/*
* tclProc.c --
*
* This file contains routines that implement Tcl procedures, including
* the "proc" and "uplevel" commands.
*
* Copyright (c) 1987-1993 The Regents of the University of California.
* Copyright (c) 1994-1998 Sun Microsystems, Inc.
* Copyright (c) 2004-2006 Miguel Sofer
* Copyright (c) 2007 Daniel A. Steffen <das@users.sourceforge.net>
*
* See the file "license.terms" for information on usage and redistribution of
* this file, and for a DISCLAIMER OF ALL WARRANTIES.
*
* RCS: @(#) $Id: tclProc.c,v 1.139.2.7 2010/08/15 16:16:07 dkf Exp $
*/
#include "tclInt.h"
#include "tclCompile.h"
/*
* Prototypes for static functions in this file
*/
static void DupLambdaInternalRep(Tcl_Obj *objPtr,
Tcl_Obj *copyPtr);
static void FreeLambdaInternalRep(Tcl_Obj *objPtr);
static int InitArgsAndLocals(Tcl_Interp *interp,
Tcl_Obj *procNameObj, int skip);
static void InitResolvedLocals(Tcl_Interp *interp,
ByteCode *codePtr, Var *defPtr,
Namespace *nsPtr);
static void InitLocalCache(Proc *procPtr);
static int PushProcCallFrame(ClientData clientData,
register Tcl_Interp *interp, int objc,
Tcl_Obj *CONST objv[], int isLambda);
static void ProcBodyDup(Tcl_Obj *srcPtr, Tcl_Obj *dupPtr);
static void ProcBodyFree(Tcl_Obj *objPtr);
static int ProcWrongNumArgs(Tcl_Interp *interp, int skip);
static void MakeProcError(Tcl_Interp *interp,
Tcl_Obj *procNameObj);
static void MakeLambdaError(Tcl_Interp *interp,
Tcl_Obj *procNameObj);
static int SetLambdaFromAny(Tcl_Interp *interp, Tcl_Obj *objPtr);
static int ProcCompileProc(Tcl_Interp *interp, Proc *procPtr,
Tcl_Obj *bodyPtr, Namespace *nsPtr,
CONST char *description, CONST char *procName,
Proc **procPtrPtr);
/*
* The ProcBodyObjType type
*/
Tcl_ObjType tclProcBodyType = {
"procbody", /* name for this type */
ProcBodyFree, /* FreeInternalRep function */
ProcBodyDup, /* DupInternalRep function */
NULL, /* UpdateString function; Tcl_GetString and
* Tcl_GetStringFromObj should panic
* instead. */
NULL /* SetFromAny function; Tcl_ConvertToType
* should panic instead. */
};
/*
* The [upvar]/[uplevel] level reference type. Uses the twoPtrValue field,
* encoding the type of level reference in ptr1 and the actual parsed out
* offset in ptr2.
*
* Uses the default behaviour throughout, and never disposes of the string
* rep; it's just a cache type.
*/
static Tcl_ObjType levelReferenceType = {
"levelReference",
NULL, NULL, NULL, NULL
};
/*
* The type of lambdas. Note that every lambda will *always* have a string
* representation.
*
* Internally, ptr1 is a pointer to a Proc instance that is not bound to a
* command name, and ptr2 is a pointer to the namespace that the Proc instance
* will execute within.
*/
static Tcl_ObjType lambdaType = {
"lambdaExpr", /* name */
FreeLambdaInternalRep, /* freeIntRepProc */
DupLambdaInternalRep, /* dupIntRepProc */
NULL, /* updateStringProc */
SetLambdaFromAny /* setFromAnyProc */
};
/*
*----------------------------------------------------------------------
*
* Tcl_ProcObjCmd --
*
* This object-based function is invoked to process the "proc" Tcl
* command. See the user documentation for details on what it does.
*
* Results:
* A standard Tcl object result value.
*
* Side effects:
* A new procedure gets created.
*
*----------------------------------------------------------------------
*/
/* ARGSUSED */
int
Tcl_ProcObjCmd(
ClientData dummy, /* Not used. */
Tcl_Interp *interp, /* Current interpreter. */
int objc, /* Number of arguments. */
Tcl_Obj *CONST objv[]) /* Argument objects. */
{
register Interp *iPtr = (Interp *) interp;
Proc *procPtr;
char *fullName;
CONST char *procName, *procArgs, *procBody;
Namespace *nsPtr, *altNsPtr, *cxtNsPtr;
Tcl_Command cmd;
Tcl_DString ds;
if (objc != 4) {
Tcl_WrongNumArgs(interp, 1, objv, "name args body");
return TCL_ERROR;
}
/*
* Determine the namespace where the procedure should reside. Unless the
* command name includes namespace qualifiers, this will be the current
* namespace.
*/
fullName = TclGetString(objv[1]);
TclGetNamespaceForQualName(interp, fullName, NULL, 0,
&nsPtr, &altNsPtr, &cxtNsPtr, &procName);
if (nsPtr == NULL) {
Tcl_AppendResult(interp, "can't create procedure \"", fullName,
"\": unknown namespace", NULL);
return TCL_ERROR;
}
if (procName == NULL) {
Tcl_AppendResult(interp, "can't create procedure \"", fullName,
"\": bad procedure name", NULL);
return TCL_ERROR;
}
if ((nsPtr != iPtr->globalNsPtr)
&& (procName != NULL) && (procName[0] == ':')) {
Tcl_AppendResult(interp, "can't create procedure \"", procName,
"\" in non-global namespace with name starting with \":\"",
NULL);
return TCL_ERROR;
}
/*
* Create the data structure to represent the procedure.
*/
if (TclCreateProc(interp, nsPtr, procName, objv[2], objv[3],
&procPtr) != TCL_OK) {
Tcl_AddErrorInfo(interp, "\n (creating proc \"");
Tcl_AddErrorInfo(interp, procName);
Tcl_AddErrorInfo(interp, "\")");
return TCL_ERROR;
}
/*
* Now create a command for the procedure. This will initially be in the
* current namespace unless the procedure's name included namespace
* qualifiers. To create the new command in the right namespace, we
* generate a fully qualified name for it.
*/
Tcl_DStringInit(&ds);
if (nsPtr != iPtr->globalNsPtr) {
Tcl_DStringAppend(&ds, nsPtr->fullName, -1);
Tcl_DStringAppend(&ds, "::", 2);
}
Tcl_DStringAppend(&ds, procName, -1);
cmd = Tcl_CreateObjCommand(interp, Tcl_DStringValue(&ds),
TclObjInterpProc, (ClientData) procPtr, TclProcDeleteProc);
Tcl_DStringFree(&ds);
/*
* Now initialize the new procedure's cmdPtr field. This will be used
* later when the procedure is called to determine what namespace the
* procedure will run in. This will be different than the current
* namespace if the proc was renamed into a different namespace.
*/
procPtr->cmdPtr = (Command *) cmd;
/*
* TIP #280: Remember the line the procedure body is starting on. In a
* bytecode context we ask the engine to provide us with the necessary
* information. This is for the initialization of the byte code compiler
* when the body is used for the first time.
*
* This code is nearly identical to the #280 code in SetLambdaFromAny, see
* this file. The differences are the different index of the body in the
* line array of the context, and the lamdba code requires some special
* processing. Find a way to factor the common elements into a single
* function.
*/
if (iPtr->cmdFramePtr) {
CmdFrame *contextPtr;
contextPtr = (CmdFrame *) TclStackAlloc(interp, sizeof(CmdFrame));
*contextPtr = *iPtr->cmdFramePtr;
if (contextPtr->type == TCL_LOCATION_BC) {
/*
* Retrieve source information from the bytecode, if possible. If
* the information is retrieved successfully, context.type will be
* TCL_LOCATION_SOURCE and the reference held by
* context.data.eval.path will be counted.
*/
TclGetSrcInfoForPc(contextPtr);
} else if (contextPtr->type == TCL_LOCATION_SOURCE) {
/*
* The copy into 'context' up above has created another reference
* to 'context.data.eval.path'; account for it.
*/
Tcl_IncrRefCount(contextPtr->data.eval.path);
}
if (contextPtr->type == TCL_LOCATION_SOURCE) {
/*
* We can account for source location within a proc only if the
* proc body was not created by substitution.
*/
if (contextPtr->line
&& (contextPtr->nline >= 4) && (contextPtr->line[3] >= 0)) {
int isNew;
Tcl_HashEntry* hePtr;
CmdFrame *cfPtr = (CmdFrame *) ckalloc(sizeof(CmdFrame));
cfPtr->level = -1;
cfPtr->type = contextPtr->type;
cfPtr->line = (int *) ckalloc(sizeof(int));
cfPtr->line[0] = contextPtr->line[3];
cfPtr->nline = 1;
cfPtr->framePtr = NULL;
cfPtr->nextPtr = NULL;
cfPtr->data.eval.path = contextPtr->data.eval.path;
Tcl_IncrRefCount(cfPtr->data.eval.path);
cfPtr->cmd.str.cmd = NULL;
cfPtr->cmd.str.len = 0;
hePtr = Tcl_CreateHashEntry(iPtr->linePBodyPtr, (char *) procPtr, &isNew);
if (!isNew) {
/*
* Get the old command frame and release it. See also
* TclProcCleanupProc in this file. Currently it seems as
* if only the procbodytest::proc command of the testsuite
* is able to trigger this situation.
*/
CmdFrame* cfOldPtr = (CmdFrame *) Tcl_GetHashValue(hePtr);
if (cfOldPtr->type == TCL_LOCATION_SOURCE) {
Tcl_DecrRefCount(cfOldPtr->data.eval.path);
cfOldPtr->data.eval.path = NULL;
}
ckfree((char *) cfOldPtr->line);
cfOldPtr->line = NULL;
ckfree((char *) cfOldPtr);
}
Tcl_SetHashValue(hePtr, cfPtr);
}
/*
* 'contextPtr' is going out of scope; account for the reference that
* it's holding to the path name.
*/
Tcl_DecrRefCount(contextPtr->data.eval.path);
contextPtr->data.eval.path = NULL;
}
TclStackFree(interp, contextPtr);
}
/*
* Optimize for no-op procs: if the body is not precompiled (like a TclPro
* procbody), and the argument list is just "args" and the body is empty,
* define a compileProc to compile a no-op.
*
* Notes:
* - cannot be done for any argument list without having different
* compiled/not-compiled behaviour in the "wrong argument #" case, or
* making this code much more complicated. In any case, it doesn't
* seem to make a lot of sense to verify the number of arguments we
* are about to ignore ...
