Plan 9 from Bell Labs’s /usr/web/sources/contrib/fgb/root/sys/src/cmd/magick/coders/mat.c

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                  M   M   AAA   TTTTT  L       AAA   BBBB                    %
%                  MM MM  A   A    T    L      A   A  B   B                   %
%                  M M M  AAAAA    T    L      AAAAA  BBBB                    %
%                  M   M  A   A    T    L      A   A  B   B                   %
%                  M   M  A   A    T    LLLLL  A   A  BBBB                    %
%                                                                             %
%                                                                             %
%                        Read MATLAB Image Format.                            %
%                                                                             %
%                              Software Design                                %
%                              Jaroslav Fojtik                                %
%                                 June 2001                                   %
%                                                                             %
%                                                                             %
%  Permission is hereby granted, free of charge, to any person obtaining a    %
%  copy of this software and associated documentation files ("ImageMagick"),  %
%  to deal in ImageMagick without restriction, including without limitation   %
%  the rights to use, copy, modify, merge, publish, distribute, sublicense,   %
%  and/or sell copies of ImageMagick, and to permit persons to whom the       %
%  ImageMagick is furnished to do so, subject to the following conditions:    %
%                                                                             %
%  The above copyright notice and this permission notice shall be included in %
%  all copies or substantial portions of ImageMagick.                         %
%                                                                             %
%  The software is provided "as is", without warranty of any kind, express or %
%  implied, including but not limited to the warranties of merchantability,   %
%  fitness for a particular purpose and noninfringement.  In no event shall   %
%  ImageMagick Studio be liable for any claim, damages or other liability,    %
%  whether in an action of contract, tort or otherwise, arising from, out of  %
%  or in connection with ImageMagick or the use or other dealings in          %
%  ImageMagick.                                                               %
%                                                                             %
%  Except as contained in this notice, the name of the ImageMagick Studio     %
%  shall not be used in advertising or otherwise to promote the sale, use or  %
%  other dealings in ImageMagick without prior written authorization from the %
%  ImageMagick Studio.                                                        %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
*/

/*
  Include declarations.
*/
#include "magick/studio.h"
#include "magick/blob.h"
#include "magick/blob-private.h"
#include "magick/color-private.h"
#include "magick/exception.h"
#include "magick/exception-private.h"
#include "magick/image.h"
#include "magick/image-private.h"
#include "magick/list.h"
#include "magick/magick.h"
#include "magick/memory_.h"
#include "magick/shear.h"
#include "magick/quantum-private.h"
#include "magick/static.h"
#include "magick/string_.h"
#include "magick/module.h"
#include "magick/transform.h"

/*
  Forward declaration.
*/
static MagickBooleanType
  WriteMATImage(const ImageInfo *,Image *);

/* Auto coloring method, sorry this creates some artefact inside data
MinReal+j*MaxComplex = red  MaxReal+j*MaxComplex = black
MinReal+j*0 = white          MaxReal+j*0 = black
MinReal+j*MinComplex = blue  MaxReal+j*MinComplex = black
*/

typedef struct
{
  char identific[124];
  unsigned short Version;
  char EndianIndicator[2];
  unsigned long DataType;
  unsigned long ObjectSize;
  unsigned long unknown1;
  unsigned long unknown2;

  unsigned short unknown5;
  unsigned char StructureFlag;
  unsigned char StructureClass;
  unsigned long unknown3;
  unsigned long unknown4;
  unsigned long DimFlag;

  unsigned long SizeX;
  unsigned long SizeY;
  unsigned short Flag1;
  unsigned short NameFlag;
}
MATHeader;

static const char *MonthsTab[12]={"Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"};
static const char *DayOfWTab[7]={"Sun","Mon","Tue","Wed","Thu","Fri","Sat"};
static const char *OsDesc=
#ifdef __WIN32__
    "PCWIN";
#else
 #ifdef __APPLE__
    "MAC";
 #else
    "LNX86";
 #endif
#endif

