Plan 9 from Bell Labs’s /usr/web/sources/contrib/fernan/nhc98/src/libraries/base/GHC/Int.hs

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


{-# OPTIONS_GHC -fno-implicit-prelude #-}
-----------------------------------------------------------------------------
-- |
-- Module      :  GHC.Int
-- Copyright   :  (c) The University of Glasgow 1997-2002
-- License     :  see libraries/base/LICENSE
-- 
-- Maintainer  :  cvs-ghc@haskell.org
-- Stability   :  internal
-- Portability :  non-portable (GHC Extensions)
--
-- The sized integral datatypes, 'Int8', 'Int16', 'Int32', and 'Int64'.
--
-----------------------------------------------------------------------------

#include "MachDeps.h"

-- #hide
module GHC.Int (
    Int8(..), Int16(..), Int32(..), Int64(..))
    where

import Data.Bits

import {-# SOURCE #-} GHC.Err
import GHC.Base
import GHC.Enum
import GHC.Num
import GHC.Real
import GHC.Read
import GHC.Arr
import GHC.Word
import GHC.Show

------------------------------------------------------------------------
-- type Int8
------------------------------------------------------------------------

-- Int8 is represented in the same way as Int. Operations may assume
-- and must ensure that it holds only values from its logical range.

data Int8 = I8# Int# deriving (Eq, Ord)
-- ^ 8-bit signed integer type

instance Show Int8 where
    showsPrec p x = showsPrec p (fromIntegral x :: Int)

instance Num Int8 where
    (I8# x#) + (I8# y#)    = I8# (narrow8Int# (x# +# y#))
    (I8# x#) - (I8# y#)    = I8# (narrow8Int# (x# -# y#))
    (I8# x#) * (I8# y#)    = I8# (narrow8Int# (x# *# y#))
    negate (I8# x#)        = I8# (narrow8Int# (negateInt# x#))
    abs x | x >= 0         = x
          | otherwise      = negate x
    signum x | x > 0       = 1
    signum 0               = 0
    signum _               = -1
    fromInteger (S# i#)    = I8# (narrow8Int# i#)
    fromInteger (J# s# d#) = I8# (narrow8Int# (integer2Int# s# d#))

instance Real Int8 where
    toRational x = toInteger x % 1

instance Enum Int8 where
    succ x
        | x /= maxBound = x + 1
        | otherwise     = succError "Int8"
    pred x
        | x /= minBound = x - 1
        | otherwise     = predError "Int8"
    toEnum i@(I# i#)
        | i >= fromIntegral (minBound::Int8) && i <= fromIntegral (maxBound::Int8)
                        = I8# i#
        | otherwise     = toEnumError "Int8" i (minBound::Int8, maxBound::Int8)
    fromEnum (I8# x#)   = I# x#
    enumFrom            = boundedEnumFrom
    enumFromThen        = boundedEnumFromThen

instance Integral Int8 where
    quot    x@(I8# x#) y@(I8# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I8# (narrow8Int# (x# `quotInt#` y#))
    rem     x@(I8# x#) y@(I8# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I8# (narrow8Int# (x# `remInt#` y#))
    div     x@(I8# x#) y@(I8# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I8# (narrow8Int# (x# `divInt#` y#))
    mod     x@(I8# x#) y@(I8# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I8# (narrow8Int# (x# `modInt#` y#))
    quotRem x@(I8# x#) y@(I8# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = (I8# (narrow8Int# (x# `quotInt#` y#)),
                                       I8# (narrow8Int# (x# `remInt#` y#)))
    divMod  x@(I8# x#) y@(I8# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = (I8# (narrow8Int# (x# `divInt#` y#)),
                                       I8# (narrow8Int# (x# `modInt#` y#)))
    toInteger (I8# x#)               = S# x#

instance Bounded Int8 where
    minBound = -0x80
    maxBound =  0x7F

instance Ix Int8 where
    range (m,n)              = [m..n]
    unsafeIndex b@(m,_) i    = fromIntegral i - fromIntegral m
    inRange (m,n) i          = m <= i && i <= n

instance Read Int8 where
    readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s]

instance Bits Int8 where
    {-# INLINE shift #-}

    (I8# x#) .&.   (I8# y#)   = I8# (word2Int# (int2Word# x# `and#` int2Word# y#))
    (I8# x#) .|.   (I8# y#)   = I8# (word2Int# (int2Word# x# `or#`  int2Word# y#))
    (I8# x#) `xor` (I8# y#)   = I8# (word2Int# (int2Word# x# `xor#` int2Word# y#))
    complement (I8# x#)       = I8# (word2Int# (int2Word# x# `xor#` int2Word# (-1#)))
    (I8# x#) `shift` (I# i#)
        | i# >=# 0#           = I8# (narrow8Int# (x# `iShiftL#` i#))
        | otherwise           = I8# (x# `iShiftRA#` negateInt# i#)
    (I8# x#) `rotate` (I# i#)
        | i'# ==# 0# 
        = I8# x#
        | otherwise
        = I8# (narrow8Int# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#`
                                       (x'# `uncheckedShiftRL#` (8# -# i'#)))))
        where
        x'# = narrow8Word# (int2Word# x#)
        i'# = word2Int# (int2Word# i# `and#` int2Word# 7#)
    bitSize  _                = 8
    isSigned _                = True