* - could be enhanced to handle also non-empty bodies that contain only
* comments; however, parsing the body will slow down the compilation
* of all procs whose argument list is just _args_
*/
if (objv[3]->typePtr == &tclProcBodyType) {
goto done;
}
procArgs = TclGetString(objv[2]);
while (*procArgs == ' ') {
procArgs++;
}
if ((procArgs[0] == 'a') && (strncmp(procArgs, "args", 4) == 0)) {
procArgs +=4;
while(*procArgs != '\0') {
if (*procArgs != ' ') {
goto done;
}
procArgs++;
}
/*
* The argument list is just "args"; check the body
*/
procBody = TclGetString(objv[3]);
while (*procBody != '\0') {
if (!isspace(UCHAR(*procBody))) {
goto done;
}
procBody++;
}
/*
* The body is just spaces: link the compileProc
*/
((Command *) cmd)->compileProc = TclCompileNoOp;
}
done:
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclCreateProc --
*
* Creates the data associated with a Tcl procedure definition. This
* function knows how to handle two types of body objects: strings and
* procbody. Strings are the traditional (and common) value for bodies,
* procbody are values created by extensions that have loaded a
* previously compiled script.
*
* Results:
* Returns TCL_OK on success, along with a pointer to a Tcl procedure
* definition in procPtrPtr where the cmdPtr field is not initialised.
* This definition should be freed by calling TclProcCleanupProc() when
* it is no longer needed. Returns TCL_ERROR if anything goes wrong.
*
* Side effects:
* If anything goes wrong, this function returns an error message in the
* interpreter.
*
*----------------------------------------------------------------------
*/
int
TclCreateProc(
Tcl_Interp *interp, /* Interpreter containing proc. */
Namespace *nsPtr, /* Namespace containing this proc. */
CONST char *procName, /* Unqualified name of this proc. */
Tcl_Obj *argsPtr, /* Description of arguments. */
Tcl_Obj *bodyPtr, /* Command body. */
Proc **procPtrPtr) /* Returns: pointer to proc data. */
{
Interp *iPtr = (Interp *) interp;
CONST char **argArray = NULL;
register Proc *procPtr;
int i, length, result, numArgs;
CONST char *args, *bytes, *p;
register CompiledLocal *localPtr = NULL;
Tcl_Obj *defPtr;
int precompiled = 0;
if (bodyPtr->typePtr == &tclProcBodyType) {
/*
* Because the body is a TclProProcBody, the actual body is already
* compiled, and it is not shared with anyone else, so it's OK not to
* unshare it (as a matter of fact, it is bad to unshare it, because
* there may be no source code).
*
* We don't create and initialize a Proc structure for the procedure;
* rather, we use what is in the body object. We increment the ref
* count of the Proc struct since the command (soon to be created)
* will be holding a reference to it.
*/
procPtr = bodyPtr->internalRep.otherValuePtr;
procPtr->iPtr = iPtr;
procPtr->refCount++;
precompiled = 1;
} else {
/*
* If the procedure's body object is shared because its string value
* is identical to, e.g., the body of another procedure, we must
* create a private copy for this procedure to use. Such sharing of
* procedure bodies is rare but can cause problems. A procedure body
* is compiled in a context that includes the number of "slots"
* allocated by the compiler for local variables. There is a local
* variable slot for each formal parameter (the
* "procPtr->numCompiledLocals = numArgs" assignment below). This
* means that the same code can not be shared by two procedures that
* have a different number of arguments, even if their bodies are
* identical. Note that we don't use Tcl_DuplicateObj since we would
* not want any bytecode internal representation.
*/
if (Tcl_IsShared(bodyPtr)) {
Tcl_Obj* sharedBodyPtr = bodyPtr;
bytes = TclGetStringFromObj(bodyPtr, &length);
bodyPtr = Tcl_NewStringObj(bytes, length);
/*
* TIP #280.
* Ensure that the continuation line data for the original body is
* not lost and applies to the new body as well.
*/
TclContinuationsCopy (bodyPtr, sharedBodyPtr);
}
/*
* Create and initialize a Proc structure for the procedure. We
* increment the ref count of the procedure's body object since there
* will be a reference to it in the Proc structure.
*/
Tcl_IncrRefCount(bodyPtr);
procPtr = (Proc *) ckalloc(sizeof(Proc));
procPtr->iPtr = iPtr;
procPtr->refCount = 1;
procPtr->bodyPtr = bodyPtr;
procPtr->numArgs = 0; /* Actual argument count is set below. */
procPtr->numCompiledLocals = 0;
procPtr->firstLocalPtr = NULL;
procPtr->lastLocalPtr = NULL;
}
/*
* Break up the argument list into argument specifiers, then process each
* argument specifier. If the body is precompiled, processing is limited
* to checking that the parsed argument is consistent with the one stored
* in the Proc.
*
* THIS FAILS IF THE ARG LIST OBJECT'S STRING REP CONTAINS NULS.
*/
args = TclGetStringFromObj(argsPtr, &length);
result = Tcl_SplitList(interp, args, &numArgs, &argArray);
if (result != TCL_OK) {
goto procError;
}
if (precompiled) {
if (numArgs > procPtr->numArgs) {
Tcl_SetObjResult(interp, Tcl_ObjPrintf(
"procedure \"%s\": arg list contains %d entries, "
"precompiled header expects %d", procName, numArgs,
procPtr->numArgs));
goto procError;
}
localPtr = procPtr->firstLocalPtr;
} else {
procPtr->numArgs = numArgs;
procPtr->numCompiledLocals = numArgs;
}
for (i = 0; i < numArgs; i++) {
int fieldCount, nameLength, valueLength;
CONST char **fieldValues;
/*
* Now divide the specifier up into name and default.
*/
result = Tcl_SplitList(interp, argArray[i], &fieldCount,
&fieldValues);
if (result != TCL_OK) {
goto procError;
}
if (fieldCount > 2) {
ckfree((char *) fieldValues);
Tcl_AppendResult(interp,
"too many fields in argument specifier \"",
argArray[i], "\"", NULL);
goto procError;
}
if ((fieldCount == 0) || (*fieldValues[0] == 0)) {
ckfree((char *) fieldValues);
Tcl_AppendResult(interp, "argument with no name", NULL);
goto procError;
}
nameLength = strlen(fieldValues[0]);
if (fieldCount == 2) {
valueLength = strlen(fieldValues[1]);
} else {
valueLength = 0;
}
/*
* Check that the formal parameter name is a scalar.
*/
p = fieldValues[0];
while (*p != '\0') {
if (*p == '(') {
CONST char *q = p;
do {
q++;
} while (*q != '\0');
q--;
if (*q == ')') { /* We have an array element. */
Tcl_AppendResult(interp, "formal parameter \"",
fieldValues[0],
"\" is an array element", NULL);
ckfree((char *) fieldValues);
goto procError;
}
} else if ((*p == ':') && (*(p+1) == ':')) {
Tcl_AppendResult(interp, "formal parameter \"",
fieldValues[0],
"\" is not a simple name", NULL);
ckfree((char *) fieldValues);
goto procError;
}
p++;
}
if (precompiled) {
/*
* Compare the parsed argument with the stored one. Note that the
* only flag value that makes sense at this point is VAR_ARGUMENT
* (its value was kept the same as pre VarReform to simplify
* tbcload's processing of older byetcodes).
*
* The only other flag vlaue that is important to retrieve from
* precompiled procs is VAR_TEMPORARY (also unchanged). It is
* needed later when retrieving the variable names.
*/
if ((localPtr->nameLength != nameLength)
|| (strcmp(localPtr->name, fieldValues[0]))
|| (localPtr->frameIndex != i)
|| !(localPtr->flags & VAR_ARGUMENT)
|| (localPtr->defValuePtr == NULL && fieldCount == 2)
|| (localPtr->defValuePtr != NULL && fieldCount != 2)) {
Tcl_SetObjResult(interp, Tcl_ObjPrintf(
"procedure \"%s\": formal parameter %d is "
"inconsistent with precompiled body", procName, i));
ckfree((char *) fieldValues);
goto procError;
}
/*
* Compare the default value if any.
*/
if (localPtr->defValuePtr != NULL) {
int tmpLength;
char *tmpPtr = TclGetStringFromObj(localPtr->defValuePtr,
&tmpLength);
if ((valueLength != tmpLength) ||
strncmp(fieldValues[1], tmpPtr, (size_t) tmpLength)) {
Tcl_SetObjResult(interp, Tcl_ObjPrintf(
"procedure \"%s\": formal parameter \"%s\" has "
"default value inconsistent with precompiled body",
procName, fieldValues[0]));
ckfree((char *) fieldValues);
goto procError;
}
}
if ((i == numArgs - 1)
&& (localPtr->nameLength == 4)
&& (localPtr->name[0] == 'a')
&& (strcmp(localPtr->name, "args") == 0)) {
localPtr->flags |= VAR_IS_ARGS;
}
localPtr = localPtr->nextPtr;
} else {
/*
* Allocate an entry in the runtime procedure frame's array of
* local variables for the argument.
*/
localPtr = (CompiledLocal *) ckalloc((unsigned)
(sizeof(CompiledLocal) - sizeof(localPtr->name)
+ nameLength + 1));
if (procPtr->firstLocalPtr == NULL) {
procPtr->firstLocalPtr = procPtr->lastLocalPtr = localPtr;
} else {
procPtr->lastLocalPtr->nextPtr = localPtr;
procPtr->lastLocalPtr = localPtr;
}
localPtr->nextPtr = NULL;
localPtr->nameLength = nameLength;
localPtr->frameIndex = i;
localPtr->flags = VAR_ARGUMENT;
localPtr->resolveInfo = NULL;
if (fieldCount == 2) {
localPtr->defValuePtr =
Tcl_NewStringObj(fieldValues[1], valueLength);
Tcl_IncrRefCount(localPtr->defValuePtr);
} else {
localPtr->defValuePtr = NULL;
}
strcpy(localPtr->name, fieldValues[0]);
if ((i == numArgs - 1)
&& (localPtr->nameLength == 4)
&& (localPtr->name[0] == 'a')
&& (strcmp(localPtr->name, "args") == 0)) {
localPtr->flags |= VAR_IS_ARGS;
}
}
ckfree((char *) fieldValues);
}
*procPtrPtr = procPtr;
ckfree((char *) argArray);
return TCL_OK;
procError:
if (precompiled) {
procPtr->refCount--;
} else {
Tcl_DecrRefCount(bodyPtr);
while (procPtr->firstLocalPtr != NULL) {
localPtr = procPtr->firstLocalPtr;
procPtr->firstLocalPtr = localPtr->nextPtr;
defPtr = localPtr->defValuePtr;
if (defPtr != NULL) {
Tcl_DecrRefCount(defPtr);
}
ckfree((char *) localPtr);
}
ckfree((char *) procPtr);
}
if (argArray != NULL) {
ckfree((char *) argArray);
}
return TCL_ERROR;
}
/*
*----------------------------------------------------------------------
*
* TclGetFrame --
*
* Given a description of a procedure frame, such as the first argument
* to an "uplevel" or "upvar" command, locate the call frame for the
* appropriate level of procedure.
