Plan 9 from Bell Labs’s /usr/web/sources/contrib/fernan/nhc98/tests/nofib/spectral/boyer2/Rulebasetext.hs
{- Haskell version of ... ! Text of rule base for Boyer benchmark ! ! Started by Tony Kitto on 6th April 1988 ! ! Changes Log ! ! 07-04-88 ADK Corrected errors in rules ! 08-04-88 ADK Modified "or" rule to remove extra final (f) of book definition Haskell version: 23-06-93 JSM initial version -} module Rulebasetext (rules) where rules :: [String] -- Rule base extracted from Gabriel pages 118 to 126 rules = [ "(equal (compile form)\ \(reverse (codegen (optimize form) (nil) ) ) )", "(equal (eqp x y)\ \(equal (fix x)\ \(fix y) ) )", "(equal (greaterp x y)\ \(lessp y x) )", "(equal (lesseqp x y)\ \(not (lessp y x) ) )", "(equal (greatereqp x y)\ \(not (lessp y x) ) )", "(equal (boolean x)\ \(or (equal x (t) )\ \(equal x (f) ) )", "(equal (iff x y)\ \(and (implies x y)\ \(implies y x) ) )", "(equal (even1 x)\ \(if (zerop x)\ \(t)\ \(odd (1- x) ) ) )", "(equal (countps- l pred)\ \(countps-loop l pred (zero) ) )", "(equal (fact- i)\ \(fact-loop i 1) )", "(equal (reverse- x)\ \(reverse-loop x (nil) ) )", "(equal (divides x y)\ \(zerop (remainder y x) ) )", "(equal (assume-true var alist)\ \(cons (cons var (t) )\ \alist) )", "(equal (assume-false var alist)\ \(cons (cons var (f) )\ \alist) )", "(equal (tautology-checker x)\ \(tautologyp (normalize x)\ \(nil) ) )", "(equal (falsify x)\ \(falsify1 (normalize x)\ \(nil) ) )", "(equal (prime x)\ \(and (not (zerop x))\ \(not (equal x (add1 (zero) ) ) )\ \(prime1 x (1- x) ) ) )", "(equal (and p q)\ \(if p (if q (t) (f) ) (f) ) )", "(equal (or p q)\ \(if p (t) (if q (t) (f) ) ) )", -- book has extra (f) "(equal (not p)\ \(if p (f) (t) ) )", "(equal (implies p q)\ \(if p (if q (t) (f) ) (t) ) )", "(equal (fix x)\ \(if (numberp x) x (zero) ) )", "(equal (if (if a b c) d e)\ \(if a (if b d e) (if c d e) ) )", "(equal (zerop x)\ \(or (equal x (zero) )\ \(not (numberp x) ) ) )", "(equal (plus (plus x y) z )\ \(plus x (plus y z) ) )", "(equal (equal (plus a b) (zero ) )\ \(and (zerop a) (zerop b) ) )", "(equal (difference x x)\ \(zero) )", "(equal (equal (plus a b) (plus a c) )\ \(equal (fix b) (fix c) ) )", "(equal (equal (zero) (difference x y) )\ \(not (lessp y x) ) )", "(equal (equal x (difference x y) )\ \(and (numberp x)\ \(or (equal x (zero) )\ \(zerop y) ) ) )", "(equal (meaning (plus-tree (append x y) ) a)\ \(plus (meaning (plus-tree x) a)\ \(meaning (plus-tree y) a) ) )", "(equal (meaning (plus-tree (plus-fringe x) ) a)\ \(fix (meaning x a) ) )", "(equal (append (append x y) z)\ \(append x (append y z) ) )", "(equal (reverse (append a b) )\ \(append (reverse b) (reverse a) ) )", "(equal (times x (plus y z) )\ \(plus (times x y)\ \(times x z) ) )", "(equal (times (times x y) z)\ \(times x (times y z) ) )", "(equal (equal (times x y) (zero) )\ \(or (zerop x)\ \(zerop y) ) )", "(equal (exec (append x y)\ \pds envrn)\ \(exec y (exec x pds envrn)\ \envrn) )", "(equal (mc-flatten x y)\ \(append (flatten x)\ \y) )", "(equal (member x (append a b) )\ \(or (member x a)\ \(member x b) ) )", "(equal (member x (reverse y) )\ \(member x y) )", "(equal (length (reverse x) )\ \(length x) )", "(equal (member a (intersect b c) )\ \(and (member a b)\ \(member a c) ) )", "(equal (nth (zero)\ \i)\ \(zero) )", "(equal (exp i (plus j k) )\ \(times (exp i j)\ \(exp i k) ) )", "(equal (exp i (times j k) )\ \(exp (exp i j)\ \k) )", "(equal (reverse-loop x y)\ \(append (reverse x)\ \y) )", "(equal (reverse-loop x (nil) )\ \(reverse x) )", "(equal (count-list z (sort-lp x y) )\ \(plus (count-list z x)\ \(count-list z y) ) )", "(equal (equal (append a b)\ \(append a c) )\ \(equal b c) )", "(equal (plus (remainder x y)\ \(times y (quotient x y) ) )\ \(fix x) )", "(equal (power-eval (big-plus1 l i base)\ \base)\ \(plus (power-eval l base)\ \i) )", "(equal (power-eval (big-plus x y i base)\ \base)\ \(plus i (plus (power-eval x base)\ \(power-eval y base) ) ) )", "(equal (remainder y 1)\ \(zero) )", "(equal (lessp (remainder x y)\ \y)\ \(not (zerop y) ) )", "(equal (remainder x x)\ \(zero) )", "(equal (lessp (quotient i j)\ \i)\ \(and (not (zerop i) )\ \(or (zerop j)\ \(not (equal j 1) ) ) ) )", "(equal (lessp (remainder x y)\ \x)\ \(and (not (zerop y) )\ \(not (zerop x) )\ \(not (lessp x y) ) ) )", "(equal (power-eval (power-rep i base)\ \base)\ \(fix i) )", "(equal (power-eval (big-plus (power-rep i base)\ \(power-rep j base)\ \(zero)\ \base)\ \base)\ \(plus i j) )", "(equal (gcd x y)\ \(gcd y x) )", "(equal (nth (append a b)\ \i)\ \(append (nth a i)\ \(nth b (difference i (length a) ) ) ) )", "(equal (difference (plus x y)\ \x)\ \(fix y) )", "(equal (difference (plus y x)\ \x)\ \(fix y) )", "(equal (difference (plus x y)\ \(plus x z) )\ \(difference y z) )", "(equal (times x (difference c w) )\ \(difference (times c x)\ \(times w x) ) )", "(equal (remainder (times x z)\ \z)\ \(zero) )", "(equal (difference (plus b (plus a c) )\ \a)\ \(plus b c) )", "(equal (difference (add1 (plus y z)\ \z)\ \(add1 y) )", "(equal (lessp (plus x y)\ \(plus x z ) )\ \(lessp y z) )", "(equal (lessp (times x z)\ \(times y z) )\ \(and (not (zerop z) )\ \(lessp x y) ) )", "(equal (lessp y (plus x y) )\ \(not (zerop x) ) )", "(equal (gcd (times x z)\ \(times y z) )\ \(times z (gcd x y) ) )", "(equal (value (normalize x)\ \a)\ \(value x a) )", "(equal (equal (flatten x)\ \(cons y (nil) ) )\ \(and (nlistp x)\ \(equal x y) ) )", "(equal (listp (gopher x) )\ \(listp x) )", "(equal (samefringe x y)\ \(equal (flatten x)\ \(flatten y) ) )", "(equal (equal (greatest-factor x y)\ \(zero) )\ \(and (or (zerop y)\ \(equal y 1) )\ \(equal x (zero) ) ) )", "(equal (equal (greatest-factor x y)\ \1)\ \(equal x 1) )", "(equal (numberp (greatest-factor x y) )\ \(not (and (or (zerop y)\ \(equal y 1) )\ \(not (numberp x) ) ) ) )", "(equal (times-list (append x y) )\ \(times (times-list x)\ \(times-list y) ) )", "(equal (prime-list (append x y) )\ \(and (prime-list x)\ \(prime-list y) ) )", "(equal (equal z (times w z) )\ \(and (numberp z)\ \(or (equal z (zero) )\ \(equal w 1) ) ) )", "(equal (greatereqpr x y)\ \(not (lessp x y) ) )", "(equal (equal x (times x y) )\ \(or (equal x (zero) )\ \(and (numberp x)\ \(equal y 1) ) ) )", "(equal (remainder (times y x)\ \y)\ \(zero) )", "(equal (equal (times a b)\ \1)\ \(and (not (equal a (zero) ) )\ \(not (equal b (zero) ) )\ \(numberp a)\ \(numberp b)\ \(equal (1- a)\ \(zero) )\ \(equal (1- b)\ \(zero) ) ) )", "(equal (lessp (length (delete x l) )\ \(length l) )\ \(member x l) )", "(equal (sort2 (delete x l) )\ \(delete x (sort2 l) ) )", "(equal (dsort x)\ \(sort2 x) )", "(equal (length\ \(cons \ \x1\ \(cons \ \x2\ \(cons \ \x3\ \(cons \ \x4\ \(cons \ \x5\ \(cons x6 x7) ) ) ) ) ) )\ \(plus 6 (length x7) ) )", "(equal (difference (add1 (add1 x) )\ \2)\ \(fix x) )", "(equal (quotient (plus x (plus x y) )\ \2)\ \(plus x (quotient y 2) ) )", "(equal (sigma (zero)\ \i)\ \(quotient (times i (add1 i) )\ \2) )", "(equal (plus x (add1 y) )\ \(if (numberp y)\ \(add1 (plus x y) )\ \(add1 x) ) )", "(equal (equal (difference x y)\ \(difference z y) )\ \(if (lessp x y)\ \(not (lessp y z) )\ \(if (lessp z y)\ \(not (lessp y x) )\ \(equal (fix x)\ \(fix z) ) ) ) )", "(equal (meaning (plus-tree (delete x y) )\ \a)\ \(if (member x y)\ \(difference (meaning (plus-tree y)\ \a)\ \(meaning x a) )\ \(meaning (plus-tree y)\ \a) ) )", "(equal (times x (add1 y) )\ \(if (numberp y)\ \(plus x (times x y) )\ \(fix x) ) )", "(equal (nth (nil)\ \i)\ \(if (zerop i)\ \(nil)\ \(zero) ) )", "(equal (last (append a b) )\ \(if (listp b)\ \(last b)\ \(if (listp a)\ \(cons (car (last a) )\ \b)\ \b) ) )", "(equal (equal (lessp x y)\ \z)\ \(if (lessp x y)\ \(equal t z)\ \(equal f z) ) )", "(equal (assignment x (append a b) )\ \(if (assignedp x a)\ \(assignment x a)\ \(assignment x b) ) )", "(equal (car (gopher x) )\ \(if (listp x)\ \(car (flatten x) )\ \(zero) ) )", "(equal (flatten (cdr (gopher x) ) )\ \(if (listp x)\ \(cdr (flatten x) )\ \(cons (zero)\ \(nil) ) ) )", "(equal (quotient (times y x)\ \y)\ \(if (zerop y)\ \(zero)\ \(fix x) ) )", "(equal (get j (set i val mem) )\ \(if (eqp j i)\ \val\ \(get j mem) ) )"]