Plan 9 from Bell Labs’s /usr/web/sources/contrib/fernan/nhc98/tests/nofib/real/anna/LambdaLift5.hs

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.



-- ==========================================================--
-- === The Lambda-lifter                                  ===--
-- ===                                     LambdaLift5.hs ===--
-- ==========================================================--

module LambdaLift5 where
import BaseDefs
import Utils
import MyUtils
import Dependancy

import List(nub) -- 1.3

-- ==========================================================--
-- First, put "split" lambda abstractions back together.
-- Largely decorative, but it seems like a sensible thing to do.
--
llMergeLams :: CExprP Naam -> 
               CExprP Naam

llMergeLams (EVar v)     = EVar v
llMergeLams (ENum n)     = ENum n
llMergeLams (EConstr c)  = EConstr c
llMergeLams (EAp e1 e2)  = EAp (llMergeLams e1) (llMergeLams e2)
llMergeLams (ECase sw alts) 
   = ECase (llMergeLams sw) 
           [(n, (ps, llMergeLams rhs)) | (n, (ps, rhs)) <- alts]
llMergeLams (ELam vs1 (ELam vs2 e)) 
   = llMergeLams (ELam (vs1++vs2) e)
llMergeLams (ELam vs e) 
   = ELam vs (llMergeLams e)
llMergeLams (ELet rf defs e)
   = ELet rf (map2nd llMergeLams defs) (llMergeLams e)


-- ==========================================================--
-- Now give a name to all anonymous lambda abstractions.
-- As it happens, they all get the same name, but that's not
-- a problem: they get different names later on.
-- This pass has the effect of attaching all lambda terms
-- to a let binding, if they are not already so attached.
--
llName :: CExprP Naam -> 
          CExprP Naam

llName (EVar v)     = EVar v
llName (ENum n)     = ENum n
llName (EConstr c)  = EConstr c
llName (EAp e1 e2)  = EAp (llName e1) (llName e2)
llName (ELam vs e)  = ELet False [("_sc", ELam vs (llName e))] (EVar "_sc")
llName (ECase sw alts) 
   = ECase (llName sw) [(n, (ps, llName rhs)) | (n, (ps, rhs)) <- alts]
llName (ELet rf defs e)
   = ELet rf (map fix defs) (llName e)
     where
        fix (n, ELam vs e) = (n, ELam vs (llName e))
        fix (n, non_lam_e) = (n, llName non_lam_e)


-- ==========================================================--
-- Next, travel over the tree and attach a number to each
-- name, making them all unique.  This implicitly defines the
-- scope bindings used.
--
llUnique :: NameSupply ->
            AList Naam Naam -> 
            CExprP Naam ->
            (NameSupply, CExprP Naam)

llUnique ns dict (ENum n)     = (ns, ENum n)
llUnique ns dict (EConstr c)  = (ns, EConstr c)
llUnique ns dict (EAp e1 e2)
   = let (ns_new1, e1_new) = llUnique ns      dict e1
         (ns_new2, e2_new) = llUnique ns_new1 dict e2
     in (ns_new2, EAp e1_new e2_new)

llUnique ns dict (ECase sw alts)
   = let (ns_new1, sw_new) = llUnique ns dict sw
         (ns_new2, alts_new) = mapAccuml fixAlt ns_new1 alts
         fixAlt ns (n, (ps, rhs)) 
            = let (new_ns, new_params) = utGetNames ns (llCheckUnique ps)
                  new_dict = zip ps new_params ++ dict
                  (final_ns, final_rhs) = llUnique new_ns new_dict rhs
              in (final_ns, (n, (new_params, final_rhs)))
     in (ns_new2, ECase sw_new alts_new)

llUnique ns dict (EVar v)
   = case utLookup dict v of
        Just v2 -> (ns, EVar v2)
        Nothing -> myFail ("No such variable \"" ++ v ++ "\"")

llUnique ns dict (ELam vs e)
   = let (new_ns, new_params) = utGetNames ns (llCheckUnique vs)
         new_dict = zip vs new_params ++ dict
         (final_ns, final_e) = llUnique new_ns new_dict e
     in (final_ns, ELam new_params final_e)

llUnique ns dict (ELet rf defs e)
   = let (new_ns2, new_defs) = mapAccuml fixDef new_ns1 defs
         (final_ns, new_e) = llUnique new_ns2 dictAug e
         hereNames = llCheckUnique (map first defs)
         (new_ns1, hereBinds) = utGetNames ns (llCheckUnique hereNames)
         dictAug = zip hereNames (map ('_':) hereBinds) ++ dict
         dictForDefs = if rf then dictAug else dict
         fixDef ns_loc (n, rhs)
            = let (ns_loc_final, rhs_final) = llUnique ns_loc dictForDefs rhs
              in (ns_loc_final, (utSureLookup dictAug "llUnique" n, rhs_final))
     in (final_ns, ELet rf new_defs new_e)


