{-
The first part of Choleski decomposition.
Contains a matrix reodering function.
The generalized envelope method is implemented here.
XZ, 24/10/91
-}
{-
Modified to adopt S_arrays.
More efficient algorithms have been adopted.
They include:
a) minimum degree ordering (in module Min_degree.hs);
b) K matrix assembly.
Also, the output format has been changed.
XZ, 19/2/92
-}
module Chl_routs ( orded_mat ) where
import Defs
import S_Array -- not needed w/ proper module handling
import Norm -- ditto
import Min_degree
import Ix--1.3
infix 1 =:
(=:) a b = (a,b)
-----------------------------------------------------------
-- Liu's generalized envelope method adopted here. --
-- Reordering the system matric by firstly applying --
-- minimum degree ordering ( to minimize fill-ins ) and --
-- secondly applying postordering ( to optimize matrix --
-- structure ). The system matrix structure is found --
-- using the elimination tree. Used at the data setup --
-- stage. --
-----------------------------------------------------------
orded_mat
:: Int
-> (My_Array Int (Frac_type,((Frac_type,Frac_type,Frac_type),
(Frac_type,Frac_type,Frac_type))))
-> (My_Array Int [Int])
-> [Int]
-> (My_Array Int (My_Array Int Frac_type,My_Array Int (Int,[Frac_type])),My_Array Int Int)
orded_mat p_total el_det_fac p_steer fixed =
(init_L,o_to_n)
where
bindTo x k = k x -- old Haskell 1.0 "let", essentially
remove x = filter ((/=) x) -- also old Haskell 1.0 thing
n_bnds = (1,p_total)
n_bnds' = (0,p_total)
-- the inverse of an 1-D Int array.
inv_map = \a ->
s_array n_bnds' (map (\(i,j)->j=:i) (s_assocs a))
-- find the column indecies of nonzero entries in a row
get_js old_i map_f =
filter (\j->j<=i) (map ((!^) map_f) (old_rows!^old_i))
where i = map_f!^old_i
-- children of individual elimination tree nodes
chldrn = \e_tree ->
s_accumArray (++) [] n_bnds'
(map (\(i,j)->j=:[i]) (s_assocs e_tree))
-- the entry map from the input matrix to the output matrix
-- ( combination of o_to_min and min_to_n )
o_to_n :: (My_Array Int Int)
o_to_n = s_amap ((!^) min_to_n) o_to_min
n_to_o = inv_map o_to_n
-- the entry map of the minimum degree ordering
o_to_min = inv_map min_to_o
min_to_o = s_listArray n_bnds' (0:min_degree old_rows)
-- the entry map of postordering
-- switch off ordering
min_to_n :: My_Array Int Int
-- min_to_n = s_listArray n_bnds' (range n_bnds')
-- min_to_o = min_to_n
min_to_n =
s_array n_bnds' ((0=:0):(fst (recur ([],1) (chn!^0))))
where
chn = chldrn min_e_tree
-- recursive postordering
recur =
foldl
(
-- pattern before entering a loop
\ res r ->
-- current result of post-reordering
(recur res (chn!^r)) `bindTo` ( \ (new_reord,label) ->
((r=:label):new_reord,label+1) )
)
-- the elimination tree of the reordered matrix
new_e_tree =
s_array n_bnds
( map (\(i,j)-> (min_to_n!^i =: min_to_n!^j))
( s_assocs min_e_tree ))
-- elimination tree of the matrix after minimum degree
-- ordering
min_e_tree =
s_def_array n_bnds (0::Int)
(all_rs (1::Int) init_arr [])
where
init_arr = s_def_array n_bnds (0::Int) []
-- implementation of an elimination tree construction
-- algorithm
all_rs i ance pare =
if ( i>p_total )
then pare
else all_rs (i+1) new_ance pare++rss
where
root old@(k,old_anc) =
if ( (new_k==0) || (new_k==i) )
then old
else root (new_k,old_anc//^[k=:i])
