module Numeric (floatToDigits) where
import Expt
--
-- Based on "Printing Floating-Point Numbers Quickly and Accurately"
-- by R.G. Burger and R. K. Dybvig, in PLDI 96.
-- The version here uses a much slower logarithm estimator.
-- It should be improved.
-- This function returns a non-empty list of digits (Ints in [0..base-1])
-- and an exponent. In general, if
-- floatToDigits r = ([a, b, ... z], e)
-- then
-- r = 0.ab..z * base^e
--
floatToDigits :: (RealFloat a) => Integer -> a -> ([Int], Int)
floatToDigits _ 0 = ([], 0)
floatToDigits base x =
let (f0, e0) = decodeFloat x
(minExp0, _) = floatRange x
p = floatDigits x
b = floatRadix x
minExp = minExp0 - p -- the real minimum exponent
-- Haskell requires that f be adjusted so denormalized numbers
-- will have an impossibly low exponent. Adjust for this.
f :: Integer
e :: Int
(f, e) = let n = minExp - e0
in if n > 0 then (f0 `div` (b^n), e0+n) else (f0, e0)
(r, s, mUp, mDn) =
if e >= 0 then
let be = b^e in
if f == b^(p-1) then
(f*be*b*2, 2*b, be*b, b)
else
(f*be*2, 2, be, be)
else
if e > minExp && f == b^(p-1) then
(f*b*2, b^(-e+1)*2, b, 1)
else
(f*2, b^(-e)*2, 1, 1)
k =
let k0 =
if b==2 && base==10 then
-- logBase 10 2 is slightly bigger than 3/10 so
-- the following will err on the low side. Ignoring
-- the fraction will make it err even more.
-- Haskell promises that p-1 <= logBase b f < p.
(p - 1 + e0) * 3 `div` 10
else
ceiling ((log (fromInteger (f+1)) +
fromIntegral e * log (fromInteger b)) /
log (fromInteger base))
fixup n =
if n >= 0 then
if r + mUp <= expt base n * s then n else fixup (n+1)
else
if expt base (-n) * (r + mUp) <= s then n
else fixup (n+1)
in fixup k0
gen ds rn sN mUpN mDnN =
let (dn, rn') = (rn * base) `divMod` sN
mUpN' = mUpN * base
mDnN' = mDnN * base
in case (rn' < mDnN', rn' + mUpN' > sN) of
(True, False) -> dn : ds
(False, True) -> dn+1 : ds
(True, True) -> if rn' * 2 < sN then dn : ds else dn+1 : ds
(False, False) -> gen (dn:ds) rn' sN mUpN' mDnN'
rds =
if k >= 0 then
gen [] r (s * expt base k) mUp mDn
else
let bk = expt base (-k)
in gen [] (r * bk) s (mUp * bk) (mDn * bk)
in (map fromIntegral (reverse rds), k)
|