module Complex(Floating(..)) where
import DComplex
import Magnitude
import Phase
import Fractional_Complex
import Num_Complex
instance (RealFloat a) => Floating (Complex a) where
pi = pi :+ 0
exp (x:+y) = expx * cos y :+ expx * sin y
where expx = exp x
log z = log (magnitude z) :+ phase z
sqrt 0 = 0
sqrt z@(x:+y) = u :+ (if y < 0 then -v else v)
where (u,v) = if x < 0 then (v',u') else (u',v')
v' = abs y / (u'*2)
u' = sqrt ((magnitude z + abs x) / 2)
sin (x:+y) = sin x * cosh y :+ cos x * sinh y
cos (x:+y) = cos x * cosh y :+ (- sin x * sinh y)
tan (x:+y) = (sinx*coshy:+cosx*sinhy)/(cosx*coshy:+(-sinx*sinhy))
where sinx = sin x
cosx = cos x
sinhy = sinh y
coshy = cosh y
sinh (x:+y) = cos y * sinh x :+ sin y * cosh x
cosh (x:+y) = cos y * cosh x :+ sin y * sinh x
tanh (x:+y) = (cosy*sinhx:+siny*coshx)/(cosy*coshx:+siny*sinhx)
where siny = sin y
cosy = cos y
sinhx = sinh x
coshx = cosh x
asin z@(x:+y) = y':+(-x')
where (x':+y') = log ((-y:+x) + sqrt (1 - z*z))
acos z@(x:+y) = y'':+(-x'')
where (x'':+y'') = log (z + ((-y'):+x'))
(x':+y') = sqrt (1 - z*z)
atan z@(x:+y) = y':+(-x')
where (x':+y') = log (((1-y):+x) / sqrt (1+z*z))
asinh z = log (z + sqrt (1+z*z))
acosh z = log (z + (z+1) * sqrt ((z-1)/(z+1)))
atanh z = log ((1+z) / sqrt (1-z*z))
|