-- ==========================================================--
-- Makes sure a set of names is unique.
--
llCheckUnique :: [Naam] -> 
                 [Naam]

llCheckUnique names
   = let getdups [] = []
         getdups [x] = []
         getdups (x:y:xys)
            | x == y  = x:getdups (dropWhile (==x) xys)
            | otherwise = getdups (y:xys)
         dups = getdups (sort names)
     in if null dups then names 
           else myFail ("Duplicate identifiers in the same scope:\n\t" ++ show dups)


-- ==========================================================--
-- By now each variable is uniquely named, let bound vars have
-- been given a leading underscore, and, importantly, each lambda term
-- has an associated let-binding.  Now do a free variables pass.
--
llFreeVars :: CExprP Naam -> 
              AnnExpr Naam (Set Naam)

llFreeVars (ENum k) = (utSetEmpty, ANum k)

llFreeVars (EVar v) = (utSetSingleton v, AVar v)

llFreeVars (EConstr c) = (utSetEmpty, AConstr c)

llFreeVars (EAp e1 e2)
   = let a_e1@(f_e1, _) = llFreeVars e1
         a_e2@(f_e2, _) = llFreeVars e2
     in  (utSetUnion f_e1 f_e2, AAp a_e1 a_e2)

llFreeVars (ELam args body)
   = let body_a@(body_f, _) = llFreeVars body
     in  (utSetSubtraction body_f (utSetFromList args),
          ALam args body_a)

llFreeVars (ELet isRec defns body)
   = let (binders, values)  = unzip2 defns
         binderSet          = utSetFromList binders
         values'            = map llFreeVars values
         defns'             = zip binders values'
         freeInValues       = utSetUnionList [free | (free,_) <- values']
         defnsFree 
            | isRec       = utSetSubtraction freeInValues binderSet
            | otherwise   = freeInValues
         body' = llFreeVars body
         bodyFree = utSetSubtraction (first body') binderSet
     in  (utSetUnion defnsFree bodyFree, ALet isRec defns' body')

llFreeVars (ECase e alts)
   = let (eFree,_) = e'
         e' = llFreeVars e
         alts' = [(con,(args,llFreeVars e)) | (con,(args,e)) <- alts]
         free = utSetUnionList (map f alts')
         f (con,(args,(free,exp))) =
            utSetSubtraction free (utSetFromList args)
     in (utSetUnion eFree free, ACase e' alts')


-- ==========================================================--
-- Extract the set equations.
--
llEqns :: AnnExpr Naam (Set Naam) ->
          [Eqn]

llEqns (_, AVar _)         = []
llEqns (_, ANum _)         = []
llEqns (_, AConstr _)      = []
llEqns (_, AAp a1 a2)      = llEqns a1 ++ llEqns a2
llEqns (_, ALam _ e)       = llEqns e

llEqns (_, ACase sw alts)  
   = llEqns sw ++ concat (map (llEqns.second.second) alts)

llEqns (_, ALet rf defs body)
   = let binders  = [n | (n, rhs) <- defs]
         eqnsHere = [case llSplitSet fv of (facc, vacc) -> EqnNVC n vacc facc
                     | (n, (fv, rhsa)) <- defs]
         innerEqns = concat [llEqns rhs | (n, rhs@(fv, rhsa)) <- defs]
         nextEqns = llEqns body
     in  eqnsHere ++ innerEqns ++ nextEqns