*
* Results:
* The return value is -1 if an error occurred in finding the frame (in
* this case an error message is left in the interp's result). 1 is
* returned if string was either a number or a number preceded by "#" and
* it specified a valid frame. 0 is returned if string isn't one of the
* two things above (in this case, the lookup acts as if string were
* "1"). The variable pointed to by framePtrPtr is filled in with the
* address of the desired frame (unless an error occurs, in which case it
* isn't modified).
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
int
TclGetFrame(
Tcl_Interp *interp, /* Interpreter in which to find frame. */
CONST char *name, /* String describing frame. */
CallFrame **framePtrPtr) /* Store pointer to frame here (or NULL if
* global frame indicated). */
{
register Interp *iPtr = (Interp *) interp;
int curLevel, level, result;
CallFrame *framePtr;
/*
* Parse string to figure out which level number to go to.
*/
result = 1;
curLevel = iPtr->varFramePtr->level;
if (*name== '#') {
if (Tcl_GetInt(interp, name+1, &level) != TCL_OK || level < 0) {
goto levelError;
}
} else if (isdigit(UCHAR(*name))) { /* INTL: digit */
if (Tcl_GetInt(interp, name, &level) != TCL_OK) {
goto levelError;
}
level = curLevel - level;
} else {
level = curLevel - 1;
result = 0;
}
/*
* Figure out which frame to use, and return it to the caller.
*/
for (framePtr = iPtr->varFramePtr; framePtr != NULL;
framePtr = framePtr->callerVarPtr) {
if (framePtr->level == level) {
break;
}
}
if (framePtr == NULL) {
goto levelError;
}
*framePtrPtr = framePtr;
return result;
levelError:
Tcl_ResetResult(interp);
Tcl_AppendResult(interp, "bad level \"", name, "\"", NULL);
return -1;
}
/*
*----------------------------------------------------------------------
*
* TclObjGetFrame --
*
* Given a description of a procedure frame, such as the first argument
* to an "uplevel" or "upvar" command, locate the call frame for the
* appropriate level of procedure.
*
* Results:
* The return value is -1 if an error occurred in finding the frame (in
* this case an error message is left in the interp's result). 1 is
* returned if objPtr was either a number or a number preceded by "#" and
* it specified a valid frame. 0 is returned if objPtr isn't one of the
* two things above (in this case, the lookup acts as if objPtr were
* "1"). The variable pointed to by framePtrPtr is filled in with the
* address of the desired frame (unless an error occurs, in which case it
* isn't modified).
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
int
TclObjGetFrame(
Tcl_Interp *interp, /* Interpreter in which to find frame. */
Tcl_Obj *objPtr, /* Object describing frame. */
CallFrame **framePtrPtr) /* Store pointer to frame here (or NULL if
* global frame indicated). */
{
register Interp *iPtr = (Interp *) interp;
int curLevel, level, result;
CallFrame *framePtr;
CONST char *name = TclGetString(objPtr);
/*
* Parse object to figure out which level number to go to.
*/
result = 1;
curLevel = iPtr->varFramePtr->level;
if (objPtr->typePtr == &levelReferenceType) {
if (PTR2INT(objPtr->internalRep.twoPtrValue.ptr1)) {
level = curLevel - PTR2INT(objPtr->internalRep.twoPtrValue.ptr2);
} else {
level = PTR2INT(objPtr->internalRep.twoPtrValue.ptr2);
}
if (level < 0) {
goto levelError;
}
/* TODO: Consider skipping the typePtr checks */
} else if (objPtr->typePtr == &tclIntType
#ifndef NO_WIDE_TYPE
|| objPtr->typePtr == &tclWideIntType
#endif
) {
if (TclGetIntFromObj(NULL, objPtr, &level) != TCL_OK || level < 0) {
goto levelError;
}
level = curLevel - level;
} else if (*name == '#') {
if (Tcl_GetInt(interp, name+1, &level) != TCL_OK || level < 0) {
goto levelError;
}
/*
* Cache for future reference.
*
* TODO: Use the new ptrAndLongRep intrep
*/
TclFreeIntRep(objPtr);
objPtr->typePtr = &levelReferenceType;
objPtr->internalRep.twoPtrValue.ptr1 = (void *) 0;
objPtr->internalRep.twoPtrValue.ptr2 = INT2PTR(level);
} else if (isdigit(UCHAR(*name))) { /* INTL: digit */
if (Tcl_GetInt(interp, name, &level) != TCL_OK) {
return -1;
}
/*
* Cache for future reference.
*
* TODO: Use the new ptrAndLongRep intrep
*/
TclFreeIntRep(objPtr);
objPtr->typePtr = &levelReferenceType;
objPtr->internalRep.twoPtrValue.ptr1 = (void *) 1;
objPtr->internalRep.twoPtrValue.ptr2 = INT2PTR(level);
level = curLevel - level;
} else {
/*
* Don't cache as the object *isn't* a level reference.
*/
level = curLevel - 1;
result = 0;
}
/*
* Figure out which frame to use, and return it to the caller.
*/
for (framePtr = iPtr->varFramePtr; framePtr != NULL;
framePtr = framePtr->callerVarPtr) {
if (framePtr->level == level) {
break;
}
}
if (framePtr == NULL) {
goto levelError;
}
*framePtrPtr = framePtr;
return result;
levelError:
Tcl_ResetResult(interp);
Tcl_AppendResult(interp, "bad level \"", name, "\"", NULL);
return -1;
}
/*
*----------------------------------------------------------------------
*
* Tcl_UplevelObjCmd --
*
* This object function is invoked to process the "uplevel" Tcl command.
* See the user documentation for details on what it does.
*
* Results:
* A standard Tcl object result value.
*
* Side effects:
* See the user documentation.
*
*----------------------------------------------------------------------
*/
/* ARGSUSED */
int
Tcl_UplevelObjCmd(
ClientData dummy, /* Not used. */
Tcl_Interp *interp, /* Current interpreter. */
int objc, /* Number of arguments. */
Tcl_Obj *CONST objv[]) /* Argument objects. */
{
register Interp *iPtr = (Interp *) interp;
int result;
CallFrame *savedVarFramePtr, *framePtr;
if (objc < 2) {
uplevelSyntax:
Tcl_WrongNumArgs(interp, 1, objv, "?level? command ?arg ...?");
return TCL_ERROR;
}
/*
* Find the level to use for executing the command.
*/
result = TclObjGetFrame(interp, objv[1], &framePtr);
if (result == -1) {
return TCL_ERROR;
}
objc -= (result+1);
if (objc == 0) {
goto uplevelSyntax;
}
objv += (result+1);
/*
* Modify the interpreter state to execute in the given frame.
*/
savedVarFramePtr = iPtr->varFramePtr;
iPtr->varFramePtr = framePtr;
/*
* Execute the residual arguments as a command.
*/
if (objc == 1) {
/*
* TIP #280. Make argument location available to eval'd script
*/
CmdFrame* invoker = NULL;
int word = 0;
TclArgumentGet (interp, objv[0], &invoker, &word);
result = TclEvalObjEx(interp, objv[0], 0, invoker, word);
} else {
/*
* More than one argument: concatenate them together with spaces
* between, then evaluate the result. Tcl_EvalObjEx will delete the
* object when it decrements its refcount after eval'ing it.
*/
Tcl_Obj *objPtr;
objPtr = Tcl_ConcatObj(objc, objv);
result = Tcl_EvalObjEx(interp, objPtr, TCL_EVAL_DIRECT);
}
if (result == TCL_ERROR) {
Tcl_AppendObjToErrorInfo(interp, Tcl_ObjPrintf(
"\n (\"uplevel\" body line %d)", interp->errorLine));
}
/*
* Restore the variable frame, and return.
*/
iPtr->varFramePtr = savedVarFramePtr;
return result;
}
/*
*----------------------------------------------------------------------
*
* TclFindProc --
*
* Given the name of a procedure, return a pointer to the record
* describing the procedure. The procedure will be looked up using the
* usual rules: first in the current namespace and then in the global
* namespace.
*
* Results:
* NULL is returned if the name doesn't correspond to any procedure.
* Otherwise, the return value is a pointer to the procedure's record. If
* the name is found but refers to an imported command that points to a
* "real" procedure defined in another namespace, a pointer to that
* "real" procedure's structure is returned.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
Proc *
TclFindProc(
Interp *iPtr, /* Interpreter in which to look. */
CONST char *procName) /* Name of desired procedure. */
{
Tcl_Command cmd;
Tcl_Command origCmd;
Command *cmdPtr;
cmd = Tcl_FindCommand((Tcl_Interp *) iPtr, procName, NULL, /*flags*/ 0);
if (cmd == (Tcl_Command) NULL) {
return NULL;
}
cmdPtr = (Command *) cmd;
origCmd = TclGetOriginalCommand(cmd);
if (origCmd != NULL) {
cmdPtr = (Command *) origCmd;
}
if (cmdPtr->objProc != TclObjInterpProc) {
return NULL;
}
return (Proc *) cmdPtr->objClientData;
}
/*
*----------------------------------------------------------------------
*
* TclIsProc --
*
* Tells whether a command is a Tcl procedure or not.
*
* Results:
* If the given command is actually a Tcl procedure, the return value is
* the address of the record describing the procedure. Otherwise the
* return value is 0.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
Proc *
TclIsProc(
Command *cmdPtr) /* Command to test. */
{
Tcl_Command origCmd;
origCmd = TclGetOriginalCommand((Tcl_Command) cmdPtr);
if (origCmd != NULL) {
cmdPtr = (Command *) origCmd;
}
if (cmdPtr->objProc == TclObjInterpProc) {
return (Proc *) cmdPtr->objClientData;
}
return (Proc *) 0;
}
/*
*----------------------------------------------------------------------
*
* InitArgsAndLocals --
*
* This routine is invoked in order to initialize the arguments and other
* compiled locals table for a new call frame.
*
* Results:
* A standard Tcl result.
*
* Side effects:
* Allocates memory on the stack for the compiled local variables, the
* caller is responsible for freeing them. Initialises all variables. May
* invoke various name resolvers in order to determine which variables
* are being referenced at runtime.
