Plan 9 from Bell Labs’s /usr/web/sources/contrib/ericvh/go-plan9/src/pkg/exp/draw/x11/conn.go

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This package implements an X11 backend for the exp/draw package.
//
// The X protocol specification is at ftp://ftp.x.org/pub/X11R7.0/doc/PDF/proto.pdf.
// A summary of the wire format can be found in XCB's xproto.xml.
package x11

// BUG(nigeltao): This is a toy library and not ready for production use.

import (
	"bufio";
	"exp/draw";
	"image";
	"io";
	"net";
	"os";
)

type resID uint32	// X resource IDs.

// TODO(nigeltao): Handle window resizes.
const (
	windowHeight	= 600;
	windowWidth	= 800;
)

type conn struct {
	// TODO(nigeltao): Figure out which goroutine should be responsible for closing c,
	// or if there is a race condition if one goroutine calls c.Close whilst another one
	// is reading from r, or writing to w.
	c	io.Closer;
	r	*bufio.Reader;
	w	*bufio.Writer;

	gc, window, root, visual	resID;

	img		*image.RGBA;
	kbd		chan int;
	mouse		chan draw.Mouse;
	resize		chan bool;
	quit		chan bool;
	mouseState	draw.Mouse;

	buf	[256]byte;	// General purpose scratch buffer.

	flush		chan bool;
	flushBuf0	[24]byte;
	flushBuf1	[4 * 1024]byte;
}

// flusher runs in its own goroutine, serving both FlushImage calls directly from the exp/draw client
// and indirectly from X expose events. It paints c.img to the X server via PutImage requests.
func (c *conn) flusher() {
	for {
		_ = <-c.flush;
		if closed(c.flush) {
			return
		}

		// Each X request has a 16-bit length (in terms of 4-byte units). To avoid going over
		// this limit, we send PutImage for each row of the image, rather than trying to paint
		// the entire image in one X request. This approach could easily be optimized (or the
		// X protocol may have an escape sequence to delimit very large requests).
		// TODO(nigeltao): See what XCB's xcb_put_image does in this situation.
		w, h := c.img.Width(), c.img.Height();
		units := 6 + w;
		if units > 0xffff || h > 0xffff {
			// This window is too large for X.
			close(c.flush);
			return;
		}

		c.flushBuf0[0] = 0x48;	// PutImage opcode.
		c.flushBuf0[1] = 0x02;	// XCB_IMAGE_FORMAT_Z_PIXMAP.
		c.flushBuf0[2] = uint8(units);
		c.flushBuf0[3] = uint8(units >> 8);
		setU32LE(c.flushBuf0[4:8], uint32(c.window));
		setU32LE(c.flushBuf0[8:12], uint32(c.gc));
		setU32LE(c.flushBuf0[12:16], 1<<16|uint32(w));
		c.flushBuf0[21] = 0x18;	// depth = 24 bits.

		for y := 0; y < h; y++ {
			setU32LE(c.flushBuf0[16:20], uint32(y<<16));
			_, err := c.w.Write(c.flushBuf0[0:24]);
			if err != nil {
				close(c.flush);
				return;
			}
			for x := 0; x < w; {
				nx := w - x;
				if nx > len(c.flushBuf1)/4 {
					nx = len(c.flushBuf1) / 4
				}
				for i := 0; i < nx; i++ {
					r, g, b, _ := c.img.At(x, y).RGBA();
					c.flushBuf1[4*i+0] = uint8(b >> 24);
					c.flushBuf1[4*i+1] = uint8(g >> 24);
					c.flushBuf1[4*i+2] = uint8(r >> 24);
					x++;
				}
				_, err := c.w.Write(c.flushBuf1[0 : 4*nx]);
				if err != nil {
					close(c.flush);
					return;
				}
			}
		}
		if c.w.Flush() != nil {
			close(c.flush);
			return;
		}
	}
}

