|lxRo(Eo)dV o2
< CllxRo(Eo)Vbol|5-

In order to bound ||xRo(Eq)dV |3, we first express Ry(E;) as a sum of a bounded
operator and an unbounded correction, using the analytic continuation formula (3.19) with

j = 0.. This gives
lIxRo(110)0V4boll2 < [|xRo(—10)0Vtoll2 + CllxJo(ol - [) * 6V abol|2- (7.19)
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We next expand dV in a Fourier series
SV (r,0) =) 6V (r)em’. (7.20)
n#0
We consider the first term in (7.19), and use Proposition 6.1 to see that

XRo(—10)8V ntboe™ = €™ X G un (110)SV nbo, (7.21)
where
nN)? -1
G = (-a,+ 0 )

is the partial wave Green’s function. In section 8, we prove the following estimate on G,(u):

Proposition 7.1. Let u € C\ {0} with |Su| < M. There exists a constant, C, such that
foralll > 1

fFe’(®) = IIxGewx/fll < C”Q'Q.
This result implies that
' 15V,
xR0 (—10)5V nthoe™ |15 < C%,

and therefore

X Ro(—po)SViboe™ |l < C N72sup||x "6V atboll2
< CN~2.

We still must bound the second term in (7.19). We observe that for f € L?*(R?) and of

compact support,

Tl - > £(e) = [ dydo(uole — )0

= 27T/dy/ dw @Y £ (1)
S1
= 27r/ dw €M% f (110w)
Sl

and therefore

IxTo(ol - [) % fllz < C sup | f(pow)| || x(x) sup [e0=]]|
wesS!t wes!

< C Sup | f (pow). (7.22)
weS?t

Next, we will need
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Lemma 7.1. If F(r,0) = f(r)e", then its Fourier transform F can be written in polar

coordinates (p,v) as

F(p,v) = 2m v+37/2) / rdr f(r) Ji(pr). (7.23)
0

The proof is given in appendix B.
Because we are considering the limit of large N while pyq is fixed, we may use the asymp-
totic form (A.6) of J, along with (7.22) and Lemma 7.1 to find that

IxJo(tol - 1) x 6Vebolla < Y lxJo(tol - ) % 6Vne™ 4jo |l

< © [ rar(Va(r)un(r) u((nolr)
Clpo|)™Y
< S
(Cluo)™

- N!

N2(PT,main) NZ(PT,main) ’

=2 order homogenization + small correction: In the expression for

(7.17), we first remove the smoothing operators and move to the physical sheet using the

analytic continuation formula (3.19), shedding a small correction in the process:
NJTE = (§V g, Ro(po)8Vbn)
_ i
= <6V¢0, R()(—,U/())5V¢0> + 5<(5V’¢0, J()(,U()| . |)(5V’¢0> (724)

In order to show that the second term of (7.24) is small, we note that for f,g € L?(R?)

. ol )g) = / dz dy F(z) Jo(ulz — y))g(y)

= /S 1 dw / dx e f(z) / dy e " g(y)

- / o F )i ()

and therefore, using (7.23),

— C 2N
|(6Vy, Jo (ol - )8V 40| < %

In order to estimate the difference between the first term in (7.24) and <TO, TV\IJ0>, the

numerator from (7.16), we first prove
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Lemma 7.2.

(Vg Ro(=10)6Vtho) = Y (¥, Ro(—po) f{) (7.25)
n#0

N7 (o, W) = > ({1,707 1(P). (7.26)
n#0

where

FP(r,0) = 6V a(r)ihy(r)e™
fB(r 0) = 6V,(r)o(r)emN.
Proof of Lemma 7.2: We first note that (7.25) follows immediately on expanding §V in a

Fourier series (7.20) and moving to a Fourier integral representation, using (7.23).