*
*----------------------------------------------------------------------
*/
static int
ProcWrongNumArgs(
Tcl_Interp *interp, int skip)
{
CallFrame *framePtr = ((Interp *)interp)->varFramePtr;
register Proc *procPtr = framePtr->procPtr;
register Var *defPtr;
int localCt = procPtr->numCompiledLocals, numArgs, i;
Tcl_Obj **desiredObjs;
const char *final = NULL;
/*
* Build up desired argument list for Tcl_WrongNumArgs
*/
numArgs = framePtr->procPtr->numArgs;
desiredObjs = (Tcl_Obj **) TclStackAlloc(interp,
(int) sizeof(Tcl_Obj *) * (numArgs+1));
if (framePtr->isProcCallFrame & FRAME_IS_LAMBDA) {
desiredObjs[0] = Tcl_NewStringObj("lambdaExpr", -1);
} else {
#ifdef AVOID_HACKS_FOR_ITCL
desiredObjs[0] = framePtr->objv[skip-1];
#else
desiredObjs[0] = Tcl_NewListObj(skip, framePtr->objv);
#endif /* AVOID_HACKS_FOR_ITCL */
}
Tcl_IncrRefCount(desiredObjs[0]);
defPtr = (Var *) (&framePtr->localCachePtr->varName0 + localCt);
for (i=1 ; i<=numArgs ; i++, defPtr++) {
Tcl_Obj *argObj;
Tcl_Obj *namePtr = localName(framePtr, i-1);
if (defPtr->value.objPtr != NULL) {
TclNewObj(argObj);
Tcl_AppendStringsToObj(argObj, "?", TclGetString(namePtr), "?", NULL);
} else if (defPtr->flags & VAR_IS_ARGS) {
numArgs--;
final = "...";
break;
} else {
argObj = namePtr;
Tcl_IncrRefCount(namePtr);
}
desiredObjs[i] = argObj;
}
Tcl_ResetResult(interp);
Tcl_WrongNumArgs(interp, numArgs+1, desiredObjs, final);
for (i=0 ; i<=numArgs ; i++) {
Tcl_DecrRefCount(desiredObjs[i]);
}
TclStackFree(interp, desiredObjs);
return TCL_ERROR;
}
/*
*----------------------------------------------------------------------
*
* TclInitCompiledLocals --
*
* This routine is invoked in order to initialize the compiled locals
* table for a new call frame.
*
* DEPRECATED: functionality has been inlined elsewhere; this function
* remains to insure binary compatibility with Itcl.
*
* Results:
* None.
*
* Side effects:
* May invoke various name resolvers in order to determine which
* variables are being referenced at runtime.
*
*----------------------------------------------------------------------
*/
void
TclInitCompiledLocals(
Tcl_Interp *interp, /* Current interpreter. */
CallFrame *framePtr, /* Call frame to initialize. */
Namespace *nsPtr) /* Pointer to current namespace. */
{
Var *varPtr = framePtr->compiledLocals;
Tcl_Obj *bodyPtr;
ByteCode *codePtr;
bodyPtr = framePtr->procPtr->bodyPtr;
if (bodyPtr->typePtr != &tclByteCodeType) {
Tcl_Panic("body object for proc attached to frame is not a byte code type");
}
codePtr = bodyPtr->internalRep.otherValuePtr;
if (framePtr->numCompiledLocals) {
if (!codePtr->localCachePtr) {
InitLocalCache(framePtr->procPtr) ;
}
framePtr->localCachePtr = codePtr->localCachePtr;
framePtr->localCachePtr->refCount++;
}
InitResolvedLocals(interp, codePtr, varPtr, nsPtr);
}
/*
*----------------------------------------------------------------------
*
* InitResolvedLocals --
*
* This routine is invoked in order to initialize the compiled locals
* table for a new call frame.
*
* Results:
* None.
*
* Side effects:
* May invoke various name resolvers in order to determine which
* variables are being referenced at runtime.
*
*----------------------------------------------------------------------
*/
static void
InitResolvedLocals(
Tcl_Interp *interp, /* Current interpreter. */
ByteCode *codePtr,
Var *varPtr,
Namespace *nsPtr) /* Pointer to current namespace. */
{
Interp *iPtr = (Interp *) interp;
int haveResolvers = (nsPtr->compiledVarResProc || iPtr->resolverPtr);
CompiledLocal *firstLocalPtr, *localPtr;
int varNum;
Tcl_ResolvedVarInfo *resVarInfo;
/*
* Find the localPtr corresponding to varPtr
*/
varNum = varPtr - iPtr->framePtr->compiledLocals;
localPtr = iPtr->framePtr->procPtr->firstLocalPtr;
while (varNum--) {
localPtr = localPtr->nextPtr;
}
if (!(haveResolvers && (codePtr->flags & TCL_BYTECODE_RESOLVE_VARS))) {
/*
* Initialize the array of local variables stored in the call frame.
* Some variables may have special resolution rules. In that case, we
* call their "resolver" procs to get our hands on the variable, and
* we make the compiled local a link to the real variable.
*/
doInitResolvedLocals:
for (; localPtr != NULL; varPtr++, localPtr = localPtr->nextPtr) {
varPtr->flags = 0;
varPtr->value.objPtr = NULL;
/*
* Now invoke the resolvers to determine the exact variables
* that should be used.
*/
resVarInfo = localPtr->resolveInfo;
if (resVarInfo && resVarInfo->fetchProc) {
Var *resolvedVarPtr = (Var *)
(*resVarInfo->fetchProc)(interp, resVarInfo);
if (resolvedVarPtr) {
if (TclIsVarInHash(resolvedVarPtr)) {
VarHashRefCount(resolvedVarPtr)++;
}
varPtr->flags = VAR_LINK;
varPtr->value.linkPtr = resolvedVarPtr;
}
}
}
return;
}
/*
* This is the first run after a recompile, or else the resolver epoch
* has changed: update the resolver cache.
*/
firstLocalPtr = localPtr;
for (; localPtr != NULL; localPtr = localPtr->nextPtr) {
if (localPtr->resolveInfo) {
if (localPtr->resolveInfo->deleteProc) {
localPtr->resolveInfo->deleteProc(localPtr->resolveInfo);
} else {
ckfree((char *) localPtr->resolveInfo);
}
localPtr->resolveInfo = NULL;
}
localPtr->flags &= ~VAR_RESOLVED;
if (haveResolvers &&
!(localPtr->flags & (VAR_ARGUMENT|VAR_TEMPORARY))) {
ResolverScheme *resPtr = iPtr->resolverPtr;
Tcl_ResolvedVarInfo *vinfo;
int result;
if (nsPtr->compiledVarResProc) {
result = (*nsPtr->compiledVarResProc)(nsPtr->interp,
localPtr->name, localPtr->nameLength,
(Tcl_Namespace *) nsPtr, &vinfo);
} else {
result = TCL_CONTINUE;
}
while ((result == TCL_CONTINUE) && resPtr) {
if (resPtr->compiledVarResProc) {
result = (*resPtr->compiledVarResProc)(nsPtr->interp,
localPtr->name, localPtr->nameLength,
(Tcl_Namespace *) nsPtr, &vinfo);
}
resPtr = resPtr->nextPtr;
}
if (result == TCL_OK) {
localPtr->resolveInfo = vinfo;
localPtr->flags |= VAR_RESOLVED;
}
}
}
localPtr = firstLocalPtr;
codePtr->flags &= ~TCL_BYTECODE_RESOLVE_VARS;
goto doInitResolvedLocals;
}
void
TclFreeLocalCache(
Tcl_Interp *interp,
LocalCache *localCachePtr)
{
int i;
Tcl_Obj **namePtrPtr = &localCachePtr->varName0;
for (i = 0; i < localCachePtr->numVars; i++, namePtrPtr++) {
Tcl_Obj *objPtr = *namePtrPtr;
/*
* Note that this can be called with interp==NULL, on interp
* deletion. In that case, the literal table and objects go away
* on their own.
*/
if (objPtr) {
if (interp) {
TclReleaseLiteral(interp, objPtr);
} else {
Tcl_DecrRefCount(objPtr);
}
}
}
ckfree((char *) localCachePtr);
}
static void
InitLocalCache(Proc *procPtr)
{
Interp *iPtr = procPtr->iPtr;
ByteCode *codePtr = procPtr->bodyPtr->internalRep.otherValuePtr;
int localCt = procPtr->numCompiledLocals;
int numArgs = procPtr->numArgs, i = 0;
Tcl_Obj **namePtr;
Var *varPtr;
LocalCache *localCachePtr;
CompiledLocal *localPtr;
int new;
/*
* Cache the names and initial values of local variables; store the
* cache in both the framePtr for this execution and in the codePtr
* for future calls.
*/
localCachePtr = (LocalCache *) ckalloc(sizeof(LocalCache)
+ (localCt-1)*sizeof(Tcl_Obj *)
+ numArgs*sizeof(Var));
namePtr = &localCachePtr->varName0;
varPtr = (Var *) (namePtr + localCt);
localPtr = procPtr->firstLocalPtr;
while (localPtr) {
if (TclIsVarTemporary(localPtr)) {
*namePtr = NULL;
} else {
*namePtr = TclCreateLiteral(iPtr, localPtr->name,
localPtr->nameLength, /* hash */ (unsigned int) -1,
&new, /* nsPtr */ NULL, 0, NULL);
Tcl_IncrRefCount(*namePtr);
}
if (i < numArgs) {
varPtr->flags = (localPtr->flags & VAR_IS_ARGS);
varPtr->value.objPtr = localPtr->defValuePtr;
varPtr++;
i++;
}
namePtr++;
localPtr=localPtr->nextPtr;
}
codePtr->localCachePtr = localCachePtr;
localCachePtr->refCount = 1;
localCachePtr->numVars = localCt;
}
static int
InitArgsAndLocals(
register Tcl_Interp *interp,/* Interpreter in which procedure was
* invoked. */
Tcl_Obj *procNameObj, /* Procedure name for error reporting. */
int skip) /* Number of initial arguments to be skipped,
* i.e., words in the "command name". */
{
CallFrame *framePtr = ((Interp *)interp)->varFramePtr;
register Proc *procPtr = framePtr->procPtr;
ByteCode *codePtr = procPtr->bodyPtr->internalRep.otherValuePtr;
register Var *varPtr, *defPtr;
int localCt = procPtr->numCompiledLocals, numArgs, argCt, i, imax;
Tcl_Obj *const *argObjs;
/*
* Make sure that the local cache of variable names and initial values has
* been initialised properly .
*/
if (localCt) {
if (!codePtr->localCachePtr) {
InitLocalCache(procPtr) ;
}
framePtr->localCachePtr = codePtr->localCachePtr;
framePtr->localCachePtr->refCount++;
defPtr = (Var *) (&framePtr->localCachePtr->varName0 + localCt);
} else {
defPtr = NULL;
}
/*
* Create the "compiledLocals" array. Make sure it is large enough to hold
* all the procedure's compiled local variables, including its formal
* parameters.
*/
varPtr = (Var*) TclStackAlloc(interp, (int)(localCt*sizeof(Var)));
framePtr->compiledLocals = varPtr;
framePtr->numCompiledLocals = localCt;
/*
* Match and assign the call's actual parameters to the procedure's formal
* arguments. The formal arguments are described by the first numArgs
* entries in both the Proc structure's local variable list and the call
* frame's local variable array.
*/
numArgs = procPtr->numArgs;
argCt = framePtr->objc - skip; /* Set it to the number of args to the
* procedure. */
argObjs = framePtr->objv + skip;
if (numArgs == 0) {
if (argCt) {
goto incorrectArgs;
} else {
goto correctArgs;
}
}
imax = ((argCt < numArgs-1) ? argCt : numArgs-1);
for (i = 0; i < imax; i++, varPtr++, defPtr++) {
/*
* "Normal" arguments; last formal is special, depends on it being
* 'args'.