func (c *conn) Screen() draw.Image	{ return c.img }

func (c *conn) FlushImage() {
	// We do the send (the <- operator) in an expression context, rather than in
	// a statement context, so that it does not block, and fails if the buffered
	// channel is full (in which case there already is a flush request pending).
	_ = c.flush <- false
}

func (c *conn) KeyboardChan() <-chan int	{ return c.kbd }

func (c *conn) MouseChan() <-chan draw.Mouse	{ return c.mouse }

func (c *conn) ResizeChan() <-chan bool	{ return c.resize }

func (c *conn) QuitChan() <-chan bool	{ return c.quit }

// pumper runs in its own goroutine, reading X events and demuxing them over the kbd / mouse / resize / quit chans.
func (c *conn) pumper() {
	for {
		// X events are always 32 bytes long.
		_, err := io.ReadFull(c.r, c.buf[0:32]);
		if err != nil {
			// TODO(nigeltao): should draw.Context expose err?
			// TODO(nigeltao): should we do c.quit<-true? Should c.quit be a buffered channel?
			// Or is c.quit only for non-exceptional closing (e.g. when the window manager destroys
			// our window), and not for e.g. an I/O error?
			break
		}
		switch c.buf[0] {
		case 0x02, 0x03:	// Key press, key release.
			// BUG(nigeltao): Keycode to keysym mapping is not implemented.

			// The keycode is in c.buf[1], but as keymaps aren't implemented yet, we'll use the
			// space character as a placeholder.
			keysym := int(' ');
			// TODO(nigeltao): Should we send KeyboardChan ints for Shift/Ctrl/Alt? Should Shift-A send
			// the same int down the channel as the sent on just the A key?
			// TODO(nigeltao): How should IME events (e.g. key presses that should generate CJK text) work? Or
			// is that outside the scope of the draw.Context interface?
			if c.buf[0] == 0x03 {
				keysym = -keysym
			}
			c.kbd <- keysym;
		case 0x04, 0x05:	// Button press, button release.
			mask := 1 << (c.buf[1] - 1);
			if c.buf[0] == 0x04 {
				c.mouseState.Buttons |= mask
			} else {
				c.mouseState.Buttons &^= mask
			}
			// TODO(nigeltao): update mouseState's timestamp.
			c.mouse <- c.mouseState;
		case 0x06:	// Motion notify.
			c.mouseState.Point.X = int(c.buf[25])<<8 | int(c.buf[24]);
			c.mouseState.Point.Y = int(c.buf[27])<<8 | int(c.buf[26]);
			// TODO(nigeltao): update mouseState's timestamp.
			c.mouse <- c.mouseState;
		case 0x0c:	// Expose.
			// A single user action could trigger multiple expose events (e.g. if moving another
			// window with XShape'd rounded corners over our window). In that case, the X server
			// will send a count (in bytes 16-17) of the number of additional expose events coming.
			// We could parse each event for the (x, y, width, height) and maintain a minimal dirty
			// rectangle, but for now, the simplest approach is to paint the entire window, when
			// receiving the final event in the series.
			count := int(c.buf[17])<<8 | int(c.buf[16]);
			if count == 0 {
				// TODO(nigeltao): Should we ignore the very first expose event? A freshly mapped window
				// will trigger expose, but until the first c.FlushImage call, there's probably nothing to
				// paint but black. For an 800x600 window, at 4 bytes per pixel, each repaint writes about
				// 2MB over the socket.
				c.FlushImage()
			}
			// TODO(nigeltao): Should we listen to DestroyNotify (0x11) and ResizeRequest (0x19) events?
			// What about EnterNotify (0x07) and LeaveNotify (0x08)?
		}
	}
	close(c.flush);
	// TODO(nigeltao): Is this the right place for c.c.Close()?
	// TODO(nigeltao): Should we explicitly close our kbd/mouse/resize/quit chans?
}

