Plan 9 from Bell Labs’s /usr/web/sources/contrib/fernan/nhc98/tests/nofib/real/anna/SmallerLattice.hs

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.



-- ==========================================================--
-- === Find a smaller versions of big lattices when  we   ===--
-- === we reckon that the big lattice is too expensive    ===--
-- === to work in.                                        ===--
-- ===                                  SmallerLattice.hs ===--
-- ==========================================================--


module SmallerLattice where
import BaseDefs
import MyUtils
import Utils
import AbsConc3

import List(nub,transpose) -- 1.3

-- ==========================================================--
--
{- partain: moved to BaseDefs.hs:

instance (Text a, Ord a) => Num (ExceptionInt a) where

   (MkExInt i1 xs1) + (MkExInt i2 xs2) 
      = MkExInt (i1 + i2) (xs1 ++ xs2)

   (MkExInt i1 xs1) * (MkExInt i2 xs2) 
      = MkExInt (i1 * i2) (xs1 ++ xs2)
-}

-- ==========================================================--
--
sl_1 = MkExInt 1 []
sl_2 = MkExInt 2 []


-- ==========================================================--
--
slCard :: AList Domain Int -> Domain -> DomainInt

slCard rho Two
   = sl_2
slCard rho (Lift1 ds)
   = sl_1 + foldl (*) sl_1 (map (slCard rho) ds)
slCard rho (Lift2 ds)
   = sl_2 + foldl (*) sl_1 (map (slCard rho) ds)
slCard rho (Func dss dt)
   = let norm_func_domain
            = fixWith slNorm (Func dss dt)
         fixWith f x 
            = let y = f x in if x == y then x else fixWith f y
         rho_lookup 
            = case utLookup rho norm_func_domain of
                 Nothing -> MkExInt 0 [norm_func_domain]
                 Just n  -> MkExInt n []
     in
         case norm_func_domain of
            Func _ _ -> rho_lookup
            non_fn_d -> slCard rho norm_func_domain


-- ==========================================================--
--
slNorm :: Domain -> Domain

slNorm Two                         = Two

slNorm (Lift1 [Lift1 ds])          = Lift2 (map slNorm ds)
slNorm (Lift2 [Lift1 ds])          = Lift1 [Lift2 (map slNorm ds)]

slNorm (Lift1 ds)                  = Lift1 (map slNorm ds)
slNorm (Lift2 ds)                  = Lift2 (map slNorm ds)

slNorm (Func [Two] Two)            = Lift1 [Two]
slNorm (Func [Lift1 [Two]] Two)    = Lift2 [Two]
slNorm (Func [Lift2 [Two]] Two)    = Lift1 [Lift2 [Two]]
slNorm (Func [Two] (Lift1 [Two]))  = Func [Two, Two] Two
slNorm (Func [Two] (Lift2 [Two]))  = Func [Lift1 [Two]] (Lift1 [Two])

slNorm (Func dss dt) 
   = Func (sort (map slNorm dss)) (slNorm dt)


-- ==========================================================--
--
slReduce :: Domain -> [Domain]

slReduce Two 
   = []

slReduce (Lift1 ds)
   = let reduced_and_original = myZipWith2 (:) ds (map slReduce ds)
     in
         [Lift1 ds_reduced 
          | ds_reduced <- tail (myCartesianProduct reduced_and_original)]
         ++
         [Two]

slReduce (Lift2 ds)
   = let reduced_and_original = myZipWith2 (:) ds (map slReduce ds)
     in
         [Lift2 ds_reduced 
          | ds_reduced <- tail (myCartesianProduct reduced_and_original)]
         ++
         [Two]

slReduce (Func dss dt)
   = let arg_domains_reduced = map slReduce dss
         res_domain_reduced  = slReduce dt
         originals    = dt : dss
         reduced_all  = res_domain_reduced : arg_domains_reduced
         variants     = tail (myCartesianProduct 
                             (myZipWith2 (:) originals reduced_all))
     in
         [Func dss dt | (dt:dss) <- variants]
         ++ 
         [Two]


-- ==========================================================--
--
slMakeSequence :: AList Domain Int -> -- lattice size table
                  Int ->              -- scaleup ratio
                  [[Domain]] ->       -- arg domains for each fn in rec groups
                  Int ->              -- lower limit
                  Int ->              -- upper limit
                  Sequence

slMakeSequence table scaleup_ratio dss lowlimit highlimit
   = let
         -- magic the individual domains, then reverse the list
         initially = map (reverse.map clean.slMakeOneSequence table scaleup_ratio)
                         dss

         -- remove path costs
         clean ((Lift1 ds,s),c) = (s,ds)

         -- the limiting sequence length
         limit = minimum (map length initially)

         -- chop off irrelevant bits and restore original ordering
         -- outer list: one elem per function
         -- inner list: the sequence for a particular function
         equalLengths :: [[OneFuncSize]]
         equalLengths = map (reverse.take limit) initially

         -- transpose, to get it round the way we need it
         -- outer list: the sequence, one elem contains all functions at a 
         --             given size
         equalLengthsT = transpose equalLengths

         -- get the greatest sizes at every "size"
         maxSizes = map getMaxSizes equalLengthsT

         getMaxSizes oneSizeInfo = maximum (map first oneSizeInfo)

         -- lower limit: throw away if all sizes below threshold,
         -- but not to the extent of throwing them all away
         lowDrop = min (length (takeWhile (< lowlimit) maxSizes))
                       (limit - 1)