In order to see (7.26), we begin by writing
N=2{(Wo, Ty Wg) = (6V 1y, 8, *6V 1o ),

which follows directly from the definitions. We may then expand §V (r, ) in a Fourier series
(7.20) and observe that, again, the off-diagonal terms vanish. [

We may now complete the proof of Theorem 7.1. We begin by using Lemma 7.2 to see
that

— homo
SE® — N2 phomes)

= Cu ‘<5VE0, Ro(—ﬂo)5v¢o> — N_2<$O,TVLI]0>‘ +O(N™

< Cap YD, (Ro(—ppo) = r°05°) f{) + O(NT). (7.27)
n#0

We may rewrite the summand in (7.27) as

(£, (Ro(—po) — 72052) fLP)] (7.28)
- <f£L),<—Ar+ e ) @) (—(n})2>fé’*>> -

Proposition 7.2. When f,g € Lo([0, R]), g € C?, and ¢ taken large depending on u and
R,

In order to estimate (7.28), we prove in section 8 the following

C
1 Gelm)Arg)| < Gl ool Argllec (7.29)

while when ¢ is piecewise C?, with a finite number of jump discontinuities in g or ¢, then

1, Go )] < Ellllollgloc (7.30)
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By Proposition 7.2

1 1
728)] <C
(7.28)] < (nN)2 (nN)7
Use of this bound in (7.27) and summing over n # 0 implies

SE® — N2g{mo8)| — O(N~277) + O(NY)

This completes the proof of Theorem 7.1. [J

8. Partial wave Green’s function estimates

In this section we prove the weighted estimates, used in sections 6 and 7, involving the partial

wave Green’s function
AN
G@(M)Z(-Arﬁ‘ﬁ—u) )

defined for p in the physical upper half plane. G,(x) may be analytically continued to the
lower half plane by explicitly computing its kernel [16]

Giws = | " Gl s ) ()

Jo(pr) Hél)(/w’) ifr'>r
Hél)(,ur) Jo(pr')if r > 1.

.

Gelr,r'sp) = ——z{ (8.1)

2

We first prove Propositions 7.1 and 7.2, which are used in section 7. We then prove

Proposition 6.2.

Proof of Proposition 7.1: Because the kernel A(r,7") = x(r)Ge(r,")x(r") is symmetric,

we may estimate the L? — L? norm of the associated operator [4] as
4] < sup/r'dr' Alr, )|
and use the explicit form (8.1) of G;. We define
Ap(ri,re) = x(r2)[H (ry)] / " rdr 17 x(r)
r
Ap(ri,rs) = x(r1)|Je(r)] / " rdr [H () [ ().
r

and so

I|A]] < sup (A5(0,7") + Ag(r',00)).
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It suffices to obtain the bound sup,, ,, Au(r1,72) < CL7%. We treat A;; the bounds on
Ay are similar. We prove this bound by separately considering the cases: for r; < ry < o,
r <o <ryand o <r;y <ry, where ¢ > 0. We shall see that the dominant contribution to
the bound comes from r small which dictates that o be sufficiently small, yet large enough
as £ — oo so that the large £ asymptotics in the crossover and large r regions can be used.
We set o = V7.

VIl < r1 < ro: An examination of the asymptotic forms (A.1) reveals that the following
bounds hold for » bounded away from the origin. For r > r4, there exists Cx > 0, such that

X(1)[Je(pr)| < CyemMSuDr
X(r)[He(pr)| < Cye M50,

IN

Therefore,
Ay(ri,m) < Ce M—Swr /7"2 rdr e~ M= Sulr
< Ce*(lfe)(Mf%u;z’
Therefore, if ro > r; > \/Z, then
Ajp(ri,re) < Ce= OV < Ccr2. (8.2)

r1 < 19 < V/£: Note that the asymptotic expressions (A.6) hold, and therefore

T2 0
As(ri,re) < ClU—=1) 7yt _M”/ Tdr%e Mr

< g M’I"2/
-/
C _Mr C

Sg—rge]v“gg (8.3)
Finally, we treat the transition region
r < VE< 1y

Ve rt v
Aj(ri,m) < e —(M=[Su)rs /0 rdrﬁ —0<e_c 4) <O

This completes the proof of Proposition 7.1. [J

Proof of Proposition 7.2: Because f(r) and g(r) are supported for r € [0, R], we may
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write

(f, Geli) Avg) = / rdr F(r) / 747 G(r,7) (Arg) (7)

e / rdr F(r)H (ur) / R dF Ty (Drg) (7)