-- ==========================================================--
-- Now we use the information from the previous pass to
-- fix up usages of functions.
--
llAddParams :: AList Naam (Set Naam) ->
	       AnnExpr Naam (Set Naam) ->
	       CExprP Naam

llAddParams env (_, ANum n) = ENum n

llAddParams env (_, AConstr c) = EConstr c

llAddParams env (_, AVar v)
   = mkApChain vParams
     where
        vParams = utLookup env v
        mkApChain (Just vs) = foldl EAp (EVar v) (map EVar (utSetToList vs))
        mkApChain Nothing = EVar v

llAddParams env (_, AAp e1 e2)
   = EAp (llAddParams env e1) (llAddParams env e2)

llAddParams env (_, ALam args body)
   = ELam args (llAddParams env body)

llAddParams env (_, ACase sw alts)
   = ECase (llAddParams env sw) (map f alts)
     where
        f (naam, (params, body)) = (naam, (params, llAddParams env body))

llAddParams env (_, ALet rFlag defs body)
   = ELet rFlag (map fixDef defs) fixedBody
     where
        fixedBody = llAddParams env body
        fixDef (n, (df, (ALam vs rhs)))
           = let new_params = utSetToList (utSureLookup env "llAddParams1" n)
             in (n, ELam (new_params++vs) (llAddParams env rhs))
        fixDef (n, (df, non_lambda_rhs))
           = let new_params = utSetToList (utSureLookup env "llAddParams2" n)
             in (n, ELam new_params (llAddParams env (df, non_lambda_rhs)))


-- ==========================================================--
-- The only thing that remains to be done is to flatten
-- out the program, by lifting out all the let (and hence lambda)
-- bindings to the top level.
--
llFlatten :: CExprP Naam ->
             (AList Naam (CExprP Naam), CExprP Naam)

llFlatten (EVar v) = ([], EVar v)

llFlatten (ENum n) = ([], ENum n)

llFlatten (EConstr c) = ([], EConstr c)

llFlatten (EAp e1 e2) 
   = (e1b ++ e2b, EAp e1f e2f)
     where
        (e1b, e1f) = llFlatten e1
        (e2b, e2f) = llFlatten e2

llFlatten (ELam ps e1)
   = (e1b, ELam ps e1f)
     where
        (e1b, e1f) = llFlatten e1

llFlatten (ECase sw alts)
   = (swb ++ concat altsb, ECase swf altsf)
     where
        (swb, swf) = llFlatten sw

        altsFixed = map fixAlt alts
        fixAlt (name, (pars, rhs)) = (name, (pars, llFlatten rhs))
        
        altsf = map getAltsf altsFixed
        getAltsf (name, (pars, (rhsb, rhsf))) = (name, (pars, rhsf))
 
        altsb = map getAltsb altsFixed
        getAltsb (name, (pars, (rhsb, rhsf))) = rhsb

llFlatten (ELet rf dl rhs)
   = (dlFlattened ++ rhsb, rhsf)
     where
        (rhsb, rhsf) = llFlatten rhs

        dlFixed = map fixDef dl
        fixDef (name, rhs) = (name, llFlatten rhs)

        dlFlattened = dsHere ++ concat dsInside
        dsHere = map here dlFixed
        here (name, (inDs, frhs)) = (name, frhs)
        dsInside = map inside dlFixed
        inside (name, (inDs, frhs)) = inDs


-- ==========================================================--
-- The transformed program is now correct, but hard to read
-- because all variables have a number on.  This function
-- detects non-contentious variable names and deletes 
-- the number, wherever possible.  Also fixes up the
-- free-variable list appropriately.
--
llPretty :: (AList Naam (CExprP Naam), AList Naam [Naam]) -> 
            (AList Naam (CExprP Naam), AList Naam [Naam])

llPretty (scDefs, scFrees)
   = let -------------------------------------------------
         -- scTable tells how to rename supercombinator --
         -- names only.  Use to fix all SC names.       --
         -------------------------------------------------
         scDefNames   = map first scDefs
         scTable      = getContentious scDefNames
         (scDefs1, scFrees1)
             = (  [(prettyScName scTable n, 
                    llMapCoreTree (prettyScName scTable) cexp)
                    | (n, cexp) <- scDefs],
                  map1st (prettyScName scTable) scFrees)

         ----------------------------------------------
         -- Now for each supercombinator, fix up its --
         -- lambda-bound variables individually      --
         ----------------------------------------------
         lamTableTable = map makeLamTable scDefs1
         makeLamTable (n, ELam vs _) = getContentious vs
         makeLamTable (n, non_lam_s) = []
         scFrees2 = myZipWith2 fixParams scFrees1 lamTableTable
         fixParams (n, ps) contentious 
            = (n, map (prettyVarName contentious) ps)
         scDefs2 = myZipWith2 fixDef scDefs1 lamTableTable
         fixDef (n, cexp) contentious 
            = (n, llMapCoreTree (prettyVarName contentious) cexp)


         getContentious names
            = let sortedNames = sort names
                  gc [] = []
                  gc [x] = []
                  gc (x:y:xys)
                     | rootName x == rootName y  = x:y:gc (y:xys)
                     | otherwise = gc (y:xys)
                  contentions = nub (gc sortedNames)
              in  contentions

         prettyScName contentions n
            | head n == '_' && n `notElem` contentions  = rootName n
            | otherwise                                 = n

         prettyVarName contentions n
            | head n /= '_' && n `notElem` contentions  = rootName n
            | otherwise                                 = n

         rootName = takeWhile (/= ')')

     in
        (scDefs2, scFrees2)