{-# RULES
"fromIntegral/Int8->Int8" fromIntegral = id :: Int8 -> Int8
"fromIntegral/a->Int8"    fromIntegral = \x -> case fromIntegral x of I# x# -> I8# (narrow8Int# x#)
"fromIntegral/Int8->a"    fromIntegral = \(I8# x#) -> fromIntegral (I# x#)
  #-}

------------------------------------------------------------------------
-- type Int16
------------------------------------------------------------------------

-- Int16 is represented in the same way as Int. Operations may assume
-- and must ensure that it holds only values from its logical range.

data Int16 = I16# Int# deriving (Eq, Ord)
-- ^ 16-bit signed integer type

instance Show Int16 where
    showsPrec p x = showsPrec p (fromIntegral x :: Int)

instance Num Int16 where
    (I16# x#) + (I16# y#)  = I16# (narrow16Int# (x# +# y#))
    (I16# x#) - (I16# y#)  = I16# (narrow16Int# (x# -# y#))
    (I16# x#) * (I16# y#)  = I16# (narrow16Int# (x# *# y#))
    negate (I16# x#)       = I16# (narrow16Int# (negateInt# x#))
    abs x | x >= 0         = x
          | otherwise      = negate x
    signum x | x > 0       = 1
    signum 0               = 0
    signum _               = -1
    fromInteger (S# i#)    = I16# (narrow16Int# i#)
    fromInteger (J# s# d#) = I16# (narrow16Int# (integer2Int# s# d#))

instance Real Int16 where
    toRational x = toInteger x % 1

instance Enum Int16 where
    succ x
        | x /= maxBound = x + 1
        | otherwise     = succError "Int16"
    pred x
        | x /= minBound = x - 1
        | otherwise     = predError "Int16"
    toEnum i@(I# i#)
        | i >= fromIntegral (minBound::Int16) && i <= fromIntegral (maxBound::Int16)
                        = I16# i#
        | otherwise     = toEnumError "Int16" i (minBound::Int16, maxBound::Int16)
    fromEnum (I16# x#)  = I# x#
    enumFrom            = boundedEnumFrom
    enumFromThen        = boundedEnumFromThen

instance Integral Int16 where
    quot    x@(I16# x#) y@(I16# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I16# (narrow16Int# (x# `quotInt#` y#))
    rem     x@(I16# x#) y@(I16# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I16# (narrow16Int# (x# `remInt#` y#))
    div     x@(I16# x#) y@(I16# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I16# (narrow16Int# (x# `divInt#` y#))
    mod     x@(I16# x#) y@(I16# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I16# (narrow16Int# (x# `modInt#` y#))
    quotRem x@(I16# x#) y@(I16# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = (I16# (narrow16Int# (x# `quotInt#` y#)),
                                        I16# (narrow16Int# (x# `remInt#` y#)))
    divMod  x@(I16# x#) y@(I16# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = (I16# (narrow16Int# (x# `divInt#` y#)),
                                        I16# (narrow16Int# (x# `modInt#` y#)))
    toInteger (I16# x#)              = S# x#

instance Bounded Int16 where
    minBound = -0x8000
    maxBound =  0x7FFF

instance Ix Int16 where
    range (m,n)              = [m..n]
    unsafeIndex b@(m,_) i    = fromIntegral i - fromIntegral m
    inRange (m,n) i          = m <= i && i <= n

instance Read Int16 where
    readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s]

instance Bits Int16 where
    {-# INLINE shift #-}

    (I16# x#) .&.   (I16# y#)  = I16# (word2Int# (int2Word# x# `and#` int2Word# y#))
    (I16# x#) .|.   (I16# y#)  = I16# (word2Int# (int2Word# x# `or#`  int2Word# y#))
    (I16# x#) `xor` (I16# y#)  = I16# (word2Int# (int2Word# x# `xor#` int2Word# y#))
    complement (I16# x#)       = I16# (word2Int# (int2Word# x# `xor#` int2Word# (-1#)))
    (I16# x#) `shift` (I# i#)
        | i# >=# 0#            = I16# (narrow16Int# (x# `iShiftL#` i#))
        | otherwise            = I16# (x# `iShiftRA#` negateInt# i#)
    (I16# x#) `rotate` (I# i#)
        | i'# ==# 0# 
        = I16# x#
        | otherwise
        = I16# (narrow16Int# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#`
                                         (x'# `uncheckedShiftRL#` (16# -# i'#)))))
        where
        x'# = narrow16Word# (int2Word# x#)
        i'# = word2Int# (int2Word# i# `and#` int2Word# 15#)
    bitSize  _                 = 16
    isSigned _                 = True