0

+C/O rdrf(r)Jg(,ur)/ 7 di HYY (pur) (Arg) (7)
= D1+D2 '

case 1: g € C*: We may use (8.1) and (A.6) to find

D1+ D] < %[/0 rarl O [ B 1901+

(i) ’
| rartsen U [ T |A,.g<f>|],

(pr)*
C
< % [1flleo 1Argllec, (8.4)

which is the desired bound (7.29).
case 2: g or ¢’ have jump discontinuities: When ¢ or ¢’ has a finite number of jump
discontinuities at the points r;, we introduce a partition of unity 1 = Y. x;(r), where each

Xi € C* and supp x; contains r; and no other breakpoint r;+;. We may then represent g as
9=">_Xi(gi +0(r —r:)gs)
i

where g;, §; € C? and 6(z) is the Heaviside function (f(z) =0, x <0 and 0(z) =1, = > 0).
We will examine D, in detail; D, will give a similar contribution, as can be easily checked.
Using (8.1),

DlzCz /0 rdr F(r)H (r) /0 defJg(f)A,:(xi(f) (6:(7) + 0(F — r)§(7)).  (8.5)

A number of terms result from the action of the Az in the inner integral. When all of the
Gi(r;) = 0, i.e. the case of jumps in ¢’ only, the result is the same as the C? case (7.29).
When some of the g;(r;) # 0, however, the sum (8.5) can be written as a dominant term
containing 6" = ¢', where 6(r) denotes the one-dimensional Dirac delta distribution, plus

contributions satisfying the same bound as in the C? case. That is,

Di=C)" / rdr f(r)Hy" (ur) / CF dF T (P38 =)+ O flsellglle

(8.6)
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The sum in (8.6) is, in turn, dominated by the contribution from 9, .J:

i R
D1l < Cllfllss D 13illoo /‘TWUﬁWWNWT—WMQWM&hWﬂHﬂi+0@2)
Z’ L 0

N A7 A N ¢—1)! _
Clfle Ll | (M2-) [ rar 2 oy

T

< Ol Yl [ () + 0]

VAN

C
< — .
< TS lellglle

D5, may be estimated by similar arguments. [

We now turn to the proof of Proposition 6.2, used in section 6. We first need the following

Proposition 8.1. Let V be a non-negative, bounded and sufficiently decaying function.
For any p € C, with ®p > 0, and f € L*(R?),

A (8.7)

(zy~ —Ar+ﬁ+vo+p B f
r2 _§Rp+

L2

Remark 8.1. We use this result for the case Vi, = 0 only. From the proof, it is clear that it

holds under much less stringent hypotheses on Vj.

Proof of Proposition 8.1: The proof is broken into two parts. We first prove estimates
for the heat kernel exp[(A — T—;)t], and then reduce the desired resolvent estimate to the

heat kernel estimate.

Part 1: Let u,, denote the solution of the initial value problem for the heat equation:

m2

Oy, = (AT ) —%) Umy,  Um(0) = f (8.8)

Multiplication by u,, and integration over R? gives the identity:

d
p /|um|2 dx = —2/ |V, |? do —

Since V} is non-negative we can drop both the first and third terms on the right hand side

_ 2/V0|um|2 de  (8.9)

of equation (8.9) to obtain

2
d (U |* dz < —2m? | dx (8.10)
t 2
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Integration of (8.10) over the time interval from 0 to ¢, and using that (1 +7?)~! < 1 yields

alt) < Hﬂﬁz—-%ﬁlé
alt) = /'“’"‘2 dz. (8.11)

It follows that

2
R - V] 1% (8.12)

Part 2: First note that the resolvent and heat kernels are related by the Laplace transform:
when Rp > 0,

L2

2 -1 00
(Ar—m—z—vo—p> f = / e B I gy . (8.13)
T 0

Thus, using the weighted estimate (8.12) we have

1 m? -
- Ar_?_%_p> f

m2
T O ()t O f |

L2

0

o0
1
< —(Rp)t ,—m?t - - 8.14
< A O f = g e (814

This completes the proof of Proposition 8.1. [J

Proof of Proposition 6.2: Recall that
2 2 e
B; :mI—AT-I-TQ-

We take V) = 0 and p = 1. In this case, there is no restriction on £ because Rp + 2 = 1 + /2

is always positive. This gives the bound

I2) ™ By® flle < £l (8.15)

- 1-|-£2

We now deduce the estimates for B, ' from those obtained for B;?, through the square

root formula

1
= — ———d 8.16
T /0 Vw B? +w v (8.16)
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From (8.16) it follows that

o

By Proposition 8.1 with Vy = 0 and p = w > 0 we have

1 1

IENERT dw (8.17)

B(L?)