-- ==========================================================--
--
llSplitSet :: Set Naam -> (Set Naam, Set Naam)

llSplitSet list
   = let split (facc, vacc) n 
            = if head n == '_' then (n:facc, vacc) else (facc, n:vacc)
     in case foldl split ([],[]) (utSetToList list) of
            (fs, vs) -> (utSetFromList fs, utSetFromList vs)


-- ==========================================================--
--
llZapBuiltins :: [Naam] -> Eqn -> Eqn

llZapBuiltins builtins (EqnNVC n v c) 
   = EqnNVC n v (utSetFromList (filter (`notElem` builtins) (utSetToList c)))


-- ==========================================================--
--
llSolveIteratively :: [Eqn] -> AList Naam (Set Naam)

llSolveIteratively eqns
   = loop eqns initSets
     where
        initSets = [(n, utSetEmpty) | EqnNVC n v c <- eqns]
        loop eqns aSet 
           = let newSet = map (sub_eqn aSet) eqns
             in if newSet == aSet then newSet else loop eqns newSet
        sub_eqn subst (EqnNVC n v c)
           = let allVars = utSetToList v ++ utSetToList c
                 allSub  = utSetUnionList (map sub allVars)
                 sub var = utLookupDef subst var (utSetSingleton var)
             in  case llSplitSet allSub of (facc, vacc) -> (n, vacc)


-- ==========================================================--
-- Map a function over a core tree.
-- *** Haskell-B 9972 insists on restricted signature, why? ***
--
llMapCoreTree :: (Naam -> Naam) ->
                 CExprP Naam ->
                 CExprP Naam

llMapCoreTree f (EVar v) = EVar (f v)
llMapCoreTree f (ENum n) = ENum n
llMapCoreTree f (EConstr c) = EConstr c
llMapCoreTree f (ELam vs e) = ELam (map f vs) (llMapCoreTree f e)
llMapCoreTree f (EAp e1 e2) = EAp (llMapCoreTree f e1) (llMapCoreTree f e2)
llMapCoreTree f (ELet rf dl e)
   = ELet rf [(f n, llMapCoreTree f rhs) | (n, rhs) <- dl] (llMapCoreTree f e)
llMapCoreTree f (ECase sw alts)
   = ECase (llMapCoreTree f sw) 
        [(cn, (map f ps, llMapCoreTree f rhs)) | (cn, (ps, rhs)) <- alts]


-- ==========================================================--
--
llMain :: [Naam] ->
          CExprP Naam ->
          Bool ->
          (CExprP Naam, AList Naam [Naam])

llMain builtInNames expr doPretty = 
   let fvAnnoTree 
          = (llFreeVars                  . 
             second                      .
             llUnique 0 initialRenamer   .
             llName                      . 
             llMergeLams                 .
             deDependancy) expr

       builtInFns = filter ((=='_').head) builtInNames
       initFreeEnv = [(n, utSetEmpty) | n <- builtInNames]
       initialRenamer = map (\n -> (tail n, n)) builtInFns
       eqns = llEqns fvAnnoTree
       eqns_with_builtins_zapped = map (llZapBuiltins builtInFns) eqns
       eqns_solved = llSolveIteratively eqns_with_builtins_zapped
       
       (scDefs, mainE) = llFlatten (llAddParams eqns_solved fvAnnoTree)
       (prettyScDefs, prettyNewParams) 
          = if doPretty then llPretty (scDefs, scParams) else (scDefs, scParams)
       scParams = map2nd utSetToList eqns_solved
       exprReconstituted = ELet True prettyScDefs mainE
       exprDepended = deDependancy exprReconstituted
   in  (exprDepended, prettyNewParams)


-- ==========================================================--
-- === end                                 LambdaLift5.hs ===--
-- ==========================================================--

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.