*/
Tcl_Obj *objPtr = argObjs[i];
varPtr->flags = 0;
varPtr->value.objPtr = objPtr;
Tcl_IncrRefCount(objPtr); /* Local var is a reference. */
}
for (; i < numArgs-1; i++, varPtr++, defPtr++) {
/*
* This loop is entered if argCt < (numArgs-1). Set default values;
* last formal is special.
*/
Tcl_Obj *objPtr = defPtr->value.objPtr;
if (objPtr) {
varPtr->flags = 0;
varPtr->value.objPtr = objPtr;
Tcl_IncrRefCount(objPtr); /* Local var reference. */
} else {
goto incorrectArgs;
}
}
/*
* When we get here, the last formal argument remains to be defined:
* defPtr and varPtr point to the last argument to be initialized.
*/
varPtr->flags = 0;
if (defPtr->flags & VAR_IS_ARGS) {
Tcl_Obj *listPtr = Tcl_NewListObj(argCt-i, argObjs+i);
varPtr->value.objPtr = listPtr;
Tcl_IncrRefCount(listPtr); /* Local var is a reference. */
} else if (argCt == numArgs) {
Tcl_Obj *objPtr = argObjs[i];
varPtr->value.objPtr = objPtr;
Tcl_IncrRefCount(objPtr); /* Local var is a reference. */
} else if ((argCt < numArgs) && (defPtr->value.objPtr != NULL)) {
Tcl_Obj *objPtr = defPtr->value.objPtr;
varPtr->value.objPtr = objPtr;
Tcl_IncrRefCount(objPtr); /* Local var is a reference. */
} else {
goto incorrectArgs;
}
varPtr++;
/*
* Initialise and resolve the remaining compiledLocals. In the absence of
* resolvers, they are undefined local vars: (flags=0, value=NULL).
*/
correctArgs:
if (numArgs < localCt) {
if (!framePtr->nsPtr->compiledVarResProc && !((Interp *)interp)->resolverPtr) {
memset(varPtr, 0, (localCt - numArgs)*sizeof(Var));
} else {
InitResolvedLocals(interp, codePtr, varPtr, framePtr->nsPtr);
}
}
return TCL_OK;
incorrectArgs:
/*
* Initialise all compiled locals to avoid problems at DeleteLocalVars.
*/
memset(varPtr, 0, ((framePtr->compiledLocals + localCt)-varPtr)*sizeof(Var));
return ProcWrongNumArgs(interp, skip);
}
/*
*----------------------------------------------------------------------
*
* PushProcCallFrame --
*
* Compiles a proc body if necessary, then pushes a CallFrame suitable
* for executing it.
*
* Results:
* A standard Tcl object result value.
*
* Side effects:
* The proc's body may be recompiled. A CallFrame is pushed, it will have
* to be popped by the caller.
*
*----------------------------------------------------------------------
*/
static int
PushProcCallFrame(
ClientData clientData, /* Record describing procedure to be
* interpreted. */
register Tcl_Interp *interp,/* Interpreter in which procedure was
* invoked. */
int objc, /* Count of number of arguments to this
* procedure. */
Tcl_Obj *CONST objv[], /* Argument value objects. */
int isLambda) /* 1 if this is a call by ApplyObjCmd: it
* needs special rules for error msg */
{
Proc *procPtr = (Proc *) clientData;
Namespace *nsPtr = procPtr->cmdPtr->nsPtr;
CallFrame *framePtr, **framePtrPtr;
int result;
ByteCode *codePtr;
/*
* If necessary (i.e. if we haven't got a suitable compilation already
* cached) compile the procedure's body. The compiler will allocate frame
* slots for the procedure's non-argument local variables. Note that
* compiling the body might increase procPtr->numCompiledLocals if new
* local variables are found while compiling.
*/
if (procPtr->bodyPtr->typePtr == &tclByteCodeType) {
Interp *iPtr = (Interp *) interp;
/*
* When we've got bytecode, this is the check for validity. That is,
* the bytecode must be for the right interpreter (no cross-leaks!),
* the code must be from the current epoch (so subcommand compilation
* is up-to-date), the namespace must match (so variable handling
* is right) and the resolverEpoch must match (so that new shadowed
* commands and/or resolver changes are considered).
*/
codePtr = procPtr->bodyPtr->internalRep.otherValuePtr;
if (((Interp *) *codePtr->interpHandle != iPtr)
|| (codePtr->compileEpoch != iPtr->compileEpoch)
|| (codePtr->nsPtr != nsPtr)
|| (codePtr->nsEpoch != nsPtr->resolverEpoch)) {
goto doCompilation;
}
} else {
doCompilation:
result = ProcCompileProc(interp, procPtr, procPtr->bodyPtr, nsPtr,
(isLambda ? "body of lambda term" : "body of proc"),
TclGetString(objv[isLambda]), &procPtr);
if (result != TCL_OK) {
return result;
}
}
/*
* Set up and push a new call frame for the new procedure invocation.
* This call frame will execute in the proc's namespace, which might be
* different than the current namespace. The proc's namespace is that of
* its command, which can change if the command is renamed from one
* namespace to another.
*/
framePtrPtr = &framePtr;
result = TclPushStackFrame(interp, (Tcl_CallFrame **) framePtrPtr,
(Tcl_Namespace *) nsPtr,
(isLambda? (FRAME_IS_PROC|FRAME_IS_LAMBDA) : FRAME_IS_PROC));
if (result != TCL_OK) {
return result;
}
framePtr->objc = objc;
framePtr->objv = objv;
framePtr->procPtr = procPtr;
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclObjInterpProc --
*
* When a Tcl procedure gets invoked during bytecode evaluation, this
* object-based routine gets invoked to interpret the procedure.
*
* Results:
* A standard Tcl object result value.
*
* Side effects:
* Depends on the commands in the procedure.
*
*----------------------------------------------------------------------
*/
int
TclObjInterpProc(
ClientData clientData, /* Record describing procedure to be
* interpreted. */
register Tcl_Interp *interp,/* Interpreter in which procedure was
* invoked. */
int objc, /* Count of number of arguments to this
* procedure. */
Tcl_Obj *CONST objv[]) /* Argument value objects. */
{
int result;
result = PushProcCallFrame(clientData, interp, objc, objv, /*isLambda*/ 0);
if (result == TCL_OK) {
return TclObjInterpProcCore(interp, objv[0], 1, &MakeProcError);
} else {
return TCL_ERROR;
}
}
/*
*----------------------------------------------------------------------
*
* TclObjInterpProcCore --
*
* When a Tcl procedure, lambda term or anything else that works like a
* procedure gets invoked during bytecode evaluation, this object-based
* routine gets invoked to interpret the body.
*
* Results:
* A standard Tcl object result value.
*
* Side effects:
* Nearly anything; depends on the commands in the procedure body.
*
*----------------------------------------------------------------------
*/
int
TclObjInterpProcCore(
register Tcl_Interp *interp,/* Interpreter in which procedure was
* invoked. */
Tcl_Obj *procNameObj, /* Procedure name for error reporting. */
int skip, /* Number of initial arguments to be skipped,
* i.e., words in the "command name". */
ProcErrorProc errorProc) /* How to convert results from the script into
* results of the overall procedure. */
{
Interp *iPtr = (Interp *) interp;
register Proc *procPtr = iPtr->varFramePtr->procPtr;
int result;
CallFrame *freePtr;
result = InitArgsAndLocals(interp, procNameObj, skip);
if (result != TCL_OK) {
goto procDone;
}
#if defined(TCL_COMPILE_DEBUG)
if (tclTraceExec >= 1) {
register CallFrame *framePtr = iPtr->varFramePtr;
register int i;
if (framePtr->isProcCallFrame & FRAME_IS_LAMBDA) {
fprintf(stdout, "Calling lambda ");
} else {
fprintf(stdout, "Calling proc ");
}
for (i = 0; i < framePtr->objc; i++) {
TclPrintObject(stdout, framePtr->objv[i], 15);
fprintf(stdout, " ");
}
fprintf(stdout, "\n");
fflush(stdout);
}
#endif /*TCL_COMPILE_DEBUG*/
if (TCL_DTRACE_PROC_ARGS_ENABLED()) {
char *a[10];
int i = 0;
int l = iPtr->varFramePtr->isProcCallFrame & FRAME_IS_LAMBDA ? 1 : 0;
while (i < 10) {
a[i] = (l < iPtr->varFramePtr->objc ?
TclGetString(iPtr->varFramePtr->objv[l]) : NULL); i++; l++;
}
TCL_DTRACE_PROC_ARGS(a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9]);
}
if (TCL_DTRACE_PROC_INFO_ENABLED() && iPtr->cmdFramePtr) {
Tcl_Obj *info = TclInfoFrame(interp, iPtr->cmdFramePtr);
char *a[4]; int i[2];
TclDTraceInfo(info, a, i);
TCL_DTRACE_PROC_INFO(a[0], a[1], a[2], a[3], i[0], i[1]);
TclDecrRefCount(info);
}
/*
* Invoke the commands in the procedure's body.
*/
procPtr->refCount++;
iPtr->numLevels++;
if (TclInterpReady(interp) == TCL_ERROR) {
result = TCL_ERROR;
} else {
register ByteCode *codePtr =
procPtr->bodyPtr->internalRep.otherValuePtr;
codePtr->refCount++;
if (TCL_DTRACE_PROC_ENTRY_ENABLED()) {
int l;
l = iPtr->varFramePtr->isProcCallFrame & FRAME_IS_LAMBDA ? 2 : 1;
TCL_DTRACE_PROC_ENTRY(TclGetString(procNameObj),
iPtr->varFramePtr->objc - l,
(Tcl_Obj **)(iPtr->varFramePtr->objv + l));
}
result = TclExecuteByteCode(interp, codePtr);
if (TCL_DTRACE_PROC_RETURN_ENABLED()) {
TCL_DTRACE_PROC_RETURN(TclGetString(procNameObj), result);
}
codePtr->refCount--;
if (codePtr->refCount <= 0) {
TclCleanupByteCode(codePtr);
}
}
iPtr->numLevels--;
procPtr->refCount--;
if (procPtr->refCount <= 0) {
TclProcCleanupProc(procPtr);
}
/*
* Process the result code.
*/
switch (result) {
case TCL_RETURN:
/*
* If it is a 'return', do the TIP#90 processing now.
*/
result = TclUpdateReturnInfo((Interp *) interp);
break;
case TCL_CONTINUE:
case TCL_BREAK:
/*
* It's an error to get to this point from a 'break' or 'continue', so
* transform to an error now.
*/
Tcl_ResetResult(interp);
Tcl_AppendResult(interp, "invoked \"",
((result == TCL_BREAK) ? "break" : "continue"),
"\" outside of a loop", NULL);
result = TCL_ERROR;
/*
* Fall through to the TCL_ERROR handling code.
*/
case TCL_ERROR:
/*
* Now it _must_ be an error, so we need to log it as such. This means
* filling out the error trace. Luckily, we just hand this off to the
* function handed to us as an argument.