typedef enum
  {
    miINT8 = 1,			/* 8 bit signed */
    miUINT8,			/* 8 bit unsigned */
    miINT16,			/* 16 bit signed */
    miUINT16,			/* 16 bit unsigned */
    miINT32,			/* 32 bit signed */
    miUINT32,			/* 32 bit unsigned */
    miSINGLE,			/* IEEE 754 single precision float */
    miRESERVE1,
    miDOUBLE,			/* IEEE 754 double precision float */
    miRESERVE2,
    miRESERVE3,
    miINT64,			/* 64 bit signed */
    miUINT64,			/* 64 bit unsigned */
    miMATRIX,		        /* MATLAB array */
    miCOMPRESSED,	        /* Compressed Data */
    miUTF8,		        /* Unicode UTF-8 Encoded Character Data */
    miUTF16,		        /* Unicode UTF-16 Encoded Character Data */
    miUTF32			/* Unicode UTF-32 Encoded Character Data */
  } mat5_data_type;

typedef enum
  {
    mxCELL_CLASS=1,		/* cell array */
    mxSTRUCT_CLASS,		/* structure */
    mxOBJECT_CLASS,		/* object */
    mxCHAR_CLASS,		/* character array */
    mxSPARSE_CLASS,		/* sparse array */
    mxDOUBLE_CLASS,		/* double precision array */
    mxSINGLE_CLASS,		/* single precision floating point */
    mxINT8_CLASS,		/* 8 bit signed integer */
    mxUINT8_CLASS,		/* 8 bit unsigned integer */
    mxINT16_CLASS,		/* 16 bit signed integer */
    mxUINT16_CLASS,		/* 16 bit unsigned integer */
    mxINT32_CLASS,		/* 32 bit signed integer */
    mxUINT32_CLASS,		/* 32 bit unsigned integer */
    mxINT64_CLASS,		/* 64 bit signed integer */
    mxUINT64_CLASS,		/* 64 bit unsigned integer */
    mxFUNCTION_CLASS            /* Function handle */
  } arrayclasstype;

#define FLAG_COMPLEX 0x8
#define FLAG_GLOBAL  0x4
#define FLAG_LOGICAL 0x2

static const QuantumType z2qtype[4] = {GrayQuantum, BlueQuantum, GreenQuantum, RedQuantum};


static void InsertComplexDoubleRow(double *p, int y, Image * image, double MinVal,
                                  double MaxVal)
{
  double f;
  int x;
  register PixelPacket *q;

  if (MinVal == 0)
    MinVal = -1;
  if (MaxVal == 0)
    MaxVal = 1;

  q = SetImagePixels(image, 0, y, image->columns, 1);
  if (q == (PixelPacket *) NULL)
    return;
  for (x = 0; x < (long) image->columns; x++)
  {
    if (*p > 0)
    {
      f = (*p / MaxVal) * (MaxRGB - q->red);
      if (f + q->red > MaxRGB)
        q->red = MaxRGB;
      else
        q->red += (int) f;
      if ((int) f / 2.0 > q->green)
        q->green = q->blue = 0;
      else
        q->green = q->blue -= (int) (f / 2.0);
    }
    if (*p < 0)
    {
      f = (*p / MaxVal) * (MaxRGB - q->blue);
      if (f + q->blue > MaxRGB)
        q->blue = MaxRGB;
      else
        q->blue += (int) f;
      if ((int) f / 2.0 > q->green)
        q->green = q->red = 0;
      else
        q->green = q->red -= (int) (f / 2.0);
    }
    p++;
    q++;
  }
  if (!SyncImagePixels(image))
    return;
  /*          if (image->previous == (Image *) NULL)
     if (QuantumTick(y,image->rows))
     MagickMonitor(LoadImageText,image->rows-y-1,image->rows); */
  return;
}


static void InsertComplexFloatRow(float *p, int y, Image * image, double MinVal,
                                  double MaxVal)
{
  double f;
  int x;
  register PixelPacket *q;

  if (MinVal == 0)
    MinVal = -1;
  if (MaxVal == 0)
    MaxVal = 1;

  q = SetImagePixels(image, 0, y, image->columns, 1);
  if (q == (PixelPacket *) NULL)
    return;
  for (x = 0; x < (long) image->columns; x++)
  {
    if (*p > 0)
    {
      f = (*p / MaxVal) * (MaxRGB - q->red);
      if (f + q->red > MaxRGB)
        q->red = MaxRGB;
      else
        q->red += (int) f;
      if ((int) f / 2.0 > q->green)
        q->green = q->blue = 0;
      else
        q->green = q->blue -= (int) (f / 2.0);
    }
    if (*p < 0)
    {
      f = (*p / MaxVal) * (MaxRGB - q->blue);
      if (f + q->blue > MaxRGB)
        q->blue = MaxRGB;
      else
        q->blue += (int) f;
      if ((int) f / 2.0 > q->green)
        q->green = q->red = 0;
      else
        q->green = q->red -= (int) (f / 2.0);
    }
    p++;
    q++;
  }
  if (!SyncImagePixels(image))
    return;
  /*          if (image->previous == (Image *) NULL)
     if (QuantumTick(y,image->rows))
     MagickMonitor(LoadImageText,image->rows-y-1,image->rows); */
  return;
}


