{-# OPTIONS_GHC -fno-implicit-prelude #-}
-----------------------------------------------------------------------------
-- |
-- Module : Numeric
-- Copyright : (c) The University of Glasgow 2002
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- Odds and ends, mostly functions for reading and showing
-- 'RealFloat'-like kind of values.
--
-----------------------------------------------------------------------------
module Numeric (
-- * Showing
showSigned, -- :: (Real a) => (a -> ShowS) -> Int -> a -> ShowS
showIntAtBase, -- :: Integral a => a -> (a -> Char) -> a -> ShowS
showInt, -- :: Integral a => a -> ShowS
showHex, -- :: Integral a => a -> ShowS
showOct, -- :: Integral a => a -> ShowS
showEFloat, -- :: (RealFloat a) => Maybe Int -> a -> ShowS
showFFloat, -- :: (RealFloat a) => Maybe Int -> a -> ShowS
showGFloat, -- :: (RealFloat a) => Maybe Int -> a -> ShowS
showFloat, -- :: (RealFloat a) => a -> ShowS
floatToDigits, -- :: (RealFloat a) => Integer -> a -> ([Int], Int)
-- * Reading
-- | /NB:/ 'readInt' is the \'dual\' of 'showIntAtBase',
-- and 'readDec' is the \`dual\' of 'showInt'.
-- The inconsistent naming is a historical accident.
readSigned, -- :: (Real a) => ReadS a -> ReadS a
readInt, -- :: (Integral a) => a -> (Char -> Bool)
-- -> (Char -> Int) -> ReadS a
readDec, -- :: (Integral a) => ReadS a
readOct, -- :: (Integral a) => ReadS a
readHex, -- :: (Integral a) => ReadS a
readFloat, -- :: (RealFloat a) => ReadS a
lexDigits, -- :: ReadS String
-- * Miscellaneous
fromRat, -- :: (RealFloat a) => Rational -> a
) where
#ifdef __GLASGOW_HASKELL__
import GHC.Base
import GHC.Read
import GHC.Real
import GHC.Float
import GHC.Num
import GHC.Show
import Data.Maybe
import Text.ParserCombinators.ReadP( ReadP, readP_to_S, pfail )
import qualified Text.Read.Lex as L
#else
import Data.Char
#endif
#ifdef __HUGS__
import Hugs.Prelude
import Hugs.Numeric
#endif
#ifdef __GLASGOW_HASKELL__
-- -----------------------------------------------------------------------------
-- Reading
-- | Reads an /unsigned/ 'Integral' value in an arbitrary base.
readInt :: Num a
=> a -- ^ the base
-> (Char -> Bool) -- ^ a predicate distinguishing valid digits in this base
-> (Char -> Int) -- ^ a function converting a valid digit character to an 'Int'
-> ReadS a
readInt base isDigit valDigit = readP_to_S (L.readIntP base isDigit valDigit)
-- | Read an unsigned number in octal notation.
readOct :: Num a => ReadS a
readOct = readP_to_S L.readOctP
-- | Read an unsigned number in decimal notation.
readDec :: Num a => ReadS a
readDec = readP_to_S L.readDecP
-- | Read an unsigned number in hexadecimal notation.
-- Both upper or lower case letters are allowed.
readHex :: Num a => ReadS a
readHex = readP_to_S L.readHexP
-- | Reads an /unsigned/ 'RealFrac' value,
-- expressed in decimal scientific notation.
readFloat :: RealFrac a => ReadS a
readFloat = readP_to_S readFloatP
readFloatP :: RealFrac a => ReadP a
readFloatP =
do tok <- L.lex
case tok of
L.Rat y -> return (fromRational y)
L.Int i -> return (fromInteger i)
other -> pfail
-- It's turgid to have readSigned work using list comprehensions,
-- but it's specified as a ReadS to ReadS transformer
-- With a bit of luck no one will use it.