{-# RULES
"fromIntegral/Word8->Int16"  fromIntegral = \(W8# x#) -> I16# (word2Int# x#)
"fromIntegral/Int8->Int16"   fromIntegral = \(I8# x#) -> I16# x#
"fromIntegral/Int16->Int16"  fromIntegral = id :: Int16 -> Int16
"fromIntegral/a->Int16"      fromIntegral = \x -> case fromIntegral x of I# x# -> I16# (narrow16Int# x#)
"fromIntegral/Int16->a"      fromIntegral = \(I16# x#) -> fromIntegral (I# x#)
  #-}

------------------------------------------------------------------------
-- type Int32
------------------------------------------------------------------------

#if WORD_SIZE_IN_BITS < 32

data Int32 = I32# Int32#
-- ^ 32-bit signed integer type

instance Eq Int32 where
    (I32# x#) == (I32# y#) = x# `eqInt32#` y#
    (I32# x#) /= (I32# y#) = x# `neInt32#` y#

instance Ord Int32 where
    (I32# x#) <  (I32# y#) = x# `ltInt32#` y#
    (I32# x#) <= (I32# y#) = x# `leInt32#` y#
    (I32# x#) >  (I32# y#) = x# `gtInt32#` y#
    (I32# x#) >= (I32# y#) = x# `geInt32#` y#

instance Show Int32 where
    showsPrec p x = showsPrec p (toInteger x)

instance Num Int32 where
    (I32# x#) + (I32# y#)  = I32# (x# `plusInt32#`  y#)
    (I32# x#) - (I32# y#)  = I32# (x# `minusInt32#` y#)
    (I32# x#) * (I32# y#)  = I32# (x# `timesInt32#` y#)
    negate (I32# x#)       = I32# (negateInt32# x#)
    abs x | x >= 0         = x
          | otherwise      = negate x
    signum x | x > 0       = 1
    signum 0               = 0
    signum _               = -1
    fromInteger (S# i#)    = I32# (intToInt32# i#)
    fromInteger (J# s# d#) = I32# (integerToInt32# s# d#)

instance Enum Int32 where
    succ x
        | x /= maxBound = x + 1
        | otherwise     = succError "Int32"
    pred x
        | x /= minBound = x - 1
        | otherwise     = predError "Int32"
    toEnum (I# i#)      = I32# (intToInt32# i#)
    fromEnum x@(I32# x#)
        | x >= fromIntegral (minBound::Int) && x <= fromIntegral (maxBound::Int)
                        = I# (int32ToInt# x#)
        | otherwise     = fromEnumError "Int32" x
    enumFrom            = integralEnumFrom
    enumFromThen        = integralEnumFromThen
    enumFromTo          = integralEnumFromTo
    enumFromThenTo      = integralEnumFromThenTo

instance Integral Int32 where
    quot    x@(I32# x#) y@(I32# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I32# (x# `quotInt32#` y#)
    rem     x@(I32# x#) y@(I32# y#)
        | y == 0                  = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise               = I32# (x# `remInt32#` y#)
    div     x@(I32# x#) y@(I32# y#)
        | y == 0                  = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise               = I32# (x# `divInt32#` y#)
    mod     x@(I32# x#) y@(I32# y#)
        | y == 0                  = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise               = I32# (x# `modInt32#` y#)
    quotRem x@(I32# x#) y@(I32# y#)
        | y == 0                  = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise               = (I32# (x# `quotInt32#` y#),
                                     I32# (x# `remInt32#` y#))
    divMod  x@(I32# x#) y@(I32# y#)
        | y == 0                  = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise               = (I32# (x# `divInt32#` y#),
                                     I32# (x# `modInt32#` y#))
    toInteger x@(I32# x#)
	| x >= fromIntegral (minBound::Int) && x <= fromIntegral (maxBound::Int)
                                  = S# (int32ToInt# x#)
        | otherwise               = case int32ToInteger# x# of (# s, d #) -> J# s d

divInt32#, modInt32# :: Int32# -> Int32# -> Int32#
x# `divInt32#` y#
    | (x# `gtInt32#` intToInt32# 0#) && (y# `ltInt32#` intToInt32# 0#)
        = ((x# `minusInt32#` y#) `minusInt32#` intToInt32# 1#) `quotInt32#` y#
    | (x# `ltInt32#` intToInt32# 0#) && (y# `gtInt32#` intToInt32# 0#)
        = ((x# `minusInt32#` y#) `plusInt32#` intToInt32# 1#) `quotInt32#` y#
    | otherwise                = x# `quotInt32#` y#
x# `modInt32#` y#
    | (x# `gtInt32#` intToInt32# 0#) && (y# `ltInt32#` intToInt32# 0#) ||
      (x# `ltInt32#` intToInt32# 0#) && (y# `gtInt32#` intToInt32# 0#)
        = if r# `neInt32#` intToInt32# 0# then r# `plusInt32#` y# else intToInt32# 0#
    | otherwise = r#
    where
    r# = x# `remInt32#` y#