/************** READERS ******************/

/* This function reads one block of floats*/
static void ReadBlobFloatsLSB(Image * image, size_t len, float *data)
{
  while (len >= 4)
  {
    *data++ = ReadBlobFloat(image);
    len -= sizeof(float);
  }
  if (len > 0)
    (void) SeekBlob(image, len, SEEK_CUR);
}

static void ReadBlobFloatsMSB(Image * image, size_t len, float *data)
{
  while (len >= 4)
  {
    *data++ = ReadBlobFloat(image);
    len -= sizeof(float);
  }
  if (len > 0)
    (void) SeekBlob(image, len, SEEK_CUR);
}

/* This function reads one block of doubles*/
static void ReadBlobDoublesLSB(Image * image, size_t len, double *data)
{
  while (len >= 8)
  {
    *data++ = ReadBlobDouble(image);
    len -= sizeof(double);
  }
  if (len > 0)
    (void) SeekBlob(image, len, SEEK_CUR);
}

static void ReadBlobDoublesMSB(Image * image, size_t len, double *data)
{
  while (len >= 8)
  {
    *data++ = ReadBlobDouble(image);
    len -= sizeof(double);
  }
  if (len > 0)
    (void) SeekBlob(image, len, SEEK_CUR);
}


/* Calculate minimum and maximum from a given block of data */
static void CalcMinMax(Image *image, MATHeader *MATLAB_HDR, unsigned long CellType, unsigned ldblk, void *BImgBuff, double *Min, double *Max)
{
MagickOffsetType filepos;
int i, x;
void (*ReadBlobDoublesXXX)(Image * image, size_t len, double *data);
void (*ReadBlobFloatsXXX)(Image * image, size_t len, float *data);
double *dblrow;
float *fltrow;

  if (!strncmp(MATLAB_HDR->EndianIndicator, "IM", 2))
  {    
    ReadBlobDoublesXXX = ReadBlobDoublesLSB;
    ReadBlobFloatsXXX = ReadBlobFloatsLSB;   
  } 
  else		/* MI */
  {    
    ReadBlobDoublesXXX = ReadBlobDoublesMSB;
    ReadBlobFloatsXXX = ReadBlobFloatsMSB;   
  }

  filepos = TellBlob(image);	   /* Please note that file seeking occurs only in the case of doubles */
  for (i = 0; i < (long) MATLAB_HDR->SizeY; i++)
  {
    if (CellType==miDOUBLE)
    {
      ReadBlobDoublesXXX(image, ldblk, (double *)BImgBuff);
      dblrow = (double *)BImgBuff;
      if (i == 0)
      {
        *Min = *Max = *dblrow;
      }
      for (x = 0; x < (long) MATLAB_HDR->SizeX; x++)
      {
        if (*Min > *dblrow)
          *Min = *dblrow;
        if (*Max < *dblrow)
          *Max = *dblrow;
        dblrow++;
      }
    }
    if (CellType==miSINGLE)
    {
      ReadBlobFloatsXXX(image, ldblk, (float *)BImgBuff);
      fltrow = (float *)BImgBuff;
      if (i == 0)
      {
        *Min = *Max = *fltrow;
      }
    for (x = 0; x < (long) MATLAB_HDR->SizeX; x++)
      {
        if (*Min > *fltrow)
          *Min = *fltrow;
        if (*Max < *fltrow)
          *Max = *fltrow;
        fltrow++;
      }
    }
  }
  (void) SeekBlob(image, filepos, SEEK_SET);
}


static void FixSignedValues(PixelPacket *q, int y)
{
  while(y-->0)
  {
     /* Please note that negative values will overflow
        Q=8; MaxRGB=255: <0;127> + 127+1 = <128; 255> 
		       <-1;-128> + 127+1 = <0; 127> */
    q->red += MaxRGB/2 + 1;
    q->green += MaxRGB/ + 1;
    q->blue += MaxRGB/ + 1;
    q++;
  }
}


