Plan 9 from Bell Labs’s /usr/web/sources/contrib/fernan/nhc98/src/prelude/Numeric/FloatToDigits.hs

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


module Numeric (floatToDigits) where

import Expt

--
-- Based on "Printing Floating-Point Numbers Quickly and Accurately"
-- by R.G. Burger and R. K. Dybvig, in PLDI 96.
-- The version here uses a much slower logarithm estimator.  
-- It should be improved.

-- This function returns a non-empty list of digits (Ints in [0..base-1])
-- and an exponent.  In general, if
--      floatToDigits r = ([a, b, ... z], e)
-- then
--      r = 0.ab..z * base^e
-- 

floatToDigits :: (RealFloat a) => Integer -> a -> ([Int], Int)

floatToDigits _ 0 = ([], 0)
floatToDigits base x =
    let (f0, e0) = decodeFloat x
        (minExp0, _) = floatRange x
        p = floatDigits x
        b = floatRadix x
        minExp = minExp0 - p            -- the real minimum exponent
        -- Haskell requires that f be adjusted so denormalized numbers
        -- will have an impossibly low exponent.  Adjust for this.
        f :: Integer
        e :: Int
        (f, e) = let n = minExp - e0
                 in  if n > 0 then (f0 `div` (b^n), e0+n) else (f0, e0)

        (r, s, mUp, mDn) =
           if e >= 0 then
               let be = b^e in
               if f == b^(p-1) then
                   (f*be*b*2, 2*b, be*b, b)
               else
                   (f*be*2, 2, be, be)
           else
               if e > minExp && f == b^(p-1) then
                   (f*b*2, b^(-e+1)*2, b, 1)
               else
                   (f*2, b^(-e)*2, 1, 1)
        k = 
            let k0 =
                    if b==2 && base==10 then
                        -- logBase 10 2 is slightly bigger than 3/10 so
                        -- the following will err on the low side.  Ignoring
                        -- the fraction will make it err even more.
                        -- Haskell promises that p-1 <= logBase b f < p.
                        (p - 1 + e0) * 3 `div` 10
                    else
                        ceiling ((log (fromInteger (f+1)) + 
                                 fromIntegral e * log (fromInteger b)) / 
                                  log (fromInteger base))
                fixup n =
                    if n >= 0 then
                        if r + mUp <= expt base n * s then n else fixup (n+1)
                    else
                        if expt base (-n) * (r + mUp) <= s then n
                                                           else fixup (n+1)
            in  fixup k0

        gen ds rn sN mUpN mDnN =
            let (dn, rn') = (rn * base) `divMod` sN
                mUpN' = mUpN * base
                mDnN' = mDnN * base
            in  case (rn' < mDnN', rn' + mUpN' > sN) of
                (True,  False) -> dn : ds
                (False, True)  -> dn+1 : ds
                (True,  True)  -> if rn' * 2 < sN then dn : ds else dn+1 : ds
                (False, False) -> gen (dn:ds) rn' sN mUpN' mDnN'
        rds =
            if k >= 0 then
                gen [] r (s * expt base k) mUp mDn
            else
                let bk = expt base (-k)
                in  gen [] (r * bk) s (mUp * bk) (mDn * bk)
    in  (map fromIntegral (reverse rds), k)

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.