instance Read Int32 where
    readsPrec p s = [(fromInteger x, r) | (x, r) <- readsPrec p s]

instance Bits Int32 where
    {-# INLINE shift #-}

    (I32# x#) .&.   (I32# y#)  = I32# (word32ToInt32# (int32ToWord32# x# `and32#` int32ToWord32# y#))
    (I32# x#) .|.   (I32# y#)  = I32# (word32ToInt32# (int32ToWord32# x# `or32#`  int32ToWord32# y#))
    (I32# x#) `xor` (I32# y#)  = I32# (word32ToInt32# (int32ToWord32# x# `xor32#` int32ToWord32# y#))
    complement (I32# x#)       = I32# (word32ToInt32# (not32# (int32ToWord32# x#)))
    (I32# x#) `shift` (I# i#)
        | i# >=# 0#            = I32# (x# `iShiftL32#` i#)
        | otherwise            = I32# (x# `iShiftRA32#` negateInt# i#)
    (I32# x#) `rotate` (I# i#)
        | i'# ==# 0# 
        = I32# x#
        | otherwise
        = I32# (word32ToInt32# ((x'# `shiftL32#` i'#) `or32#`
                                (x'# `shiftRL32#` (32# -# i'#))))
        where
        x'# = int32ToWord32# x#
        i'# = word2Int# (int2Word# i# `and#` int2Word# 31#)
    bitSize  _                 = 32
    isSigned _                 = True

foreign import "stg_eqInt32"       unsafe eqInt32#       :: Int32# -> Int32# -> Bool
foreign import "stg_neInt32"       unsafe neInt32#       :: Int32# -> Int32# -> Bool
foreign import "stg_ltInt32"       unsafe ltInt32#       :: Int32# -> Int32# -> Bool
foreign import "stg_leInt32"       unsafe leInt32#       :: Int32# -> Int32# -> Bool
foreign import "stg_gtInt32"       unsafe gtInt32#       :: Int32# -> Int32# -> Bool
foreign import "stg_geInt32"       unsafe geInt32#       :: Int32# -> Int32# -> Bool
foreign import "stg_plusInt32"     unsafe plusInt32#     :: Int32# -> Int32# -> Int32#
foreign import "stg_minusInt32"    unsafe minusInt32#    :: Int32# -> Int32# -> Int32#
foreign import "stg_timesInt32"    unsafe timesInt32#    :: Int32# -> Int32# -> Int32#
foreign import "stg_negateInt32"   unsafe negateInt32#   :: Int32# -> Int32#
foreign import "stg_quotInt32"     unsafe quotInt32#     :: Int32# -> Int32# -> Int32#
foreign import "stg_remInt32"      unsafe remInt32#      :: Int32# -> Int32# -> Int32#
foreign import "stg_intToInt32"    unsafe intToInt32#    :: Int# -> Int32#
foreign import "stg_int32ToInt"    unsafe int32ToInt#    :: Int32# -> Int#
foreign import "stg_wordToWord32"  unsafe wordToWord32#  :: Word# -> Word32#
foreign import "stg_int32ToWord32" unsafe int32ToWord32# :: Int32# -> Word32#
foreign import "stg_word32ToInt32" unsafe word32ToInt32# :: Word32# -> Int32#
foreign import "stg_and32"         unsafe and32#         :: Word32# -> Word32# -> Word32#
foreign import "stg_or32"          unsafe or32#          :: Word32# -> Word32# -> Word32#
foreign import "stg_xor32"         unsafe xor32#         :: Word32# -> Word32# -> Word32#
foreign import "stg_not32"         unsafe not32#         :: Word32# -> Word32#
foreign import "stg_iShiftL32"     unsafe iShiftL32#     :: Int32# -> Int# -> Int32#
foreign import "stg_iShiftRA32"    unsafe iShiftRA32#    :: Int32# -> Int# -> Int32#
foreign import "stg_shiftL32"      unsafe shiftL32#      :: Word32# -> Int# -> Word32#
foreign import "stg_shiftRL32"     unsafe shiftRL32#     :: Word32# -> Int# -> Word32#

{-# RULES
"fromIntegral/Int->Int32"    fromIntegral = \(I#   x#) -> I32# (intToInt32# x#)
"fromIntegral/Word->Int32"   fromIntegral = \(W#   x#) -> I32# (word32ToInt32# (wordToWord32# x#))
"fromIntegral/Word32->Int32" fromIntegral = \(W32# x#) -> I32# (word32ToInt32# x#)
"fromIntegral/Int32->Int"    fromIntegral = \(I32# x#) -> I#   (int32ToInt# x#)
"fromIntegral/Int32->Word"   fromIntegral = \(I32# x#) -> W#   (int2Word# (int32ToInt# x#))
"fromIntegral/Int32->Word32" fromIntegral = \(I32# x#) -> W32# (int32ToWord32# x#)
"fromIntegral/Int32->Int32"  fromIntegral = id :: Int32 -> Int32
  #-}