-- | Reads a /signed/ 'Real' value, given a reader for an unsigned value.
readSigned :: (Real a) => ReadS a -> ReadS a
readSigned readPos = readParen False read'
where read' r = read'' r ++
(do
("-",s) <- lex r
(x,t) <- read'' s
return (-x,t))
read'' r = do
(str,s) <- lex r
(n,"") <- readPos str
return (n,s)
-- -----------------------------------------------------------------------------
-- Showing
-- | Show /non-negative/ 'Integral' numbers in base 10.
showInt :: Integral a => a -> ShowS
showInt n cs
| n < 0 = error "Numeric.showInt: can't show negative numbers"
| otherwise = go n cs
where
go n cs
| n < 10 = case unsafeChr (ord '0' + fromIntegral n) of
c@(C# _) -> c:cs
| otherwise = case unsafeChr (ord '0' + fromIntegral r) of
c@(C# _) -> go q (c:cs)
where
(q,r) = n `quotRem` 10
-- Controlling the format and precision of floats. The code that
-- implements the formatting itself is in @PrelNum@ to avoid
-- mutual module deps.
{-# SPECIALIZE showEFloat ::
Maybe Int -> Float -> ShowS,
Maybe Int -> Double -> ShowS #-}
{-# SPECIALIZE showFFloat ::
Maybe Int -> Float -> ShowS,
Maybe Int -> Double -> ShowS #-}
{-# SPECIALIZE showGFloat ::
Maybe Int -> Float -> ShowS,
Maybe Int -> Double -> ShowS #-}
-- | Show a signed 'RealFloat' value
-- using scientific (exponential) notation (e.g. @2.45e2@, @1.5e-3@).
--
-- In the call @'showEFloat' digs val@, if @digs@ is 'Nothing',
-- the value is shown to full precision; if @digs@ is @'Just' d@,
-- then at most @d@ digits after the decimal point are shown.
showEFloat :: (RealFloat a) => Maybe Int -> a -> ShowS
-- | Show a signed 'RealFloat' value
-- using standard decimal notation (e.g. @245000@, @0.0015@).
--
-- In the call @'showFFloat' digs val@, if @digs@ is 'Nothing',
-- the value is shown to full precision; if @digs@ is @'Just' d@,
-- then at most @d@ digits after the decimal point are shown.
showFFloat :: (RealFloat a) => Maybe Int -> a -> ShowS
-- | Show a signed 'RealFloat' value
-- using standard decimal notation for arguments whose absolute value lies
-- between @0.1@ and @9,999,999@, and scientific notation otherwise.
--
-- In the call @'showGFloat' digs val@, if @digs@ is 'Nothing',
-- the value is shown to full precision; if @digs@ is @'Just' d@,
-- then at most @d@ digits after the decimal point are shown.
showGFloat :: (RealFloat a) => Maybe Int -> a -> ShowS
showEFloat d x = showString (formatRealFloat FFExponent d x)
showFFloat d x = showString (formatRealFloat FFFixed d x)
showGFloat d x = showString (formatRealFloat FFGeneric d x)
#endif /* __GLASGOW_HASKELL__ */
-- ---------------------------------------------------------------------------
-- Integer printing functions
-- | Shows a /non-negative/ 'Integral' number using the base specified by the
-- first argument, and the character representation specified by the second.
showIntAtBase :: Integral a => a -> (Int -> Char) -> a -> ShowS
showIntAtBase base toChr n r
| base <= 1 = error ("Numeric.showIntAtBase: applied to unsupported base " ++ show base)
| n < 0 = error ("Numeric.showIntAtBase: applied to negative number " ++ show n)
| otherwise = showIt (quotRem n base) r
where
showIt (n,d) r = seq c $ -- stricter than necessary
case n of
0 -> r'
_ -> showIt (quotRem n base) r'
where
c = toChr (fromIntegral d)
r' = c : r
-- | Show /non-negative/ 'Integral' numbers in base 16.
showHex :: Integral a => a -> ShowS
showHex = showIntAtBase 16 intToDigit
-- | Show /non-negative/ 'Integral' numbers in base 8.
showOct :: Integral a => a -> ShowS
showOct = showIntAtBase 8 intToDigit