         -- adjust limit and equalLengthsT to reflect the fact that
         -- we've decided to ignore the first lowDrop lattice-sets
         limit2 = limit - lowDrop
         equalLengthsT2 = drop lowDrop equalLengthsT
         maxSizes2 = reverse (drop lowDrop maxSizes)

         -- upper limit: throw away if any size above threshold,
         -- but not to the extent of throwing them all away
         highDrop = min (length (takeWhile (> highlimit) maxSizes2))
                        (limit2 - 1)

         -- now we can partition the size-groups into those to use,
         -- and those not to bother with
         (usePart, notUsePart) = splitAt (limit2 - highDrop) equalLengthsT2
     in
         (usePart, notUsePart)


-- ==========================================================--
--
slMakeOneSequence :: AList Domain Int -> Int -> [Domain] -> [(DInt, Int)]

slMakeOneSequence table scaleup_ratio ds
   = let
         -- bind all domains into a product
         ds_crossed = Lift1 ds

         -- make all the subdomains, add the original
         -- and zap the trailing Two domain arising from
         -- reducing the outermost Lift1
         all_candidates = ds_crossed : init (slReduce ds_crossed)

         -- put their sizes on
         cands_and_sizes = map (\d -> (d, slCard table d)) all_candidates

         -- get all the unsizable function spaces,
         -- and sizes
         (unsizables, sizes)
            = let f [] = ([],[])
                  f ((d, MkExInt n xs):rest)
                      = let (rest_u, rest_s) = f rest
                        in (xs ++ rest_u, (d, n-1):rest_s)
              in
                  f cands_and_sizes

         -- check all domains got sized OK
         sizes2 :: [DInt]
         sizes2
            = if    null unsizables
              then  sizes
              else  myFail ( "\n\nNo size for:\n\n" ++
                           (layn.map show) (nub unsizables))

         -- recover the iaboves relation
         iaboves :: AList DInt [DInt]
         iaboves
            = let leq (d1,c1) (d2,c2) = d2 `acCompatible` d1  {-FIX THIS-}
              in
                  slRecover sizes2 leq

         -- flatten it out
         iaboves_flattened :: [(DInt, DInt)]
         iaboves_flattened 
            = concat (map ( \ (x, ys) -> [(x,y) | y <- ys] ) iaboves)

         -- the local cost function
         local_cost n1 n2
             = let diff = ((n2 * 10) `div` n1) - scaleup_ratio
                   scaleFact = n2 `div` 10
               in
                   scaleFact * abs diff

         -- add local costs
         iaboves_costed :: [(DInt, DInt, Int)]
         iaboves_costed
            = map ( \ (p@(d1,s1), q@(d2,s2)) -> (p, q, local_cost s1 s2))
                  iaboves_flattened

         -- get the start and end points
         start, end :: DInt
         start = last sizes2
         end = head sizes2
     in
         slDijkstra iaboves_costed start end

         

-- ==========================================================--
--
slRecover :: Eq a => [a] -> (a -> a -> Bool) -> AList a [a]

slRecover latt leq
   = let
        iaboves s 
           = foldr minInsert [] (allabove s)
        allabove s 
           = [t | t <- latt, s `leq` t  &&  s /= t]
        minInsert t s 
           = if     myAny (`leq` t) s 
             then   s 
             else   t : [u | u <- s, not (t `leq` u)]
     in
        [(s, iaboves s) | s <- latt]


-- ==========================================================--
--
slDijkstra :: Eq a => [(a, a, Int)] -> a -> a -> [(a, Int)]

slDijkstra roads start end
  = let considered = [(start,0,start)]
        costs = slDijkstra_aux roads end considered
        route = reverse (slDijkstra_unlink start end costs)
    in
        route


-- ==========================================================--
--
slDijkstra_aux :: Eq a => [(a, a, Int)] -> 
                          a -> 
                          [(a, Int, a)] -> 
                          [(a, Int, a)]

slDijkstra_aux roads end considered
  = let
        first3 (a,b,c) = a

        (best, bestcost, bestback) = foldl1 take_min considered
        take_min (x1,c1,b1) (x2,c2,b2) = if c1 < c2 then (x1,c1,b1) else (x2,c2,b2)
        bigY = [(y,c+bestcost,best) | (x,y,c) <- roads, x == best]
        removeBest = filter ((/= best).first3) considered

        upd (pl, newco, bak) [] = [(pl, newco, bak)]
        upd (pl, newco, bak) ((pl2, oldco, oldbak):rest)
          | pl /= pl2   = (pl2,oldco, oldbak) : upd (pl, newco, bak) rest
          | newco >= oldco  = (pl2, oldco, oldbak):rest
          | otherwise       = (pl2, newco, bak):rest

        updAll olds [] = olds
        updAll olds ((pl,newco,bak):rest) = updAll (upd (pl, newco, bak) olds) rest

        considered2 = updAll removeBest bigY        
    in  if null considered then panic "Dijkstra failed" else
        if best == end then [(best, bestcost, bestback)] else
        (best, bestcost, bestback) : slDijkstra_aux roads end considered2


-- ==========================================================--
--
slDijkstra_unlink :: Eq a => a -> a -> [(a, Int, a)] -> [(a, Int)]

slDijkstra_unlink start here costs
   = let (cell, cost, back) = head [(ce,co,ba) | (ce,co,ba) <- costs, ce == here]
     in
        if start == here then [(start,0)] else
          (cell, cost) : slDijkstra_unlink start back costs


-- ==========================================================--
-- === end                              SmallerLattice.hs ===--
-- ==========================================================--

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.