#else 

-- Int32 is represented in the same way as Int.
#if WORD_SIZE_IN_BITS > 32
-- Operations may assume and must ensure that it holds only values
-- from its logical range.
#endif

data Int32 = I32# Int# deriving (Eq, Ord)
-- ^ 32-bit signed integer type

instance Show Int32 where
    showsPrec p x = showsPrec p (fromIntegral x :: Int)

instance Num Int32 where
    (I32# x#) + (I32# y#)  = I32# (narrow32Int# (x# +# y#))
    (I32# x#) - (I32# y#)  = I32# (narrow32Int# (x# -# y#))
    (I32# x#) * (I32# y#)  = I32# (narrow32Int# (x# *# y#))
    negate (I32# x#)       = I32# (narrow32Int# (negateInt# x#))
    abs x | x >= 0         = x
          | otherwise      = negate x
    signum x | x > 0       = 1
    signum 0               = 0
    signum _               = -1
    fromInteger (S# i#)    = I32# (narrow32Int# i#)
    fromInteger (J# s# d#) = I32# (narrow32Int# (integer2Int# s# d#))

instance Enum Int32 where
    succ x
        | x /= maxBound = x + 1
        | otherwise     = succError "Int32"
    pred x
        | x /= minBound = x - 1
        | otherwise     = predError "Int32"
#if WORD_SIZE_IN_BITS == 32
    toEnum (I# i#)      = I32# i#
#else
    toEnum i@(I# i#)
        | i >= fromIntegral (minBound::Int32) && i <= fromIntegral (maxBound::Int32)
                        = I32# i#
        | otherwise     = toEnumError "Int32" i (minBound::Int32, maxBound::Int32)
#endif
    fromEnum (I32# x#)  = I# x#
    enumFrom            = boundedEnumFrom
    enumFromThen        = boundedEnumFromThen

instance Integral Int32 where
    quot    x@(I32# x#) y@(I32# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I32# (narrow32Int# (x# `quotInt#` y#))
    rem     x@(I32# x#) y@(I32# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I32# (narrow32Int# (x# `remInt#` y#))
    div     x@(I32# x#) y@(I32# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I32# (narrow32Int# (x# `divInt#` y#))
    mod     x@(I32# x#) y@(I32# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I32# (narrow32Int# (x# `modInt#` y#))
    quotRem x@(I32# x#) y@(I32# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = (I32# (narrow32Int# (x# `quotInt#` y#)),
                                     I32# (narrow32Int# (x# `remInt#` y#)))
    divMod  x@(I32# x#) y@(I32# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = (I32# (narrow32Int# (x# `divInt#` y#)),
                                     I32# (narrow32Int# (x# `modInt#` y#)))
    toInteger (I32# x#)              = S# x#

instance Read Int32 where
    readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s]

instance Bits Int32 where
    {-# INLINE shift #-}

    (I32# x#) .&.   (I32# y#)  = I32# (word2Int# (int2Word# x# `and#` int2Word# y#))
    (I32# x#) .|.   (I32# y#)  = I32# (word2Int# (int2Word# x# `or#`  int2Word# y#))
    (I32# x#) `xor` (I32# y#)  = I32# (word2Int# (int2Word# x# `xor#` int2Word# y#))
    complement (I32# x#)       = I32# (word2Int# (int2Word# x# `xor#` int2Word# (-1#)))
    (I32# x#) `shift` (I# i#)
        | i# >=# 0#            = I32# (narrow32Int# (x# `iShiftL#` i#))
        | otherwise            = I32# (x# `iShiftRA#` negateInt# i#)
    (I32# x#) `rotate` (I# i#)
        | i'# ==# 0# 
        = I32# x#
        | otherwise
        = I32# (narrow32Int# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#`
                                         (x'# `uncheckedShiftRL#` (32# -# i'#)))))
        where
        x'# = narrow32Word# (int2Word# x#)
        i'# = word2Int# (int2Word# i# `and#` int2Word# 31#)
    bitSize  _                 = 32
    isSigned _                 = True

{-# RULES
"fromIntegral/Word8->Int32"  fromIntegral = \(W8# x#) -> I32# (word2Int# x#)
"fromIntegral/Word16->Int32" fromIntegral = \(W16# x#) -> I32# (word2Int# x#)
"fromIntegral/Int8->Int32"   fromIntegral = \(I8# x#) -> I32# x#
"fromIntegral/Int16->Int32"  fromIntegral = \(I16# x#) -> I32# x#
"fromIntegral/Int32->Int32"  fromIntegral = id :: Int32 -> Int32
"fromIntegral/a->Int32"      fromIntegral = \x -> case fromIntegral x of I# x# -> I32# (narrow32Int# x#)
"fromIntegral/Int32->a"      fromIntegral = \(I32# x#) -> fromIntegral (I# x#)
  #-}

