Plan 9 from Bell Labs’s /usr/web/sources/contrib/ericvh/go-plan9/src/pkg/testing/quick/quick.go

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This package implements utility functions to help with black box testing.
package quick

import (
	"flag";
	"fmt";
	"math";
	"os";
	"rand";
	"reflect";
	"strings";
)

var defaultMaxCount *int = flag.Int("quickchecks", 100, "The default number of iterations for each check")

// A Generator can generate random values of its own type.
type Generator interface {
	// Generate returns a random instance of the type on which it is a
	// method using the size as a size hint.
	Generate(rand *rand.Rand, size int) reflect.Value;
}

// randFloat32 generates a random float taking the full range of a float32.
func randFloat32(rand *rand.Rand) float32 {
	f := rand.Float64() * math.MaxFloat32;
	if rand.Int()&1 == 1 {
		f = -f
	}
	return float32(f);
}

// randFloat64 generates a random float taking the full range of a float64.
func randFloat64(rand *rand.Rand) float64 {
	f := rand.Float64();
	if rand.Int()&1 == 1 {
		f = -f
	}
	return f;
}

// randInt64 returns a random integer taking half the range of an int64.
func randInt64(rand *rand.Rand) int64	{ return rand.Int63() - 1<<62 }

// complexSize is the maximum length of arbitrary values that contain other
// values.
const complexSize = 50

// Value returns an arbitrary value of the given type.
// If the type implements the Generator interface, that will be used.
// Note: in order to create arbitrary values for structs, all the members must be public.
func Value(t reflect.Type, rand *rand.Rand) (value reflect.Value, ok bool) {
	if m, ok := reflect.MakeZero(t).Interface().(Generator); ok {
		return m.Generate(rand, complexSize), true
	}

	switch concrete := t.(type) {
	case *reflect.BoolType:
		return reflect.NewValue(rand.Int()&1 == 0), true
	case *reflect.Float32Type:
		return reflect.NewValue(randFloat32(rand)), true
	case *reflect.Float64Type:
		return reflect.NewValue(randFloat64(rand)), true
	case *reflect.FloatType:
		if t.Size() == 4 {
			return reflect.NewValue(float(randFloat32(rand))), true
		} else {
			return reflect.NewValue(float(randFloat64(rand))), true
		}
	case *reflect.Int16Type:
		return reflect.NewValue(int16(randInt64(rand))), true
	case *reflect.Int32Type:
		return reflect.NewValue(int32(randInt64(rand))), true
	case *reflect.Int64Type:
		return reflect.NewValue(randInt64(rand)), true
	case *reflect.Int8Type:
		return reflect.NewValue(int8(randInt64(rand))), true
	case *reflect.IntType:
		return reflect.NewValue(int(randInt64(rand))), true
	case *reflect.MapType:
		numElems := rand.Intn(complexSize);
		m := reflect.MakeMap(concrete);
		for i := 0; i < numElems; i++ {
			key, ok1 := Value(concrete.Key(), rand);
			value, ok2 := Value(concrete.Elem(), rand);
			if !ok1 || !ok2 {
				return nil, false
			}
			m.SetElem(key, value);
		}
		return m, true;
	case *reflect.PtrType:
		v, ok := Value(concrete.Elem(), rand);
		if !ok {
			return nil, false
		}
		p := reflect.MakeZero(concrete);
		p.(*reflect.PtrValue).PointTo(v);
		return p, true;
	case *reflect.SliceType:
		numElems := rand.Intn(complexSize);
		s := reflect.MakeSlice(concrete, numElems, numElems);
		for i := 0; i < numElems; i++ {
			v, ok := Value(concrete.Elem(), rand);
			if !ok {
				return nil, false
			}
			s.Elem(i).SetValue(v);
		}
		return s, true;
	case *reflect.StringType:
		numChars := rand.Intn(complexSize);
		codePoints := make([]int, numChars);
		for i := 0; i < numChars; i++ {
			codePoints[i] = rand.Intn(0x10ffff)
		}
		return reflect.NewValue(string(codePoints)), true;
	case *reflect.StructType:
		s := reflect.MakeZero(t).(*reflect.StructValue);
		for i := 0; i < s.NumField(); i++ {
			v, ok := Value(concrete.Field(i).Type, rand);
			if !ok {
				return nil, false
			}
			s.Field(i).SetValue(v);
		}
		return s, true;
	case *reflect.Uint16Type:
		return reflect.NewValue(uint16(randInt64(rand))), true
	case *reflect.Uint32Type:
		return reflect.NewValue(uint32(randInt64(rand))), true
	case *reflect.Uint64Type:
		return reflect.NewValue(uint64(randInt64(rand))), true
	case *reflect.Uint8Type:
		return reflect.NewValue(uint8(randInt64(rand))), true
	case *reflect.UintType:
		return reflect.NewValue(uint(randInt64(rand))), true
	case *reflect.UintptrType:
		return reflect.NewValue(uintptr(randInt64(rand))), true
	default:
		return nil, false
	}

	return;
}

// A Config structure contains options for running a test.
type Config struct {
	// MaxCount sets the maximum number of iterations. If zero,
	// MaxCountScale is used.
	MaxCount	int;
	// MaxCountScale is a non-negative scale factor applied to the default
	// maximum. If zero, the default is unchanged.
	MaxCountScale	float;
	// If non-nil, rand is a source of random numbers. Otherwise a default
	// pseudo-random source will be used.
	Rand	*rand.Rand;
	// If non-nil, Values is a function which generates a slice of arbitrary
	// Values that are congruent with the arguments to the function being
	// tested. Otherwise, Values is used to generate the values.
	Values	func([]reflect.Value, *rand.Rand);
}

var defaultConfig Config

// getRand returns the *rand.Rand to use for a given Config.
func (c *Config) getRand() *rand.Rand {
	if c.Rand == nil {
		return rand.New(rand.NewSource(0))
	}
	return c.Rand;
}