*/
(*errorProc)(interp, procNameObj);
default:
/*
* Process other results (OK and non-standard) by doing nothing
* special, skipping directly to the code afterwards that cleans up
* associated memory.
*
* Non-standard results are processed by passing them through quickly.
* This means they all work as exceptions, unwinding the stack quickly
* and neatly. Who knows how well they are handled by third-party code
* though...
*/
(void) 0; /* do nothing */
}
if (TCL_DTRACE_PROC_RESULT_ENABLED()) {
Tcl_Obj *r;
r = Tcl_GetObjResult(interp);
TCL_DTRACE_PROC_RESULT(TclGetString(procNameObj), result,
TclGetString(r), r);
}
procDone:
/*
* Free the stack-allocated compiled locals and CallFrame. It is important
* to pop the call frame without freeing it first: the compiledLocals
* cannot be freed before the frame is popped, as the local variables must
* be deleted. But the compiledLocals must be freed first, as they were
* allocated later on the stack.
*/
freePtr = iPtr->framePtr;
Tcl_PopCallFrame(interp); /* Pop but do not free. */
TclStackFree(interp, freePtr->compiledLocals);
/* Free compiledLocals. */
TclStackFree(interp, freePtr); /* Free CallFrame. */
return result;
}
/*
*----------------------------------------------------------------------
*
* TclProcCompileProc --
*
* Called just before a procedure is executed to compile the body to byte
* codes. If the type of the body is not "byte code" or if the compile
* conditions have changed (namespace context, epoch counters, etc.) then
* the body is recompiled. Otherwise, this function does nothing.
*
* Results:
* None.
*
* Side effects:
* May change the internal representation of the body object to compiled
* code.
*
*----------------------------------------------------------------------
*/
int
TclProcCompileProc(
Tcl_Interp *interp, /* Interpreter containing procedure. */
Proc *procPtr, /* Data associated with procedure. */
Tcl_Obj *bodyPtr, /* Body of proc. (Usually procPtr->bodyPtr,
* but could be any code fragment compiled in
* the context of this procedure.) */
Namespace *nsPtr, /* Namespace containing procedure. */
CONST char *description, /* string describing this body of code. */
CONST char *procName) /* Name of this procedure. */
{
return ProcCompileProc(interp, procPtr, bodyPtr, nsPtr, description,
procName, NULL);
}
static int
ProcCompileProc(
Tcl_Interp *interp, /* Interpreter containing procedure. */
Proc *procPtr, /* Data associated with procedure. */
Tcl_Obj *bodyPtr, /* Body of proc. (Usually procPtr->bodyPtr,
* but could be any code fragment compiled in
* the context of this procedure.) */
Namespace *nsPtr, /* Namespace containing procedure. */
CONST char *description, /* string describing this body of code. */
CONST char *procName, /* Name of this procedure. */
Proc **procPtrPtr) /* Points to storage where a replacement
* (Proc *) value may be written. */
{
Interp *iPtr = (Interp *) interp;
int i;
Tcl_CallFrame *framePtr;
ByteCode *codePtr = bodyPtr->internalRep.otherValuePtr;
CompiledLocal *localPtr;
/*
* If necessary, compile the procedure's body. The compiler will allocate
* frame slots for the procedure's non-argument local variables. If the
* ByteCode already exists, make sure it hasn't been invalidated by
* someone redefining a core command (this might make the compiled code
* wrong). Also, if the code was compiled in/for a different interpreter,
* we recompile it. Note that compiling the body might increase
* procPtr->numCompiledLocals if new local variables are found while
* compiling.
*
* Precompiled procedure bodies, however, are immutable and therefore they
* are not recompiled, even if things have changed.
*/
if (bodyPtr->typePtr == &tclByteCodeType) {
if (((Interp *) *codePtr->interpHandle == iPtr)
&& (codePtr->compileEpoch == iPtr->compileEpoch)
&& (codePtr->nsPtr == nsPtr)
&& (codePtr->nsEpoch == nsPtr->resolverEpoch)) {
return TCL_OK;
} else {
if (codePtr->flags & TCL_BYTECODE_PRECOMPILED) {
if ((Interp *) *codePtr->interpHandle != iPtr) {
Tcl_AppendResult(interp,
"a precompiled script jumped interps", NULL);
return TCL_ERROR;
}
codePtr->compileEpoch = iPtr->compileEpoch;
codePtr->nsPtr = nsPtr;
} else {
bodyPtr->typePtr->freeIntRepProc(bodyPtr);
bodyPtr->typePtr = NULL;
}
}
}
if (bodyPtr->typePtr != &tclByteCodeType) {
Tcl_HashEntry *hePtr;
#ifdef TCL_COMPILE_DEBUG
if (tclTraceCompile >= 1) {
/*
* Display a line summarizing the top level command we are about
* to compile.
*/
Tcl_Obj *message;
TclNewLiteralStringObj(message, "Compiling ");
Tcl_IncrRefCount(message);
Tcl_AppendStringsToObj(message, description, " \"", NULL);
Tcl_AppendLimitedToObj(message, procName, -1, 50, NULL);
fprintf(stdout, "%s\"\n", TclGetString(message));
Tcl_DecrRefCount(message);
}
#endif
/*
* Plug the current procPtr into the interpreter and coerce the code
* body to byte codes. The interpreter needs to know which proc it's
* compiling so that it can access its list of compiled locals.
*
* TRICKY NOTE: Be careful to push a call frame with the proper
* namespace context, so that the byte codes are compiled in the
* appropriate class context.
*/
if (procPtrPtr != NULL && procPtr->refCount > 1) {
Tcl_Command token;
Tcl_CmdInfo info;
Proc *newProc = (Proc *) ckalloc(sizeof(Proc));
newProc->iPtr = procPtr->iPtr;
newProc->refCount = 1;
newProc->cmdPtr = procPtr->cmdPtr;
token = (Tcl_Command) newProc->cmdPtr;
newProc->bodyPtr = Tcl_DuplicateObj(bodyPtr);
bodyPtr = newProc->bodyPtr;
Tcl_IncrRefCount(bodyPtr);
newProc->numArgs = procPtr->numArgs;
newProc->numCompiledLocals = newProc->numArgs;
newProc->firstLocalPtr = NULL;
newProc->lastLocalPtr = NULL;
localPtr = procPtr->firstLocalPtr;
for (i=0; i<newProc->numArgs; i++, localPtr=localPtr->nextPtr) {
CompiledLocal *copy = (CompiledLocal *) ckalloc((unsigned)
(sizeof(CompiledLocal) - sizeof(localPtr->name)
+ localPtr->nameLength + 1));
if (newProc->firstLocalPtr == NULL) {
newProc->firstLocalPtr = newProc->lastLocalPtr = copy;
} else {
newProc->lastLocalPtr->nextPtr = copy;
newProc->lastLocalPtr = copy;
}
copy->nextPtr = NULL;
copy->nameLength = localPtr->nameLength;
copy->frameIndex = localPtr->frameIndex;
copy->flags = localPtr->flags;
copy->defValuePtr = localPtr->defValuePtr;
if (copy->defValuePtr) {
Tcl_IncrRefCount(copy->defValuePtr);
}
copy->resolveInfo = localPtr->resolveInfo;
strcpy(copy->name, localPtr->name);
}
/*
* Reset the ClientData
*/
Tcl_GetCommandInfoFromToken(token, &info);
if (info.objClientData == (ClientData) procPtr) {
info.objClientData = (ClientData) newProc;
}
if (info.clientData == (ClientData) procPtr) {
info.clientData = (ClientData) newProc;
}
if (info.deleteData == (ClientData) procPtr) {
info.deleteData = (ClientData) newProc;
}
Tcl_SetCommandInfoFromToken(token, &info);
procPtr->refCount--;
*procPtrPtr = procPtr = newProc;
}
iPtr->compiledProcPtr = procPtr;
(void) TclPushStackFrame(interp, &framePtr,
(Tcl_Namespace *) nsPtr, /* isProcCallFrame */ 0);
/*
* TIP #280: We get the invoking context from the cmdFrame which
* was saved by 'Tcl_ProcObjCmd' (using linePBodyPtr).
*/
hePtr = Tcl_FindHashEntry(iPtr->linePBodyPtr, (char *) procPtr);
/*
* Constructed saved frame has body as word 0. See Tcl_ProcObjCmd.
*/
iPtr->invokeWord = 0;
iPtr->invokeCmdFramePtr =
(hePtr ? (CmdFrame *) Tcl_GetHashValue(hePtr) : NULL);
(void) tclByteCodeType.setFromAnyProc(interp, bodyPtr);
iPtr->invokeCmdFramePtr = NULL;
TclPopStackFrame(interp);
} else if (codePtr->nsEpoch != nsPtr->resolverEpoch) {
/*
* The resolver epoch has changed, but we only need to invalidate the
* resolver cache.
*/
codePtr->nsEpoch = nsPtr->resolverEpoch;
codePtr->flags |= TCL_BYTECODE_RESOLVE_VARS;
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* MakeProcError --
*
* Function called by TclObjInterpProc to create the stack information
* upon an error from a procedure.
*
* Results:
* The interpreter's error info trace is set to a value that supplements
* the error code.
*
* Side effects:
* none.
*
*----------------------------------------------------------------------
*/
static void
MakeProcError(
Tcl_Interp *interp, /* The interpreter in which the procedure was
* called. */
Tcl_Obj *procNameObj) /* Name of the procedure. Used for error
* messages and trace information. */
{
int overflow, limit = 60, nameLen;
const char *procName = Tcl_GetStringFromObj(procNameObj, &nameLen);
overflow = (nameLen > limit);
Tcl_AppendObjToErrorInfo(interp, Tcl_ObjPrintf(
"\n (procedure \"%.*s%s\" line %d)",
(overflow ? limit : nameLen), procName,
(overflow ? "..." : ""), interp->errorLine));
}
/*
*----------------------------------------------------------------------
*
* TclProcDeleteProc --
*
* This function is invoked just before a command procedure is removed
* from an interpreter. Its job is to release all the resources allocated
* to the procedure.
*
* Results:
* None.
*
* Side effects:
* Memory gets freed, unless the procedure is actively being executed.
* In this case the cleanup is delayed until the last call to the current
* procedure completes.
*
*----------------------------------------------------------------------
*/
void
TclProcDeleteProc(
ClientData clientData) /* Procedure to be deleted. */
{
Proc *procPtr = (Proc *) clientData;
procPtr->refCount--;
if (procPtr->refCount <= 0) {
TclProcCleanupProc(procPtr);
}
}
/*
*----------------------------------------------------------------------
*
* TclProcCleanupProc --
*
* This function does all the real work of freeing up a Proc structure.
* It's called only when the structure's reference count becomes zero.
*
* Results:
* None.
*
* Side effects:
* Memory gets freed.