/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   R e a d M A T L A B i m a g e                                             %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  ReadMATImage() reads an MAT X image file and returns it.  It allocates
%  the memory necessary for the new Image structure and returns a pointer to
%  the new image.
%
%  The format of the ReadMATImage method is:
%
%      Image *ReadMATImage(const ImageInfo *image_info,ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image_info: Specifies a pointer to a ImageInfo structure.
%
%    o exception: return any errors or warnings in this structure.
%
*/

static inline size_t MagickMin(const size_t x,const size_t y)
{
  if (x < y)
    return(x);
  return(y);
}

static Image *ReadMATImage(const ImageInfo *image_info,ExceptionInfo *exception)
{
  Image *image,
   *rotated_image;
  PixelPacket *q;
  unsigned int status;
  MATHeader MATLAB_HDR;
  unsigned long size;  
  unsigned long CellType;
  QuantumInfo quantum_info;
  int i;
  long ldblk;
  unsigned char *BImgBuff = NULL;
  double MinVal, MaxVal;
  unsigned long Unknown6;
  unsigned z;
  int logging;
  MagickOffsetType filepos=0x80;
  BlobInfo *blob;

  unsigned long (*ReadBlobXXXLong)(Image *image);
  unsigned short (*ReadBlobXXXShort)(Image *image);
  void (*ReadBlobDoublesXXX)(Image * image, size_t len, double *data);
  void (*ReadBlobFloatsXXX)(Image * image, size_t len, float *data);


  assert(image_info != (const ImageInfo *) NULL);
  assert(image_info->signature == MagickSignature);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickSignature);
  logging=LogMagickEvent(CoderEvent,GetMagickModule(),"enter"); 

  /*
     Open image file.
   */
  image = AllocateImage(image_info);
  status = OpenBlob(image_info, image, ReadBinaryBlobMode, exception);
  if (status == MagickFalse)
    {
      image=DestroyImageList(image);
      return((Image *) NULL);
    }
  /*
     Read MATLAB image.
   */
  (void) ReadBlob(image, 124, (unsigned char *) &MATLAB_HDR.identific);
  MATLAB_HDR.Version = ReadBlobLSBShort(image);
  (void) ReadBlob(image, 2, (unsigned char *) &MATLAB_HDR.EndianIndicator);

  GetQuantumInfo(image_info,&quantum_info);

  if (logging) (void)LogMagickEvent(CoderEvent,GetMagickModule(),"  Endian %c%c",
        MATLAB_HDR.EndianIndicator[0],MATLAB_HDR.EndianIndicator[1]);
  if (!strncmp(MATLAB_HDR.EndianIndicator, "IM", 2))
  {
    ReadBlobXXXLong = ReadBlobLSBLong;
    ReadBlobXXXShort = ReadBlobLSBShort;
    ReadBlobDoublesXXX = ReadBlobDoublesLSB;
    ReadBlobFloatsXXX = ReadBlobFloatsLSB;
    image->endian = LSBEndian;
  } 
  else if (!strncmp(MATLAB_HDR.EndianIndicator, "MI", 2))
  {
    ReadBlobXXXLong = ReadBlobMSBLong;
    ReadBlobXXXShort = ReadBlobMSBShort;
    ReadBlobDoublesXXX = ReadBlobDoublesMSB;
    ReadBlobFloatsXXX = ReadBlobFloatsMSB;
    image->endian = MSBEndian;
  }
  else 
    goto MATLAB_KO;    /* unsupported endian */

  if (strncmp(MATLAB_HDR.identific, "MATLAB", 6))
MATLAB_KO: ThrowReaderException(CorruptImageError,"ImproperImageHeader");

  filepos = TellBlob(image);
  while(!EOFBlob(image)) /* object parser loop */
  {
    SeekBlob(image,filepos,SEEK_SET);
    //printf("pos=%X\n",TellBlob(image));