#endif 

instance Real Int32 where
    toRational x = toInteger x % 1

instance Bounded Int32 where
    minBound = -0x80000000
    maxBound =  0x7FFFFFFF

instance Ix Int32 where
    range (m,n)              = [m..n]
    unsafeIndex b@(m,_) i    = fromIntegral i - fromIntegral m
    inRange (m,n) i          = m <= i && i <= n

------------------------------------------------------------------------
-- type Int64
------------------------------------------------------------------------

#if WORD_SIZE_IN_BITS < 64

data Int64 = I64# Int64#
-- ^ 64-bit signed integer type

instance Eq Int64 where
    (I64# x#) == (I64# y#) = x# `eqInt64#` y#
    (I64# x#) /= (I64# y#) = x# `neInt64#` y#

instance Ord Int64 where
    (I64# x#) <  (I64# y#) = x# `ltInt64#` y#
    (I64# x#) <= (I64# y#) = x# `leInt64#` y#
    (I64# x#) >  (I64# y#) = x# `gtInt64#` y#
    (I64# x#) >= (I64# y#) = x# `geInt64#` y#

instance Show Int64 where
    showsPrec p x = showsPrec p (toInteger x)

instance Num Int64 where
    (I64# x#) + (I64# y#)  = I64# (x# `plusInt64#`  y#)
    (I64# x#) - (I64# y#)  = I64# (x# `minusInt64#` y#)
    (I64# x#) * (I64# y#)  = I64# (x# `timesInt64#` y#)
    negate (I64# x#)       = I64# (negateInt64# x#)
    abs x | x >= 0         = x
          | otherwise      = negate x
    signum x | x > 0       = 1
    signum 0               = 0
    signum _               = -1
    fromInteger (S# i#)    = I64# (intToInt64# i#)
    fromInteger (J# s# d#) = I64# (integerToInt64# s# d#)

instance Enum Int64 where
    succ x
        | x /= maxBound = x + 1
        | otherwise     = succError "Int64"
    pred x
        | x /= minBound = x - 1
        | otherwise     = predError "Int64"
    toEnum (I# i#)      = I64# (intToInt64# i#)
    fromEnum x@(I64# x#)
        | x >= fromIntegral (minBound::Int) && x <= fromIntegral (maxBound::Int)
                        = I# (int64ToInt# x#)
        | otherwise     = fromEnumError "Int64" x
    enumFrom            = integralEnumFrom
    enumFromThen        = integralEnumFromThen
    enumFromTo          = integralEnumFromTo
    enumFromThenTo      = integralEnumFromThenTo

instance Integral Int64 where
    quot    x@(I64# x#) y@(I64# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I64# (x# `quotInt64#` y#)
    rem     x@(I64# x#) y@(I64# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I64# (x# `remInt64#` y#)
    div     x@(I64# x#) y@(I64# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I64# (x# `divInt64#` y#)
    mod     x@(I64# x#) y@(I64# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I64# (x# `modInt64#` y#)
    quotRem x@(I64# x#) y@(I64# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = (I64# (x# `quotInt64#` y#),
                                        I64# (x# `remInt64#` y#))
    divMod  x@(I64# x#) y@(I64# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = (I64# (x# `divInt64#` y#),
                                        I64# (x# `modInt64#` y#))
    toInteger x@(I64# x#)
	| x >= fromIntegral (minBound::Int) &&
          x <= fromIntegral (maxBound::Int)
                                     = S# (int64ToInt# x#)
        | otherwise                  = case int64ToInteger# x# of
                                           (# s, d #) -> J# s d


divInt64#, modInt64# :: Int64# -> Int64# -> Int64#
x# `divInt64#` y#
    | (x# `gtInt64#` intToInt64# 0#) && (y# `ltInt64#` intToInt64# 0#)
        = ((x# `minusInt64#` y#) `minusInt64#` intToInt64# 1#) `quotInt64#` y#
    | (x# `ltInt64#` intToInt64# 0#) && (y# `gtInt64#` intToInt64# 0#)
        = ((x# `minusInt64#` y#) `plusInt64#` intToInt64# 1#) `quotInt64#` y#
    | otherwise                = x# `quotInt64#` y#
x# `modInt64#` y#
    | (x# `gtInt64#` intToInt64# 0#) && (y# `ltInt64#` intToInt64# 0#) ||
      (x# `ltInt64#` intToInt64# 0#) && (y# `gtInt64#` intToInt64# 0#)
        = if r# `neInt64#` intToInt64# 0# then r# `plusInt64#` y# else intToInt64# 0#
    | otherwise = r#
    where
    r# = x# `remInt64#` y#

instance Read Int64 where
    readsPrec p s = [(fromInteger x, r) | (x, r) <- readsPrec p s]