*
*----------------------------------------------------------------------
*/
void
TclProcCleanupProc(
register Proc *procPtr) /* Procedure to be deleted. */
{
register CompiledLocal *localPtr;
Tcl_Obj *bodyPtr = procPtr->bodyPtr;
Tcl_Obj *defPtr;
Tcl_ResolvedVarInfo *resVarInfo;
Tcl_HashEntry *hePtr = NULL;
CmdFrame *cfPtr = NULL;
Interp *iPtr = procPtr->iPtr;
if (bodyPtr != NULL) {
Tcl_DecrRefCount(bodyPtr);
}
for (localPtr = procPtr->firstLocalPtr; localPtr != NULL; ) {
CompiledLocal *nextPtr = localPtr->nextPtr;
resVarInfo = localPtr->resolveInfo;
if (resVarInfo) {
if (resVarInfo->deleteProc) {
(*resVarInfo->deleteProc)(resVarInfo);
} else {
ckfree((char *) resVarInfo);
}
}
if (localPtr->defValuePtr != NULL) {
defPtr = localPtr->defValuePtr;
Tcl_DecrRefCount(defPtr);
}
ckfree((char *) localPtr);
localPtr = nextPtr;
}
ckfree((char *) procPtr);
/*
* TIP #280: Release the location data associated with this Proc
* structure, if any. The interpreter may not exist (For example for
* procbody structures created by tbcload. See also Tcl_ProcObjCmd(), when
* the same ProcPtr is overwritten with a new CmdFrame.
*/
if (!iPtr) {
return;
}
hePtr = Tcl_FindHashEntry(iPtr->linePBodyPtr, (char *) procPtr);
if (!hePtr) {
return;
}
cfPtr = (CmdFrame *) Tcl_GetHashValue(hePtr);
if (cfPtr->type == TCL_LOCATION_SOURCE) {
Tcl_DecrRefCount(cfPtr->data.eval.path);
cfPtr->data.eval.path = NULL;
}
ckfree((char *) cfPtr->line);
cfPtr->line = NULL;
ckfree((char *) cfPtr);
Tcl_DeleteHashEntry(hePtr);
}
/*
*----------------------------------------------------------------------
*
* TclUpdateReturnInfo --
*
* This function is called when procedures return, and at other points
* where the TCL_RETURN code is used. It examines the returnLevel and
* returnCode to determine the real return status.
*
* Results:
* The return value is the true completion code to use for the procedure
* or script, instead of TCL_RETURN.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
int
TclUpdateReturnInfo(
Interp *iPtr) /* Interpreter for which TCL_RETURN exception
* is being processed. */
{
int code = TCL_RETURN;
iPtr->returnLevel--;
if (iPtr->returnLevel < 0) {
Tcl_Panic("TclUpdateReturnInfo: negative return level");
}
if (iPtr->returnLevel == 0) {
/*
* Now we've reached the level to return the requested -code.
* Since iPtr->returnLevel and iPtr->returnCode have completed
* their task, we now reset them to default values so that any
* bare "return TCL_RETURN" that may follow will work [Bug 2152286].
*/
code = iPtr->returnCode;
iPtr->returnLevel = 1;
iPtr->returnCode = TCL_OK;
if (code == TCL_ERROR) {
iPtr->flags |= ERR_LEGACY_COPY;
}
}
return code;
}
/*
*----------------------------------------------------------------------
*
* TclGetObjInterpProc --
*
* Returns a pointer to the TclObjInterpProc function; this is different
* from the value obtained from the TclObjInterpProc reference on systems
* like Windows where import and export versions of a function exported
* by a DLL exist.
*
* Results:
* Returns the internal address of the TclObjInterpProc function.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
TclObjCmdProcType
TclGetObjInterpProc(void)
{
return (TclObjCmdProcType) TclObjInterpProc;
}
/*
*----------------------------------------------------------------------
*
* TclNewProcBodyObj --
*
* Creates a new object, of type "procbody", whose internal
* representation is the given Proc struct. The newly created object's
* reference count is 0.
*
* Results:
* Returns a pointer to a newly allocated Tcl_Obj, NULL on error.
*
* Side effects:
* The reference count in the ByteCode attached to the Proc is bumped up
* by one, since the internal rep stores a pointer to it.
*
*----------------------------------------------------------------------
*/
Tcl_Obj *
TclNewProcBodyObj(
Proc *procPtr) /* the Proc struct to store as the internal
* representation. */
{
Tcl_Obj *objPtr;
if (!procPtr) {
return NULL;
}
TclNewObj(objPtr);
if (objPtr) {
objPtr->typePtr = &tclProcBodyType;
objPtr->internalRep.otherValuePtr = procPtr;
procPtr->refCount++;
}
return objPtr;
}
/*
*----------------------------------------------------------------------
*
* ProcBodyDup --
*
* Tcl_ObjType's Dup function for the proc body object. Bumps the
* reference count on the Proc stored in the internal representation.
*
* Results:
* None.
*
* Side effects:
* Sets up the object in dupPtr to be a duplicate of the one in srcPtr.
*
*----------------------------------------------------------------------
*/
static void
ProcBodyDup(
Tcl_Obj *srcPtr, /* Object to copy. */
Tcl_Obj *dupPtr) /* Target object for the duplication. */
{
Proc *procPtr = srcPtr->internalRep.otherValuePtr;
dupPtr->typePtr = &tclProcBodyType;
dupPtr->internalRep.otherValuePtr = procPtr;
procPtr->refCount++;
}
/*
*----------------------------------------------------------------------
*
* ProcBodyFree --
*
* Tcl_ObjType's Free function for the proc body object. The reference
* count on its Proc struct is decreased by 1; if the count reaches 0,
* the proc is freed.
*
* Results:
* None.
*
* Side effects:
* If the reference count on the Proc struct reaches 0, the struct is
* freed.
*
*----------------------------------------------------------------------
*/
static void
ProcBodyFree(
Tcl_Obj *objPtr) /* The object to clean up. */
{
Proc *procPtr = objPtr->internalRep.otherValuePtr;
procPtr->refCount--;
if (procPtr->refCount <= 0) {
TclProcCleanupProc(procPtr);
}
}
/*
*----------------------------------------------------------------------
*
* DupLambdaInternalRep, FreeLambdaInternalRep, SetLambdaFromAny --
*
* How to manage the internal representations of lambda term objects.
* Syntactically they look like a two- or three-element list, where the
* first element is the formal arguments, the second is the the body, and
* the (optional) third is the namespace to execute the lambda term
* within (the global namespace is assumed if it is absent).
*
*----------------------------------------------------------------------
*/
static void
DupLambdaInternalRep(
Tcl_Obj *srcPtr, /* Object with internal rep to copy. */
register Tcl_Obj *copyPtr) /* Object with internal rep to set. */
{
Proc *procPtr = srcPtr->internalRep.twoPtrValue.ptr1;
Tcl_Obj *nsObjPtr = srcPtr->internalRep.twoPtrValue.ptr2;
copyPtr->internalRep.twoPtrValue.ptr1 = procPtr;
copyPtr->internalRep.twoPtrValue.ptr2 = nsObjPtr;
procPtr->refCount++;
Tcl_IncrRefCount(nsObjPtr);
copyPtr->typePtr = &lambdaType;
}
static void
FreeLambdaInternalRep(
register Tcl_Obj *objPtr) /* CmdName object with internal representation
* to free. */
{
Proc *procPtr = objPtr->internalRep.twoPtrValue.ptr1;
Tcl_Obj *nsObjPtr = objPtr->internalRep.twoPtrValue.ptr2;
procPtr->refCount--;
if (procPtr->refCount == 0) {
TclProcCleanupProc(procPtr);
}
TclDecrRefCount(nsObjPtr);
}
static int
SetLambdaFromAny(
Tcl_Interp *interp, /* Used for error reporting if not NULL. */
register Tcl_Obj *objPtr) /* The object to convert. */
{
Interp *iPtr = (Interp *) interp;
char *name;
Tcl_Obj *argsPtr, *bodyPtr, *nsObjPtr, **objv, *errPtr;
int objc, result;
Proc *procPtr;
/*
* Convert objPtr to list type first; if it cannot be converted, or if its
* length is not 2, then it cannot be converted to lambdaType.
*/
result = TclListObjGetElements(interp, objPtr, &objc, &objv);
if ((result != TCL_OK) || ((objc != 2) && (objc != 3))) {
TclNewLiteralStringObj(errPtr, "can't interpret \"");
Tcl_AppendObjToObj(errPtr, objPtr);
Tcl_AppendToObj(errPtr, "\" as a lambda expression", -1);
Tcl_SetObjResult(interp, errPtr);
return TCL_ERROR;
}
argsPtr = objv[0];
bodyPtr = objv[1];
/*
* Create and initialize the Proc struct. The cmdPtr field is set to NULL
* to signal that this is an anonymous function.
*/
name = TclGetString(objPtr);
if (TclCreateProc(interp, /*ignored nsPtr*/ NULL, name, argsPtr, bodyPtr,
&procPtr) != TCL_OK) {
Tcl_AppendObjToErrorInfo(interp, Tcl_ObjPrintf(
"\n (parsing lambda expression \"%s\")", name));
return TCL_ERROR;
}
/*
* CAREFUL: TclCreateProc returns refCount==1! [Bug 1578454]
* procPtr->refCount = 1;
*/
procPtr->cmdPtr = NULL;
/*
* TIP #280: Remember the line the apply body is starting on. In a Byte
* code context we ask the engine to provide us with the necessary
* information. This is for the initialization of the byte code compiler
* when the body is used for the first time.
*
* NOTE: The body is the second word in the 'objPtr'. Its location,
* accessible through 'context.line[1]' (see below) is therefore only the
* first approximation of the actual line the body is on. We have to use
* the string rep of the 'objPtr' to determine the exact line. This is
* available already through 'name'. Use 'TclListLines', see 'switch'
* (tclCmdMZ.c).
*
* This code is nearly identical to the #280 code in Tcl_ProcObjCmd, see
* this file. The differences are the different index of the body in the
* line array of the context, and the special processing mentioned in the
* previous paragraph to track into the list. Find a way to factor the
* common elements into a single function.
*/
if (iPtr->cmdFramePtr) {
CmdFrame *contextPtr;
contextPtr = (CmdFrame *) TclStackAlloc(interp, sizeof(CmdFrame));
*contextPtr = *iPtr->cmdFramePtr;
if (contextPtr->type == TCL_LOCATION_BC) {
/*
* Retrieve the source context from the bytecode. This call
* accounts for the reference to the source file, if any, held in
* 'context.data.eval.path'.
*/
TclGetSrcInfoForPc(contextPtr);
} else if (contextPtr->type == TCL_LOCATION_SOURCE) {
/*
* We created a new reference to the source file path name when we
* created 'context' above. Account for the reference.
*/
Tcl_IncrRefCount(contextPtr->data.eval.path);
}
if (contextPtr->type == TCL_LOCATION_SOURCE) {
/*
* We can record source location within a lambda only if the body
* was not created by substitution.