// Authenticate ourselves with the X server.
func (c *conn) authenticate() os.Error {
	key, value, err := readAuth(c.buf[0:]);
	if err != nil {
		return err
	}
	// Assume that the authentication protocol is "MIT-MAGIC-COOKIE-1".
	if len(key) != 18 || len(value) != 16 {
		return os.NewError("unsupported Xauth")
	}
	// 0x006c means little-endian. 0x000b, 0x0000 means X major version 11, minor version 0.
	// 0x0012 and 0x0010 means the auth key and value have lenths 18 and 16.
	// The final 0x0000 is padding, so that the string length is a multiple of 4.
	_, err = io.WriteString(c.w, "\x6c\x00\x0b\x00\x00\x00\x12\x00\x10\x00\x00\x00");
	if err != nil {
		return err
	}
	_, err = io.WriteString(c.w, key);
	if err != nil {
		return err
	}
	// Again, the 0x0000 is padding.
	_, err = io.WriteString(c.w, "\x00\x00");
	if err != nil {
		return err
	}
	_, err = io.WriteString(c.w, value);
	if err != nil {
		return err
	}
	err = c.w.Flush();
	if err != nil {
		return err
	}
	return nil;
}

// Reads a uint8 from r, using b as a scratch buffer.
func readU8(r io.Reader, b []byte) (uint8, os.Error) {
	_, err := io.ReadFull(r, b[0:1]);
	if err != nil {
		return 0, err
	}
	return uint8(b[0]), nil;
}

// Reads a little-endian uint16 from r, using b as a scratch buffer.
func readU16LE(r io.Reader, b []byte) (uint16, os.Error) {
	_, err := io.ReadFull(r, b[0:2]);
	if err != nil {
		return 0, err
	}
	return uint16(b[0]) | uint16(b[1])<<8, nil;
}

// Reads a little-endian uint32 from r, using b as a scratch buffer.
func readU32LE(r io.Reader, b []byte) (uint32, os.Error) {
	_, err := io.ReadFull(r, b[0:4]);
	if err != nil {
		return 0, err
	}
	return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24, nil;
}

// Sets b[0:4] to be the big-endian representation of u.
func setU32LE(b []byte, u uint32) {
	b[0] = byte((u >> 0) & 0xff);
	b[1] = byte((u >> 8) & 0xff);
	b[2] = byte((u >> 16) & 0xff);
	b[3] = byte((u >> 24) & 0xff);
}

// Check that we have an agreeable X pixmap Format.
func checkPixmapFormats(r io.Reader, b []byte, n int) (agree bool, err os.Error) {
	for i := 0; i < n; i++ {
		_, err = io.ReadFull(r, b[0:8]);
		if err != nil {
			return
		}
		// Byte 0 is depth, byte 1 is bits-per-pixel, byte 2 is scanline-pad, the rest (5) is padding.
		if b[0] == 24 && b[1] == 32 {
			agree = true
		}
	}
	return;
}

// Check that we have an agreeable X Depth (i.e. one that has an agreeable X VisualType).
func checkDepths(r io.Reader, b []byte, n int, visual uint32) (agree bool, err os.Error) {
	for i := 0; i < n; i++ {
		depth, err := readU16LE(r, b);
		if err != nil {
			return
		}
		depth &= 0xff;
		visualsLen, err := readU16LE(r, b);
		if err != nil {
			return
		}
		// Ignore 4 bytes of padding.
		_, err = io.ReadFull(r, b[0:4]);
		if err != nil {
			return
		}
		for j := 0; j < int(visualsLen); j++ {
			// Read 24 bytes: visual(4), class(1), bits per rgb value(1), colormap entries(2),
			// red mask(4), green mask(4), blue mask(4), padding(4).
			v, err := readU32LE(r, b);
			_, err = readU32LE(r, b);
			rm, err := readU32LE(r, b);
			gm, err := readU32LE(r, b);
			bm, err := readU32LE(r, b);
			_, err = readU32LE(r, b);
			if err != nil {
				return
			}
			if v == visual && rm == 0xff0000 && gm == 0xff00 && bm == 0xff && depth == 24 {
				agree = true
			}
		}
	}
	return;
}