instance Bits Int64 where
    {-# INLINE shift #-}

    (I64# x#) .&.   (I64# y#)  = I64# (word64ToInt64# (int64ToWord64# x# `and64#` int64ToWord64# y#))
    (I64# x#) .|.   (I64# y#)  = I64# (word64ToInt64# (int64ToWord64# x# `or64#`  int64ToWord64# y#))
    (I64# x#) `xor` (I64# y#)  = I64# (word64ToInt64# (int64ToWord64# x# `xor64#` int64ToWord64# y#))
    complement (I64# x#)       = I64# (word64ToInt64# (not64# (int64ToWord64# x#)))
    (I64# x#) `shift` (I# i#)
        | i# >=# 0#            = I64# (x# `iShiftL64#` i#)
        | otherwise            = I64# (x# `iShiftRA64#` negateInt# i#)
    (I64# x#) `rotate` (I# i#)
        | i'# ==# 0# 
        = I64# x#
        | otherwise
        = I64# (word64ToInt64# ((x'# `uncheckedShiftL64#` i'#) `or64#`
                                (x'# `uncheckedShiftRL64#` (64# -# i'#))))
        where
        x'# = int64ToWord64# x#
        i'# = word2Int# (int2Word# i# `and#` int2Word# 63#)
    bitSize  _                 = 64
    isSigned _                 = True


-- give the 64-bit shift operations the same treatment as the 32-bit
-- ones (see GHC.Base), namely we wrap them in tests to catch the
-- cases when we're shifting more than 64 bits to avoid unspecified
-- behaviour in the C shift operations.

iShiftL64#, iShiftRA64# :: Int64# -> Int# -> Int64#

a `iShiftL64#` b  | b >=# 64# = intToInt64# 0#
		  | otherwise = a `uncheckedIShiftL64#` b

a `iShiftRA64#` b | b >=# 64# = if a `ltInt64#` (intToInt64# 0#) 
					then intToInt64# (-1#) 
					else intToInt64# 0#
		  | otherwise = a `uncheckedIShiftRA64#` b


foreign import ccall unsafe "hs_eqInt64"       eqInt64#       :: Int64# -> Int64# -> Bool
foreign import ccall unsafe "hs_neInt64"       neInt64#       :: Int64# -> Int64# -> Bool
foreign import ccall unsafe "hs_ltInt64"       ltInt64#       :: Int64# -> Int64# -> Bool
foreign import ccall unsafe "hs_leInt64"       leInt64#       :: Int64# -> Int64# -> Bool
foreign import ccall unsafe "hs_gtInt64"       gtInt64#       :: Int64# -> Int64# -> Bool
foreign import ccall unsafe "hs_geInt64"       geInt64#       :: Int64# -> Int64# -> Bool
foreign import ccall unsafe "hs_plusInt64"     plusInt64#     :: Int64# -> Int64# -> Int64#
foreign import ccall unsafe "hs_minusInt64"    minusInt64#    :: Int64# -> Int64# -> Int64#
foreign import ccall unsafe "hs_timesInt64"    timesInt64#    :: Int64# -> Int64# -> Int64#
foreign import ccall unsafe "hs_negateInt64"   negateInt64#   :: Int64# -> Int64#
foreign import ccall unsafe "hs_quotInt64"     quotInt64#     :: Int64# -> Int64# -> Int64#
foreign import ccall unsafe "hs_remInt64"      remInt64#      :: Int64# -> Int64# -> Int64#
foreign import ccall unsafe "hs_intToInt64"    intToInt64#    :: Int# -> Int64#
foreign import ccall unsafe "hs_int64ToInt"    int64ToInt#    :: Int64# -> Int#
foreign import ccall unsafe "hs_wordToWord64"  wordToWord64#  :: Word# -> Word64#
foreign import ccall unsafe "hs_int64ToWord64" int64ToWord64# :: Int64# -> Word64#
foreign import ccall unsafe "hs_word64ToInt64" word64ToInt64# :: Word64# -> Int64#
foreign import ccall unsafe "hs_and64"         and64#         :: Word64# -> Word64# -> Word64#
foreign import ccall unsafe "hs_or64"          or64#          :: Word64# -> Word64# -> Word64#
foreign import ccall unsafe "hs_xor64"         xor64#         :: Word64# -> Word64# -> Word64#
foreign import ccall unsafe "hs_not64"         not64#         :: Word64# -> Word64#
foreign import ccall unsafe "hs_uncheckedShiftL64"      uncheckedShiftL64#      :: Word64# -> Int# -> Word64#
foreign import ccall unsafe "hs_uncheckedShiftRL64"     uncheckedShiftRL64#     :: Word64# -> Int# -> Word64#
foreign import ccall unsafe "hs_uncheckedIShiftL64"     uncheckedIShiftL64#     :: Int64# -> Int# -> Int64#
foreign import ccall unsafe "hs_uncheckedIShiftRA64"    uncheckedIShiftRA64#    :: Int64# -> Int# -> Int64#

foreign import ccall unsafe "hs_integerToInt64"  integerToInt64#  :: Int# -> ByteArray# -> Int64#