1 1 < 1
(z) Bi +w ||gey ~ P +w
Therefore,
1 [ 1 1 C
1Bt < = —dw < ——.
”<x> 14 HB(LZ) - T 0 \/E€2+w W= (1+£2)%
O

A. Asymptotics of Bessel and Hankel functions

We briefly record the well-known asymptotics of Bessel and Hankel functions.
(1) When ¢ — oo, the following asymptotic expansions hold uniformly for |argz| < 7 — ¢,
with € > 0.

i )”4 (Ai(ﬂmo () | AT m(c))

1 — 22 /1/3 e 02k /5/3 02k

To(lz) ~ (

HO(2) ~ 26@/3( 4 )”4 (Ai(e%/?'ﬁ/f‘c)i":ak(c)+

1 — 22 (1/3 02k
k=0
2mi/3 A§(e27i/342/3) &

/5/3 02k
k=0

where

2 1+vV1I_ 22
ggf‘/? S M Y
z

and ag, by are defined in [1].
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(2) In the limit |z| — oo with £ held fixed, these reduce to:

Ju(z) = (%)

M

1 &
cos (z ——um — %) + el¥O (J2[1), |argz| < 7 (A.2)

2
2\ 1
. m Sz _
Y,(2) = (E) sin (z — VT - Z) + %o (|2]71),|argz| < (A.3)
HP(z) = J,(2) + iY,(2)
2\ 1o
~ (E) exp(i (z — VT = Z) ,—T < argz < 2w (A.4)
HP(z) = J(2) = i¥,(2)
1
2\? ) 1 T
~ (E) exp(—i (z — 5V = Z) , 2T <argz < T (A.5)

(3) For |2| < Cv/¥ and ¢ — oo, (A.1) and the asymptotics or Airy functions [1] imply
1 /2 Z. (1) 1 1 2\ ¢
Je(2) ~ (5) . HP(a)~ —(¢-1)! (5) . (A.6)
B. Proof of Lemma 7.1

To prove (7.23) we represent x, k € R? in polar coordinates as, repectively, (r,0) and (p, ).

We wish to compute the Fourier transform
F(k) = /dmeik'wF(x), where F(z) = f(r)e'.
We define 6 = 6 — v, the angle between x and k£ and compute as follows:

o0 27 ~ o
F(/{) = / rdr / do e—iprcosef(r)ezg(g+,,)
0 0
= eiﬁ(l/+7r) / f(’f‘)TdT / dé eipr cos P+ibrp
0 -7

= 27rew(”+3”/2)/ f(r)Je(pr)rdr, (B.1)
0

where we have used (1.17). O
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Im(mu)

Bound states

-

Re(mu)
Pseudo bound state

® -—
Incoming resonances S o — Outgoing resonances

Figure 4: Complex p plane. Outgoing / incoming resonances correspond to solutions satis-
fying outgoing / incoming radiation conditions at infinity.
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Figure 5: Complex p integration contour for R(ui;x,y). The points +u' are denoted by
“x”. The point u; = p' + i€y, € > 0 is denoted by a circle in the upper half plane. Vertical
semi-infinite lines are branch cuts extending from +im to +ioco.
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Figure 6: Integration contour for R(us;x,y). The points po = —p' + i€y, €2 > 0, and —po,
are denoted by circles.
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Figure 7: We let ¢, approach —e;, corresponding to py — —pu;. Integration contour shown
is for R(—u1;z,y).
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Figure 8: The jump in R(y; x,y) from its value at y; on the 1% Riemann sheet to its value
on the 2" Riemann sheet, R(u;z,y) — R(—u1;,y), is represented as an integral over the
circular contour shown.
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