// Check that we have an agreeable X Screen.
func checkScreens(r io.Reader, b []byte, n int) (root, visual uint32, err os.Error) {
	for i := 0; i < n; i++ {
		root0, err := readU32LE(r, b);
		if err != nil {
			return
		}
		// Ignore the next 7x4 bytes, which is: colormap, whitepixel, blackpixel, current input masks,
		// width and height (pixels), width and height (mm), min and max installed maps.
		_, err = io.ReadFull(r, b[0:28]);
		if err != nil {
			return
		}
		visual0, err := readU32LE(r, b);
		if err != nil {
			return
		}
		// Next 4 bytes: backing stores, save unders, root depth, allowed depths length.
		x, err := readU32LE(r, b);
		if err != nil {
			return
		}
		nDepths := int(x >> 24);
		agree, err := checkDepths(r, b, nDepths, visual0);
		if err != nil {
			return
		}
		if agree && root == 0 {
			root = root0;
			visual = visual0;
		}
	}
	return;
}

// Perform the protocol handshake with the X server, and ensure that the server provides a compatible Screen, Depth, etcetera.
func (c *conn) handshake() os.Error {
	_, err := io.ReadFull(c.r, c.buf[0:8]);
	if err != nil {
		return err
	}
	// Byte 0:1 should be 1 (success), bytes 2:6 should be 0xb0000000 (major/minor version 11.0).
	if c.buf[0] != 1 || c.buf[2] != 11 || c.buf[3] != 0 || c.buf[4] != 0 || c.buf[5] != 0 {
		return os.NewError("unsupported X version")
	}
	// Ignore the release number.
	_, err = io.ReadFull(c.r, c.buf[0:4]);
	if err != nil {
		return err
	}
	// Read the resource ID base.
	resourceIdBase, err := readU32LE(c.r, c.buf[0:4]);
	if err != nil {
		return err
	}
	// Read the resource ID mask.
	resourceIdMask, err := readU32LE(c.r, c.buf[0:4]);
	if err != nil {
		return err
	}
	if resourceIdMask < 256 {
		return os.NewError("X resource ID mask is too small")
	}
	// Ignore the motion buffer size.
	_, err = io.ReadFull(c.r, c.buf[0:4]);
	if err != nil {
		return err
	}
	// Read the vendor length.
	vendorLen, err := readU16LE(c.r, c.buf[0:2]);
	if err != nil {
		return err
	}
	if vendorLen != 20 {
		// For now, assume the vendor is "The X.Org Foundation". Supporting different
		// vendors would require figuring out how much padding we need to read.
		return os.NewError("unsupported X vendor")
	}
	// Read the maximum request length.
	maxReqLen, err := readU16LE(c.r, c.buf[0:2]);
	if err != nil {
		return err
	}
	if maxReqLen != 0xffff {
		return os.NewError("unsupported X maximum request length")
	}
	// Read the roots length.
	rootsLen, err := readU8(c.r, c.buf[0:1]);
	if err != nil {
		return err
	}
	// Read the pixmap formats length.
	pixmapFormatsLen, err := readU8(c.r, c.buf[0:1]);
	if err != nil {
		return err
	}
	// Ignore some things that we don't care about (totalling 30 bytes):
	// imageByteOrder(1), bitmapFormatBitOrder(1), bitmapFormatScanlineUnit(1) bitmapFormatScanlinePad(1),
	// minKeycode(1), maxKeycode(1), padding(4), vendor(20, hard-coded above).
	_, err = io.ReadFull(c.r, c.buf[0:30]);
	if err != nil {
		return err
	}
	// Check that we have an agreeable pixmap format.
	agree, err := checkPixmapFormats(c.r, c.buf[0:8], int(pixmapFormatsLen));
	if err != nil {
		return err
	}
	if !agree {
		return os.NewError("unsupported X pixmap formats")
	}
	// Check that we have an agreeable screen.
	root, visual, err := checkScreens(c.r, c.buf[0:24], int(rootsLen));
	if err != nil {
		return err
	}
	if root == 0 || visual == 0 {
		return os.NewError("unsupported X screen")
	}
	c.gc = resID(resourceIdBase);
	c.window = resID(resourceIdBase + 1);
	c.root = resID(root);
	c.visual = resID(visual);
	return nil;
}