    MATLAB_HDR.DataType = ReadBlobXXXLong(image);
    if(EOFBlob(image)) break;
    MATLAB_HDR.ObjectSize = ReadBlobXXXLong(image);
    if(EOFBlob(image)) break;
    filepos += MATLAB_HDR.ObjectSize + 4 + 4;

    if (MATLAB_HDR.DataType != miMATRIX) continue;  /* skip another objects. */    
 
    MATLAB_HDR.unknown1 = ReadBlobXXXLong(image);
    MATLAB_HDR.unknown2 = ReadBlobXXXLong(image);  

    MATLAB_HDR.unknown5 = ReadBlobXXXLong(image);
    MATLAB_HDR.StructureClass = MATLAB_HDR.unknown5 & 0xFF;
    MATLAB_HDR.StructureFlag = (MATLAB_HDR.unknown5>>8) & 0xFF;  

    MATLAB_HDR.unknown3 = ReadBlobXXXLong(image);
    MATLAB_HDR.unknown4 = ReadBlobXXXLong(image);
    MATLAB_HDR.DimFlag = ReadBlobXXXLong(image);
    MATLAB_HDR.SizeX = ReadBlobXXXLong(image);
    MATLAB_HDR.SizeY = ReadBlobXXXLong(image);  
   

    switch(MATLAB_HDR.DimFlag)
    {
      case  8: z=1; break;	       /* 2D matrix*/
      case 12: z=ReadBlobXXXLong(image); /* 3D matrix RGB*/
  	       Unknown6 = ReadBlobXXXLong(image);
	       if(z!=3) ThrowReaderException(CoderError, "MultidimensionalMatricesAreNotSupported");
	       break;
      default: ThrowReaderException(CoderError, "MultidimensionalMatricesAreNotSupported");
    }  

    MATLAB_HDR.Flag1 = ReadBlobXXXShort(image);
    MATLAB_HDR.NameFlag = ReadBlobXXXShort(image);

    if (logging) (void)LogMagickEvent(CoderEvent,GetMagickModule(),
          "MATLAB_HDR.StructureClass %d",MATLAB_HDR.StructureClass);
    if (MATLAB_HDR.StructureClass != mxCHAR_CLASS && 
        MATLAB_HDR.StructureClass != mxSINGLE_CLASS &&	     /* float + complex float */
        MATLAB_HDR.StructureClass != mxDOUBLE_CLASS &&	     /* double + complex double */
        MATLAB_HDR.StructureClass != mxINT8_CLASS &&
        MATLAB_HDR.StructureClass != mxUINT8_CLASS &&          /* uint8 + uint8 3D */
        MATLAB_HDR.StructureClass != mxINT16_CLASS &&
        MATLAB_HDR.StructureClass != mxUINT16_CLASS &&	     /* uint16 + uint16 3D */
        MATLAB_HDR.StructureClass != mxINT32_CLASS &&
        MATLAB_HDR.StructureClass != mxUINT32_CLASS &&	     /* uint32 + uint32 3D */
        MATLAB_HDR.StructureClass != mxINT64_CLASS &&
        MATLAB_HDR.StructureClass != mxUINT64_CLASS)	     /* uint64 + uint64 3D */
      ThrowReaderException(CoderError,"UnsupportedCellTypeInTheMatrix");

    switch (MATLAB_HDR.NameFlag)
    {
      case 0:
        size = ReadBlobXXXLong(image);	/* Object name string size */
        size = 4 * (long) ((size + 3 + 1) / 4);
        (void) SeekBlob(image, size, SEEK_CUR);
        break;
      case 1:
      case 2:
      case 3:
      case 4:
        (void) ReadBlob(image, 4, (unsigned char *) &size); /* Object name string */
        break;
      default:
        goto MATLAB_KO;
    }

    CellType = ReadBlobXXXLong(image);    /* Additional object type */
    if (logging) (void)LogMagickEvent(CoderEvent,GetMagickModule(),
          "MATLAB_HDR.CellType: %ld",CellType);
  
