let
type vec = array of int
type vector = {dim : int, d : vec}
type mat = array of vector
type matrix = {x : int, y : int, d : mat}
function vectorCreate(n : int) : vector =
vector{dim = n, d = vec[n] of 0}
function vectorLiftedAdd(X : vector, Y : vector) : vector =
let var tmp : vector := vectorCreate(X.dim)
in for i := 0 to X.dim do
tmp.d[i] := X.d[i] + Y.d[i];
tmp
end
function vectorLiftedMul(X : vector, Y : vector) : vector =
let var tmp : vector := vectorCreate(X.dim)
in for i := 0 to X.dim do
tmp.d[i] := X.d[i] * Y.d[i];
tmp
end
function vectorInProduct(X : vector, Y : vector) : int =
let var tmp : int := 0
in for i := 0 to X.dim do
tmp := tmp + X.d[i] * Y.d[i];
tmp
end
function matrixCreate(n : int, m : int) : matrix =
let var tmp := matrix{x = n, y = m, d = mat[n] of nil}
in for i := 0 to n do
tmp.d[i] := vectorCreate(m);
tmp
end
function matrixRow(A : matrix, i : int) : vector =
A.d[i]
function matrixCol(A : matrix, j : int) : vector =
let var tmp := vectorCreate(A.y)
in for i := 0 to A.y do
tmp.d[i] := A.d[i].d[j];
tmp
end
function matrixTranspose(A : matrix) : matrix =
let var tmp := matrixCreate(A.y, A.x)
in for i := 0 to A.x do
for j := 0 to A.y do
tmp.d[j].d[i] := A.d[i].d[j];
tmp
end
function matrixLiftedAdd(A : matrix, B : matrix) : matrix =
let var tmp := matrixCreate(A.x, A.y)
in if A.x <> B.x | A.y <> B.y then exit(1)
else for i := 0 to A.x do
for j := 0 to A.y do
tmp.d[i].d[j] := A.d[i].d[j] + B.d[i].d[j];
tmp
end
function matrixLiftedMul(A : matrix, B : matrix) : matrix =
let var tmp := matrixCreate(A.x, A.y)
in if A.x <> B.x | A.y <> B.y then exit(1)
else for i := 0 to A.x do
for j := 0 to A.y do
tmp.d[i].d[j] := A.d[i].d[j] * B.d[i].d[j];
tmp
end
function matrixMul(A : matrix, B : matrix) : matrix =
let var tmp := matrixCreate(A.x, B.y)
in if A.y <> B.x then exit(1)
else for i := 0 to A.x do
for j := 0 to B.y do
tmp.d[i].d[j] := vectorInProduct(matrixRow(A,i), matrixCol(B,j));
tmp
end
function createDiagMat(X : vector) : matrix =
let var tmp := matrixCreate(X.dim, X.dim)
in for i := 0 to X.dim do
tmp.d[i].d[i] := X.d[i];
tmp
end
/* matrixMul(A, B) where B is a diagonal matrix, which can be represented
by a vector
*/
function matrixMulDiag(A : matrix, X : vector) : matrix =
let var tmp := matrixCreate(A.x, A.y)
in if A.y <> X.dim then exit(1)
else for i := 0 to A.x do
for j := 0 to A.y do
tmp.d[i].d[j] := A.d[i].d[j] * X.d[j];
tmp
end
/* Challenge: matrixMul(A, createDiagMat(X)) == matrixMulDiag(A, X)
i.e., derive the rhs from the lhs by specialization
What are the laws involved?
Challenge: matrixMul(A, create5shapeMatrix(a,b,c,d,e)) == efficient algorithm
*/
in
/* matrixLiftedAdd(matrixCreate(8),matrixCreate(8)) */
matrixMul(A, createDiagMat(X))
end
|