{-# RULES
"fromIntegral/Int->Int64"    fromIntegral = \(I#   x#) -> I64# (intToInt64# x#)
"fromIntegral/Word->Int64"   fromIntegral = \(W#   x#) -> I64# (word64ToInt64# (wordToWord64# x#))
"fromIntegral/Word64->Int64" fromIntegral = \(W64# x#) -> I64# (word64ToInt64# x#)
"fromIntegral/Int64->Int"    fromIntegral = \(I64# x#) -> I#   (int64ToInt# x#)
"fromIntegral/Int64->Word"   fromIntegral = \(I64# x#) -> W#   (int2Word# (int64ToInt# x#))
"fromIntegral/Int64->Word64" fromIntegral = \(I64# x#) -> W64# (int64ToWord64# x#)
"fromIntegral/Int64->Int64"  fromIntegral = id :: Int64 -> Int64
  #-}

#else 

-- Int64 is represented in the same way as Int.
-- Operations may assume and must ensure that it holds only values
-- from its logical range.

data Int64 = I64# Int# deriving (Eq, Ord)
-- ^ 64-bit signed integer type

instance Show Int64 where
    showsPrec p x = showsPrec p (fromIntegral x :: Int)

instance Num Int64 where
    (I64# x#) + (I64# y#)  = I64# (x# +# y#)
    (I64# x#) - (I64# y#)  = I64# (x# -# y#)
    (I64# x#) * (I64# y#)  = I64# (x# *# y#)
    negate (I64# x#)       = I64# (negateInt# x#)
    abs x | x >= 0         = x
          | otherwise      = negate x
    signum x | x > 0       = 1
    signum 0               = 0
    signum _               = -1
    fromInteger (S# i#)    = I64# i#
    fromInteger (J# s# d#) = I64# (integer2Int# s# d#)

instance Enum Int64 where
    succ x
        | x /= maxBound = x + 1
        | otherwise     = succError "Int64"
    pred x
        | x /= minBound = x - 1
        | otherwise     = predError "Int64"
    toEnum (I# i#)      = I64# i#
    fromEnum (I64# x#)  = I# x#
    enumFrom            = boundedEnumFrom
    enumFromThen        = boundedEnumFromThen

instance Integral Int64 where
    quot    x@(I64# x#) y@(I64# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I64# (x# `quotInt#` y#)
    rem     x@(I64# x#) y@(I64# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I64# (x# `remInt#` y#)
    div     x@(I64# x#) y@(I64# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I64# (x# `divInt#` y#)
    mod     x@(I64# x#) y@(I64# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = I64# (x# `modInt#` y#)
    quotRem x@(I64# x#) y@(I64# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = (I64# (x# `quotInt#` y#), I64# (x# `remInt#` y#))
    divMod  x@(I64# x#) y@(I64# y#)
        | y == 0                     = divZeroError
        | x == minBound && y == (-1) = overflowError
        | otherwise                  = (I64# (x# `divInt#` y#), I64# (x# `modInt#` y#))
    toInteger (I64# x#)              = S# x#

instance Read Int64 where
    readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s]

instance Bits Int64 where
    {-# INLINE shift #-}

    (I64# x#) .&.   (I64# y#)  = I64# (word2Int# (int2Word# x# `and#` int2Word# y#))
    (I64# x#) .|.   (I64# y#)  = I64# (word2Int# (int2Word# x# `or#`  int2Word# y#))
    (I64# x#) `xor` (I64# y#)  = I64# (word2Int# (int2Word# x# `xor#` int2Word# y#))
    complement (I64# x#)       = I64# (word2Int# (int2Word# x# `xor#` int2Word# (-1#)))
    (I64# x#) `shift` (I# i#)
        | i# >=# 0#            = I64# (x# `iShiftL#` i#)
        | otherwise            = I64# (x# `iShiftRA#` negateInt# i#)
    (I64# x#) `rotate` (I# i#)
        | i'# ==# 0# 
        = I64# x#
        | otherwise
        = I64# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#`
                           (x'# `uncheckedShiftRL#` (64# -# i'#))))
        where
        x'# = int2Word# x#
        i'# = word2Int# (int2Word# i# `and#` int2Word# 63#)
    bitSize  _                 = 64
    isSigned _                 = True

{-# RULES
"fromIntegral/a->Int64" fromIntegral = \x -> case fromIntegral x of I# x# -> I64# x#
"fromIntegral/Int64->a" fromIntegral = \(I64# x#) -> fromIntegral (I# x#)
  #-}

#endif

instance Real Int64 where
    toRational x = toInteger x % 1

instance Bounded Int64 where
    minBound = -0x8000000000000000
    maxBound =  0x7FFFFFFFFFFFFFFF

instance Ix Int64 where
    range (m,n)              = [m..n]
    unsafeIndex b@(m,_) i    = fromIntegral i - fromIntegral m
    inRange (m,n) i          = m <= i && i <= n

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.