    (void) ReadBlob(image, 4, (unsigned char *) &size);     /* data size */

    switch (CellType)
    {
      case miINT8:
      case miUINT8:
        image->depth= 8;
        ldblk = (long) MATLAB_HDR.SizeX;      
        break;
      case miINT16:
      case miUINT16:
        image->depth= 16;
        ldblk = (long) (2 * MATLAB_HDR.SizeX);
        break;
      case miINT32:
      case miUINT32:
        image->depth= 32;
        ldblk = (long) (4 * MATLAB_HDR.SizeX);      
        break;
      case miINT64:
      case miUINT64:
        image->depth= 64;
        ldblk = (long) (8 * MATLAB_HDR.SizeX);      
        break;   
      case miSINGLE:
        image->depth= 32;
        quantum_info.format=FloatingPointQuantumFormat;
        if (MATLAB_HDR.StructureFlag & FLAG_COMPLEX)
	{                         /* complex float type cell */
	}
        ldblk = (long) (4 * MATLAB_HDR.SizeX);
        break;
      case miDOUBLE:
        image->depth= 64; 
        quantum_info.format=FloatingPointQuantumFormat;
        if (sizeof(double) != 8)
          ThrowReaderException(CoderError, "IncompatibleSizeOfDouble");
        if (MATLAB_HDR.StructureFlag & FLAG_COMPLEX)
	{                         /* complex double type cell */        
	}
        ldblk = (long) (8 * MATLAB_HDR.SizeX);
        break;
      default:
        ThrowReaderException(CoderError, "UnsupportedCellTypeInTheMatrix");
    }

    image->columns = MATLAB_HDR.SizeX;
    image->rows = MATLAB_HDR.SizeY;
    image->colors = 1l >> 8;
    if (image->columns == 0 || image->rows == 0)
      goto MATLAB_KO;

    /*
      If ping is true, then only set image size and colors without
      reading any image data.
    */
    if (image_info->ping)
    {
      unsigned long temp = image->columns;
      image->columns = image->rows;
      image->rows = temp;
      goto done_reading; //!!!!!! BAD  !!!!
    }  

  /* ----- Load raster data ----- */
    BImgBuff = (unsigned char *) AcquireQuantumMemory(ldblk,sizeof(*BImgBuff));
    if (BImgBuff == NULL)
      ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");

    MinVal = 0;
    MaxVal = 0;
    if (CellType==miDOUBLE || CellType==miSINGLE)        /* Find Min and Max Values for floats */
    {
      CalcMinMax(image, &MATLAB_HDR, CellType, ldblk, BImgBuff, &quantum_info.minimum, &quantum_info.maximum);
    }

    /* Main loop for reading all scanlines */
    if(z==1) z=0; /* read grey scanlines */
		/* else read color scanlines */
    do
    {
      for (i = 0; i < (long) MATLAB_HDR.SizeY; i++)
      {
        q=SetImagePixels(image,0,MATLAB_HDR.SizeY-i-1,image->columns,1);
        if (q == (PixelPacket *)NULL) goto ExitLoop;
        (void) ReadBlob(image, ldblk, (unsigned char *)BImgBuff);	  
        (void) ExportQuantumPixels(image,&quantum_info,z2qtype[z],BImgBuff);
        if (z<=1 &&			 // fix only during a last pass z==0 || z==1
	        (CellType==miINT8 || CellType==miINT16 || CellType==miINT32 || CellType==miINT64))
	  FixSignedValues(q,MATLAB_HDR.SizeX);
        if (!SyncImagePixels(image)) goto ExitLoop;
      }
    } while(z-- >= 2);
ExitLoop:


    /* Read complex part of numbers here */
    if (MATLAB_HDR.StructureFlag & FLAG_COMPLEX)
    {        /* Find Min and Max Values for complex parts of floats */
      CellType = ReadBlobXXXLong(image);    /* Additional object type */
      i = ReadBlobXXXLong(image);           /* size of a complex part - toss away*/

      if (CellType==miDOUBLE || CellType==miSINGLE)
      {
        CalcMinMax(image, &MATLAB_HDR, CellType, ldblk, BImgBuff, &MinVal, &MaxVal);      
      }

      if (CellType==miDOUBLE)
        for (i = 0; i < (long) MATLAB_HDR.SizeY; i++)
	{
          ReadBlobDoublesXXX(image, ldblk, (double *)BImgBuff);
          InsertComplexDoubleRow((double *)BImgBuff, i, image, MinVal, MaxVal);
	}

      if (CellType==miSINGLE)
        for (i = 0; i < (long) MATLAB_HDR.SizeY; i++)
	{
          ReadBlobFloatsXXX(image, ldblk, (float *)BImgBuff);
          InsertComplexFloatRow((float *)BImgBuff, i, image, MinVal, MaxVal);
	}    
    }