// getMaxCount returns the maximum number of iterations to run for a given
// Config.
func (c *Config) getMaxCount() (maxCount int) {
	maxCount = c.MaxCount;
	if maxCount == 0 {
		if c.MaxCountScale != 0 {
			maxCount = int(c.MaxCountScale * float(*defaultMaxCount))
		} else {
			maxCount = *defaultMaxCount
		}
	}

	return;
}

// A SetupError is the result of an error in the way that check is being
// used, independent of the functions being tested.
type SetupError string

func (s SetupError) String() string	{ return string(s) }

// A CheckError is the result of Check finding an error.
type CheckError struct {
	Count	int;
	In	[]interface{};
}

func (s *CheckError) String() string {
	return fmt.Sprintf("#%d: failed on input %s", s.Count, toString(s.In))
}

// A CheckEqualError is the result CheckEqual finding an error.
type CheckEqualError struct {
	CheckError;
	Out1	[]interface{};
	Out2	[]interface{};
}

func (s *CheckEqualError) String() string {
	return fmt.Sprintf("#%d: failed on input %s. Output 1: %s. Output 2: %s", s.Count, toString(s.In), toString(s.Out1), toString(s.Out2))
}

// Check looks for an input to f, any function that returns bool,
// such that f returns false.  It calls f repeatedly, with arbitrary
// values for each argument.  If f returns false on a given input,
// Check returns that input as a *CheckError.
// For example:
//
// 	func TestOddMultipleOfThree(t *testing.T) {
// 		f := func(x int) bool {
// 			y := OddMultipleOfThree(x);
// 			return y%2 == 1 && y%3 == 0
// 		}
// 		if err := quick.Check(f, nil); err != nil {
// 			t.Error(err);
// 		}
// 	}
func Check(function interface{}, config *Config) (err os.Error) {
	if config == nil {
		config = &defaultConfig
	}

	f, fType, ok := functionAndType(function);
	if !ok {
		err = SetupError("argument is not a function");
		return;
	}

	if fType.NumOut() != 1 {
		err = SetupError("function returns more than one value.");
		return;
	}
	if _, ok := fType.Out(0).(*reflect.BoolType); !ok {
		err = SetupError("function does not return a bool");
		return;
	}

	arguments := make([]reflect.Value, fType.NumIn());
	rand := config.getRand();
	maxCount := config.getMaxCount();

	for i := 0; i < maxCount; i++ {
		err = arbitraryValues(arguments, fType, config, rand);
		if err != nil {
			return
		}

		if !f.Call(arguments)[0].(*reflect.BoolValue).Get() {
			err = &CheckError{i + 1, toInterfaces(arguments)};
			return;
		}
	}

	return;
}

// CheckEqual looks for an input on which f and g return different results.
// It calls f and g repeatedly with arbitrary values for each argument.
// If f and g return different answers, CheckEqual returns a *CheckEqualError
// describing the input and the outputs.
func CheckEqual(f, g interface{}, config *Config) (err os.Error) {
	if config == nil {
		config = &defaultConfig
	}

	x, xType, ok := functionAndType(f);
	if !ok {
		err = SetupError("f is not a function");
		return;
	}
	y, yType, ok := functionAndType(g);
	if !ok {
		err = SetupError("g is not a function");
		return;
	}

	if xType != yType {
		err = SetupError("functions have different types");
		return;
	}

	arguments := make([]reflect.Value, xType.NumIn());
	rand := config.getRand();
	maxCount := config.getMaxCount();

	for i := 0; i < maxCount; i++ {
		err = arbitraryValues(arguments, xType, config, rand);
		if err != nil {
			return
		}

		xOut := toInterfaces(x.Call(arguments));
		yOut := toInterfaces(y.Call(arguments));

		if !reflect.DeepEqual(xOut, yOut) {
			err = &CheckEqualError{CheckError{i + 1, toInterfaces(arguments)}, xOut, yOut};
			return;
		}
	}

	return;
}

// arbitraryValues writes Values to args such that args contains Values
// suitable for calling f.
func arbitraryValues(args []reflect.Value, f *reflect.FuncType, config *Config, rand *rand.Rand) (err os.Error) {
	if config.Values != nil {
		config.Values(args, rand);
		return;
	}

	for j := 0; j < len(args); j++ {
		var ok bool;
		args[j], ok = Value(f.In(j), rand);
		if !ok {
			err = SetupError(fmt.Sprintf("cannot create arbitrary value of type %s for argument %d", f.In(j), j));
			return;
		}
	}

	return;
}

func functionAndType(f interface{}) (v *reflect.FuncValue, t *reflect.FuncType, ok bool) {
	v, ok = reflect.NewValue(f).(*reflect.FuncValue);
	if !ok {
		return
	}
	t = v.Type().(*reflect.FuncType);
	return;
}

func toInterfaces(values []reflect.Value) []interface{} {
	ret := make([]interface{}, len(values));
	for i, v := range values {
		ret[i] = v.Interface()
	}
	return ret;
}

func toString(interfaces []interface{}) string {
	s := make([]string, len(interfaces));
	for i, v := range interfaces {
		s[i] = fmt.Sprintf("%#v", v)
	}
	return strings.Join(s, ", ");
}

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.