module Rsa (encrypt, decrypt, makeKeys)
where
encrypt, decrypt :: Integer -> Integer -> String -> String
encrypt n e = unlines . map (show . power e n . code) . collect (size n)
decrypt n d = concat . map (decode . power d n . read) . lines
-------- Converting between Strings and Integers -----------
code :: String -> Integer
code = foldl accum 0
where accum x y = (128 * x) + fromIntegral (fromEnum y)
decode :: Integer -> String
decode n = reverse (expand n)
where expand 0 = []
expand x = toEnum (fromIntegral (x `mod` 128)) : expand (x `div` 128)
collect :: Int -> [a] -> [[a]]
collect 0 xs = []
collect n [] = []
collect n xs = take n xs : collect n (drop n xs)
size :: Integer -> Int
size n = (length (show n) * 47) `div` 100 -- log_128 10 = 0.4745
------- Constructing keys -------------------------
makeKeys :: Integer -> Integer -> (Integer, Integer, Integer)
makeKeys p' q' = (n, invert phi d, d)
where p = nextPrime p'
q = nextPrime q'
n = p*q
phi = (p-1)*(q-1)
d = nextPrime (p+q+1)
nextPrime :: Integer -> Integer
nextPrime a = head (filter prime [odd,odd+2..])
where odd | even a = a+1
| True = a
prime p = and [power (p-1) p x == 1 | x <- [3,5,7]]
invert :: Integer -> Integer -> Integer
invert n a = if e<0 then e+n else e
where e=iter n 0 a 1
iter :: Integer -> Integer -> Integer -> Integer -> Integer
iter g v 0 w = v
iter g v h w = iter h w (g - fact * h) (v - fact * w)
where fact = g `div` h
------- Fast exponentiation, mod m -----------------
power :: Integer -> Integer -> Integer -> Integer
power 0 m x = 1
power n m x | even n = sqr (power (n `div` 2) m x) `mod` m
| True = (x * power (n-1) m x) `mod` m
sqr :: Integer -> Integer
sqr x = x * x
|