      /* Image is gray when no complex flag is set and 2D Matrix AGAIN!!! */
      /*  Rotate image. */
    rotated_image = RotateImage(image, 90.0, exception);
    if (rotated_image != (Image *) NULL)
    {
        /* Remove page offsets added by RotateImage */
      rotated_image->page.x=0;
      rotated_image->page.y=0;

      blob = rotated_image->blob;
      rotated_image->blob = image->blob;
      image->blob = blob;
      AppendImageToList(&image,rotated_image);      
      DeleteImageFromList(&image);      
    }

done_reading:

      /* Allocate next image structure. */    
    AllocateNextImage(image_info,image);   
    if (image->next == (Image *) NULL) break;                
    image=SyncNextImageInList(image);
    image->columns=image->rows=0;
    image->colors=0;    

      /* row scan buffer is no longer needed */
    BImgBuff=(unsigned char *) RelinquishMagickMemory(BImgBuff);
  }


  BImgBuff=(unsigned char *) RelinquishMagickMemory(BImgBuff);
  CloseBlob(image);


  {
    Image *p;    
    long scene=0;
    
    /*
      Rewind list, removing any empty images while rewinding.
    */
    p=image;
    image=NULL;
    while (p != (Image *) NULL)
      {
        Image *tmp=p;
        if ((p->rows == 0) || (p->columns == 0)) {
          p=p->previous;
          DeleteImageFromList(&tmp);
        } else {
          image=p;
          p=p->previous;
        }
      }
    
    /*
      Fix scene numbers
    */
    for (p=image; p != (Image *) NULL; p=p->next)
      p->scene=scene++;
  }

  if (logging) (void) LogMagickEvent(CoderEvent,GetMagickModule(),"return");
  return (image);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   R e g i s t e r M A T I m a g e                                           %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  Method RegisterMATImage adds attributes for the MAT image format to
%  the list of supported formats.  The attributes include the image format
%  tag, a method to read and/or write the format, whether the format
%  supports the saving of more than one frame to the same file or blob,
%  whether the format supports native in-memory I/O, and a brief
%  description of the format.
%
%  The format of the RegisterMATImage method is:
%
%      unsigned long RegisterMATImage(void)
%
*/
ModuleExport unsigned long RegisterMATImage(void)
{
  MagickInfo * entry;

  entry = SetMagickInfo("MAT");
  entry->decoder=(DecodeImageHandler *) ReadMATImage;
  entry->encoder=(EncodeImageHandler *) WriteMATImage;
  entry->seekable_stream=MagickTrue;
  entry->description=AcquireString("MATLAB image format");
  entry->module=AcquireString("MAT");
  (void) RegisterMagickInfo(entry);
  return(MagickImageCoderSignature);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   U n r e g i s t e r M A T I m a g e                                       %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  Method UnregisterMATImage removes format registrations made by the
%  MAT module from the list of supported formats.
%
%  The format of the UnregisterMATImage method is:
%
%      UnregisterMATImage(void)
%
*/
ModuleExport void UnregisterMATImage(void)
{
  (void) UnregisterMagickInfo("MAT");
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   W r i t e M A T L A B I m a g e                                           %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  Function WriteMATImage writes an Matlab matrix to a file.  
%
%  The format of the WriteMATImage method is:
%
%      unsigned int WriteMATImage(const ImageInfo *image_info,Image *image)
%
%  A description of each parameter follows.
%
%    o status: Function WriteMATImage return True if the image is written.
%      False is returned is there is a memory shortage or if the image file
%      fails to write.
%
%    o image_info: Specifies a pointer to a ImageInfo structure.
%
%    o image:  A pointer to an Image structure.
%
*/
static MagickBooleanType WriteMATImage(const ImageInfo *image_info,Image *image)
{
  long y;
  unsigned z;
  const PixelPacket *p;
  unsigned int status;
  int logging;
  unsigned long DataSize;
  char padding;
  char MATLAB_HDR[0x80];
  time_t current_time;
  const struct tm *t;
  unsigned char *pixels;
  int is_gray;

  MagickOffsetType
    scene;

  QuantumInfo
    quantum_info;