// Returns a new draw.Context, backed by a newly created and mapped X11 window.
func NewWindow() (draw.Context, os.Error) {
	display := getDisplay();
	if len(display) == 0 {
		return nil, os.NewError("unsupported DISPLAY")
	}
	s, err := net.Dial("unix", "", "/tmp/.X11-unix/X"+display);
	if err != nil {
		return nil, err
	}
	c := new(conn);
	c.c = s;
	c.r = bufio.NewReader(s);
	c.w = bufio.NewWriter(s);
	err = c.authenticate();
	if err != nil {
		return nil, err
	}
	err = c.handshake();
	if err != nil {
		return nil, err
	}

	// Now that we're connected, show a window, via three X protocol messages.
	// First, create a graphics context (GC).
	setU32LE(c.buf[0:4], 0x00060037);	// 0x37 is the CreateGC opcode, and the message is 6 x 4 bytes long.
	setU32LE(c.buf[4:8], uint32(c.gc));
	setU32LE(c.buf[8:12], uint32(c.root));
	setU32LE(c.buf[12:16], 0x00010004);	// Bit 2 is XCB_GC_FOREGROUND, bit 16 is XCB_GC_GRAPHICS_EXPOSURES.
	setU32LE(c.buf[16:20], 0x00000000);	// The Foreground is black.
	setU32LE(c.buf[20:24], 0x00000000);	// GraphicsExposures' value is unused.
	// Second, create the window.
	setU32LE(c.buf[24:28], 0x000a0001);	// 0x01 is the CreateWindow opcode, and the message is 10 x 4 bytes long.
	setU32LE(c.buf[28:32], uint32(c.window));
	setU32LE(c.buf[32:36], uint32(c.root));
	setU32LE(c.buf[36:40], 0x00000000);	// Initial (x, y) is (0, 0).
	setU32LE(c.buf[40:44], windowHeight<<16|windowWidth);
	setU32LE(c.buf[44:48], 0x00010000);	// Border width is 0, XCB_WINDOW_CLASS_INPUT_OUTPUT is 1.
	setU32LE(c.buf[48:52], uint32(c.visual));
	setU32LE(c.buf[52:56], 0x00000802);	// Bit 1 is XCB_CW_BACK_PIXEL, bit 11 is XCB_CW_EVENT_MASK.
	setU32LE(c.buf[56:60], 0x00000000);	// The Back-Pixel is black.
	setU32LE(c.buf[60:64], 0x0000804f);	// Key/button press and release, pointer motion, and expose event masks.
	// Third, map the window.
	setU32LE(c.buf[64:68], 0x00020008);	// 0x08 is the MapWindow opcode, and the message is 2 x 4 bytes long.
	setU32LE(c.buf[68:72], uint32(c.window));
	// Write the bytes.
	_, err = c.w.Write(c.buf[0:72]);
	if err != nil {
		return nil, err
	}
	err = c.w.Flush();
	if err != nil {
		return nil, err
	}

	c.img = image.NewRGBA(windowWidth, windowHeight);
	// TODO(nigeltao): Should these channels be buffered?
	c.kbd = make(chan int);
	c.mouse = make(chan draw.Mouse);
	c.resize = make(chan bool);
	c.quit = make(chan bool);
	c.flush = make(chan bool, 1);
	go c.flusher();
	go c.pumper();
	return c, nil;
}

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.