where new_k = old_anc!^k
-- finding new parents and ancestors
(rss,new_ance) =
-- looping over connetions of current node in
-- the matrix graph
foldl
(
-- pattern before entering a loop
\ (rs,anc) k1 ->
-- appending a new parent
(root (k1,anc)) `bindTo` ( \ (r,new_anc) ->
(r=:i) `bindTo` ( \ new_r ->
if new_anc!^r /= 0
then (rs, new_anc)
else (new_r:rs, new_anc //^ [new_r]) ))
)
([],ance) (remove i (get_js (min_to_o!^i) o_to_min))
-- initial L
init_L =
s_listArray (1,length block_ends)
[
(
s_listArray bn [get_v i i|i<-range bn],
(filter (\ (_,j)->j<=u)
[ (i, find_first bn (find_non0 i))
| i <- range (l+1,p_total)
]) `bindTo` ( \ non_emp_set ->
s_def_array (l+1,p_total) (u+1,[])
[ i=:(j',[get_v i j | j<- range (j',min u (i-1))])
| (i,j') <- non_emp_set
] )
)
| bn@(l,u) <- block_bnds
]
where
get_v i j =
if ( i'<j' )
then (old_mat!^j')!^i'
else (old_mat!^i')!^j'
where
i' = n_to_o!^i
j' = n_to_o!^j
find_non0 i =
foldl ( \ar j -> all_non0s j ar )
(s_def_array (1,i) False [])
(get_js (n_to_o!^i) o_to_n)
where
all_non0s j arr =
if ( j>i || j==0 || arr!^j )
then arr
else all_non0s (new_e_tree!^j) (arr//^[j=:True])
-- finding the first non-zero entry between l and u of the ith line
find_first :: (Int,Int) -> (My_Array Int Bool) -> Int
find_first (j1,u) non0_line = f' j1
where
f' j =
if (j>u) || non0_line!^j
then j
else f' (j+1)
-- reordered matrix in a new sparse form
block_ends =
[ i | (i,j)<-s_assocs new_e_tree, j/=(i+1) ]
block_bnds = zip (1:(map ((+) 1) (init block_ends))) block_ends
-- descendants of nodes of elimination tree
decnd :: My_Array Int [Int]
decnd =
s_listArray n_bnds
[ chn_n ++ concat [ decnd!^i | i <- chn_n ]
| chn_n <- s_elems (chldrn new_e_tree)
]
-- rows of the K matrix (before ordering)
old_rows =
s_accumArray (++) [] n_bnds
( concat
[
[j|(j,_)<-sparse_assocs (old_mat!^i)] `bindTo` ( \ j_set ->
(i=:j_set):[j'=:[i]|j'<-j_set,i/=j'] )
| i <- range n_bnds
]
)
-- Value and index pairs of the original matrix.
-- This is found by assembling system K.
-- Fixed entries are multiplied by a large number
old_mat :: My_Array Int (My_Array Int Frac_type)
old_mat =
arr //^
[ (arr!^i) `bindTo` ( \ ar ->
i =: ar //^ [i=:(ar!^i)*large_scalor] )
| i <- fixed
]
where
arr =
s_listArray n_bnds
[
s_accumArray (+) (0::Frac_type) (1,i) (temp!^i)
| i<-range n_bnds
]
temp :: My_Array Int [(Int,Frac_type)]
temp =
s_accumArray (++) [] n_bnds
( concat
[
(el_det_fac!^e) `bindTo` ( \ d_f ->
(zip (range (1,p_nodel)) (p_steer!^e)) `bindTo` ( \ pairs ->
concat
[
(dd_mat!^ii) `bindTo` ( \ dd_m ->
[ i =: [j =: (dd_m!^jj) d_f]
| (jj,j) <- pairs, j<=i
] )
| (ii,i) <- pairs
] ))
| e <- s_indices el_det_fac
]
)
-- element contribution matrix
dd_mat =
s_listArray (1,p_nodel) [
s_listArray (1,p_nodel) [f11,f12,f13],
s_listArray (1,p_nodel) [f12,f22,f23],
s_listArray (1,p_nodel) [f13,f23,f33]
]
where
f = \x y u v d -> (x*y+u*v)*d
s1 = \(x,_,_) -> x
s2 = \(_,y,_) -> y
s3 = \(_,_,z) -> z
f11 (det,(x,y)) = f c1 c1 c2 c2 det
where
c1 = s1 x
c2 = s1 y
f12 = \(det,(x,y)) -> f (s1 x) (s2 x) (s1 y) (s2 y) det
f13 = \(det,(x,y)) -> f (s1 x) (s3 x) (s1 y) (s3 y) det
f22 (det,(x,y)) = f c1 c1 c2 c2 det
where
c1 = s2 x
c2 = s2 y
f23 = \(det,(x,y)) -> f (s2 x) (s3 x) (s2 y) (s3 y) det
f33 (det,(x,y)) = f c1 c1 c2 c2 det
where
c1 = s3 x
c2 = s3 y