  /*
    Open output image file.
  */
  assert(image_info != (const ImageInfo *) NULL);
  assert(image_info->signature == MagickSignature);
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  logging=LogMagickEvent(CoderEvent,GetMagickModule(),"enter MAT");
  status=OpenBlob(image_info,image,WriteBinaryBlobMode,&image->exception);
  if (status == MagickFalse)
    return(MagickFalse);
  image->depth=8;

  current_time=time((time_t *) NULL);
  t=localtime(&current_time);
  (void) memset(MATLAB_HDR,' ',MagickMin(sizeof(MATLAB_HDR),124));
  FormatMagickString(MATLAB_HDR,MaxTextExtent,"MATLAB 5.0 MAT-file, Platform: %s, Created on: %s %s %2d %2d:%2d:%2d %d",
    OsDesc,
    DayOfWTab[t->tm_wday],
    MonthsTab[t->tm_mon],
    t->tm_mday,
    t->tm_hour,t->tm_min,t->tm_sec,
    t->tm_year+1900);
  MATLAB_HDR[0x7C]=0;
  MATLAB_HDR[0x7D]=1;
  MATLAB_HDR[0x7E]='I';
  MATLAB_HDR[0x7F]='M';
  (void) WriteBlob(image,sizeof(MATLAB_HDR),(unsigned char *) MATLAB_HDR);
  scene=0;
  do
  {
    if (image_info->colorspace == UndefinedColorspace)
      (void) SetImageColorspace(image,RGBColorspace);
    pixels=(unsigned char *) AcquireQuantumMemory(image->rows,sizeof(*pixels));
    if (pixels == (unsigned char *) NULL)
      ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");

    is_gray = IsGrayImage(image,&image->exception);
    z = is_gray ? 0 : 3;

    /*
      Store MAT header.
    */
    DataSize = image->rows /*Y*/ * image->columns /*X*/;
    if(!is_gray) DataSize *= 3 /*Z*/;
    padding=((unsigned char)(DataSize-1) & 0x7) ^ 0x7;

    (void) WriteBlobLSBLong(image, miMATRIX);
    (void) WriteBlobLSBLong(image, DataSize+padding+(is_gray ? 48l : 56l));
    (void) WriteBlobLSBLong(image, 0x6); /* 0x88 */
    (void) WriteBlobLSBLong(image, 0x8); /* 0x8C */
    (void) WriteBlobLSBLong(image, 0x6); /* 0x90 */  
    (void) WriteBlobLSBLong(image, 0);   
    (void) WriteBlobLSBLong(image, 0x5); /* 0x98 */
    (void) WriteBlobLSBLong(image, is_gray ? 0x8 : 0xC); /* 0x9C - DimFlag */
    (void) WriteBlobLSBLong(image, image->rows);    /* x: 0xA0 */  
    (void) WriteBlobLSBLong(image, image->columns); /* y: 0xA4 */  
    if(!is_gray)
    {
      (void) WriteBlobLSBLong(image, 3); /* z: 0xA8 */  
      (void) WriteBlobLSBLong(image, 0);
    }
    (void) WriteBlobLSBShort(image, 1);  /* 0xB0 */  
    (void) WriteBlobLSBShort(image, 1);  /* 0xB2 */
    (void) WriteBlobLSBLong(image, 'M'); /* 0xB4 */
    (void) WriteBlobLSBLong(image, 0x2); /* 0xB8 */  
    (void) WriteBlobLSBLong(image, DataSize); /* 0xBC */

    /*
      Store image data.
    */
    GetQuantumInfo(image_info,&quantum_info);
    do
    {
      for (y=0; y < (long)image->columns; y++)
      {
        p=AcquireImagePixels(image,y,0,1,image->rows,&image->exception);
        if (p == (const PixelPacket *) NULL)
          break;
        (void) ImportQuantumPixels(image,&quantum_info,z2qtype[z],pixels);
        (void) WriteBlob(image,image->rows,pixels);
      }    
      if (!SyncImagePixels(image))
        break;
    } while(z-- >= 2);
    while(padding-->0) (void) WriteBlobByte(image,0);
    pixels=(unsigned char *) RelinquishMagickMemory(pixels);
    if (GetNextImageInList(image) == (Image *) NULL)
      break;
    image=SyncNextImageInList(image);
    if (image->progress_monitor != (MagickProgressMonitor) NULL)
      {
        status=image->progress_monitor(SaveImagesTag,scene,
          GetImageListLength(image),image->client_data);
        if (status == MagickFalse)
          break;
      }
    scene++;
  } while (image_info->adjoin != MagickFalse);
  CloseBlob(image);
  return(MagickTrue);
}

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.