*/
if (contextPtr->line
&& (contextPtr->nline >= 2) && (contextPtr->line[1] >= 0)) {
int isNew, buf[2];
CmdFrame *cfPtr = (CmdFrame *) ckalloc(sizeof(CmdFrame));
/*
* Move from approximation (line of list cmd word) to actual
* location (line of 2nd list element).
*/
TclListLines(objPtr, contextPtr->line[1], 2, buf, NULL);
cfPtr->level = -1;
cfPtr->type = contextPtr->type;
cfPtr->line = (int *) ckalloc(sizeof(int));
cfPtr->line[0] = buf[1];
cfPtr->nline = 1;
cfPtr->framePtr = NULL;
cfPtr->nextPtr = NULL;
cfPtr->data.eval.path = contextPtr->data.eval.path;
Tcl_IncrRefCount(cfPtr->data.eval.path);
cfPtr->cmd.str.cmd = NULL;
cfPtr->cmd.str.len = 0;
Tcl_SetHashValue(Tcl_CreateHashEntry(iPtr->linePBodyPtr,
(char *) procPtr, &isNew), cfPtr);
}
/*
* 'contextPtr' is going out of scope. Release the reference that
* it's holding to the source file path
*/
Tcl_DecrRefCount(contextPtr->data.eval.path);
}
TclStackFree(interp, contextPtr);
}
/*
* Set the namespace for this lambda: given by objv[2] understood as a
* global reference, or else global per default.
*/
if (objc == 2) {
TclNewLiteralStringObj(nsObjPtr, "::");
} else {
char *nsName = TclGetString(objv[2]);
if ((*nsName != ':') || (*(nsName+1) != ':')) {
TclNewLiteralStringObj(nsObjPtr, "::");
Tcl_AppendObjToObj(nsObjPtr, objv[2]);
} else {
nsObjPtr = objv[2];
}
}
Tcl_IncrRefCount(nsObjPtr);
/*
* Free the list internalrep of objPtr - this will free argsPtr, but
* bodyPtr retains a reference from the Proc structure. Then finish the
* conversion to lambdaType.
*/
objPtr->typePtr->freeIntRepProc(objPtr);
objPtr->internalRep.twoPtrValue.ptr1 = procPtr;
objPtr->internalRep.twoPtrValue.ptr2 = nsObjPtr;
objPtr->typePtr = &lambdaType;
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* Tcl_ApplyObjCmd --
*
* This object-based function is invoked to process the "apply" Tcl
* command. See the user documentation for details on what it does.
*
* Results:
* A standard Tcl object result value.
*
* Side effects:
* Depends on the content of the lambda term (i.e., objv[1]).
*
*----------------------------------------------------------------------
*/
int
Tcl_ApplyObjCmd(
ClientData dummy, /* Not used. */
Tcl_Interp *interp, /* Current interpreter. */
int objc, /* Number of arguments. */
Tcl_Obj *CONST objv[]) /* Argument objects. */
{
Interp *iPtr = (Interp *) interp;
Proc *procPtr = NULL;
Tcl_Obj *lambdaPtr, *nsObjPtr;
int result, isRootEnsemble;
Command cmd;
Tcl_Namespace *nsPtr;
ExtraFrameInfo efi;
if (objc < 2) {
Tcl_WrongNumArgs(interp, 1, objv, "lambdaExpr ?arg1 arg2 ...?");
return TCL_ERROR;
}
/*
* Set lambdaPtr, convert it to lambdaType in the current interp if
* necessary.
*/
lambdaPtr = objv[1];
if (lambdaPtr->typePtr == &lambdaType) {
procPtr = lambdaPtr->internalRep.twoPtrValue.ptr1;
}
#define JOE_EXTENSION 0
#if JOE_EXTENSION
else {
/*
* Joe English's suggestion to allow cmdNames to function as lambdas.
* Also requires making tclCmdNameType non-static in tclObj.c
*/
Tcl_Obj *elemPtr;
int numElem;
if ((lambdaPtr->typePtr == &tclCmdNameType) ||
(TclListObjGetElements(interp, lambdaPtr, &numElem,
&elemPtr) == TCL_OK && numElem == 1)) {
return Tcl_EvalObjv(interp, objc-1, objv+1, 0);
}
}
#endif
if ((procPtr == NULL) || (procPtr->iPtr != iPtr)) {
result = SetLambdaFromAny(interp, lambdaPtr);
if (result != TCL_OK) {
return result;
}
procPtr = lambdaPtr->internalRep.twoPtrValue.ptr1;
}
memset(&cmd, 0, sizeof(Command));
procPtr->cmdPtr = &cmd;
/*
* TIP#280 (semi-)HACK!
*
* Using cmd.clientData to tell [info frame] how to render the
* 'lambdaPtr'. The InfoFrameCmd will detect this case by testing cmd.hPtr
* for NULL. This condition holds here because of the 'memset' above, and
* nowhere else (in the core). Regular commands always have a valid
* 'hPtr', and lambda's never.
*/
efi.length = 1;
efi.fields[0].name = "lambda";
efi.fields[0].proc = NULL;
efi.fields[0].clientData = lambdaPtr;
cmd.clientData = &efi;
/*
* Find the namespace where this lambda should run, and push a call frame
* for that namespace. Note that TclObjInterpProc() will pop it.
*/
nsObjPtr = lambdaPtr->internalRep.twoPtrValue.ptr2;
result = TclGetNamespaceFromObj(interp, nsObjPtr, &nsPtr);
if (result != TCL_OK) {
return result;
}
cmd.nsPtr = (Namespace *) nsPtr;
isRootEnsemble = (iPtr->ensembleRewrite.sourceObjs == NULL);
if (isRootEnsemble) {
iPtr->ensembleRewrite.sourceObjs = objv;
iPtr->ensembleRewrite.numRemovedObjs = 1;
iPtr->ensembleRewrite.numInsertedObjs = 0;
} else {
iPtr->ensembleRewrite.numInsertedObjs -= 1;
}
result = PushProcCallFrame((ClientData) procPtr, interp, objc, objv, 1);
if (result == TCL_OK) {
result = TclObjInterpProcCore(interp, objv[1], 2, &MakeLambdaError);
}
if (isRootEnsemble) {
iPtr->ensembleRewrite.sourceObjs = NULL;
iPtr->ensembleRewrite.numRemovedObjs = 0;
iPtr->ensembleRewrite.numInsertedObjs = 0;
}
return result;
}
/*
*----------------------------------------------------------------------
*
* MakeLambdaError --
*
* Function called by TclObjInterpProc to create the stack information
* upon an error from a lambda term.
*
* Results:
* The interpreter's error info trace is set to a value that supplements
* the error code.
*
* Side effects:
* none.
*
*----------------------------------------------------------------------
*/
static void
MakeLambdaError(
Tcl_Interp *interp, /* The interpreter in which the procedure was
* called. */
Tcl_Obj *procNameObj) /* Name of the procedure. Used for error
* messages and trace information. */
{
int overflow, limit = 60, nameLen;
const char *procName = Tcl_GetStringFromObj(procNameObj, &nameLen);
overflow = (nameLen > limit);
Tcl_AppendObjToErrorInfo(interp, Tcl_ObjPrintf(
"\n (lambda term \"%.*s%s\" line %d)",
(overflow ? limit : nameLen), procName,
(overflow ? "..." : ""), interp->errorLine));
}
/*
*----------------------------------------------------------------------
*
* Tcl_DisassembleObjCmd --
*
* Implementation of the "::tcl::unsupported::disassemble" command. This
* command is not documented, but will disassemble procedures, lambda
* terms and general scripts. Note that will compile terms if necessary
* in order to disassemble them.
*
*----------------------------------------------------------------------
*/
int
Tcl_DisassembleObjCmd(
ClientData dummy, /* Not used. */
Tcl_Interp *interp, /* Current interpreter. */
int objc, /* Number of arguments. */
Tcl_Obj *CONST objv[]) /* Argument objects. */
{
static const char *types[] = {
"lambda", "proc", "script", NULL
};
enum Types {
DISAS_LAMBDA, DISAS_PROC, DISAS_SCRIPT
};
int idx, result;
if (objc != 3) {
Tcl_WrongNumArgs(interp, 1, objv, "type procName|lambdaTerm|script");
return TCL_ERROR;
}
if (Tcl_GetIndexFromObj(interp, objv[1], types, "type", 0, &idx)!=TCL_OK){
return TCL_ERROR;
}
switch ((enum Types) idx) {
case DISAS_LAMBDA: {
Proc *procPtr = NULL;
Command cmd;
Tcl_Obj *nsObjPtr;
Tcl_Namespace *nsPtr;
/*
* Compile (if uncompiled) and disassemble a lambda term.
*/
if (objv[2]->typePtr == &lambdaType) {
procPtr = objv[2]->internalRep.twoPtrValue.ptr1;
}
if (procPtr == NULL || procPtr->iPtr != (Interp *) interp) {
result = SetLambdaFromAny(interp, objv[2]);
if (result != TCL_OK) {
return result;
}
procPtr = objv[2]->internalRep.twoPtrValue.ptr1;
}
memset(&cmd, 0, sizeof(Command));
nsObjPtr = objv[2]->internalRep.twoPtrValue.ptr2;
result = TclGetNamespaceFromObj(interp, nsObjPtr, &nsPtr);
if (result != TCL_OK) {
return result;
}
cmd.nsPtr = (Namespace *) nsPtr;
procPtr->cmdPtr = &cmd;
result = PushProcCallFrame(procPtr, interp, objc, objv, 1);
if (result != TCL_OK) {
return result;
}
TclPopStackFrame(interp);
if (((ByteCode *) procPtr->bodyPtr->internalRep.otherValuePtr)->flags
& TCL_BYTECODE_PRECOMPILED) {
Tcl_AppendResult(interp, "may not disassemble prebuilt bytecode",
NULL);
return TCL_ERROR;
}
Tcl_SetObjResult(interp, TclDisassembleByteCodeObj(procPtr->bodyPtr));
break;
}
case DISAS_PROC: {
Proc *procPtr = TclFindProc((Interp *) interp, TclGetString(objv[2]));
if (procPtr == NULL) {
Tcl_AppendResult(interp, "\"", TclGetString(objv[2]),
"\" isn't a procedure", NULL);
return TCL_ERROR;
}
/*
* Compile (if uncompiled) and disassemble a procedure.
*/
result = PushProcCallFrame(procPtr, interp, 2, objv+1, 1);
if (result != TCL_OK) {
return result;
}
TclPopStackFrame(interp);
if (((ByteCode *) procPtr->bodyPtr->internalRep.otherValuePtr)->flags
& TCL_BYTECODE_PRECOMPILED) {
Tcl_AppendResult(interp, "may not disassemble prebuilt bytecode",
NULL);
return TCL_ERROR;
}
Tcl_SetObjResult(interp, TclDisassembleByteCodeObj(procPtr->bodyPtr));
break;
}
case DISAS_SCRIPT:
/*
* Compile and disassemble a script.
*/
if (objv[2]->typePtr != &tclByteCodeType) {
if (TclSetByteCodeFromAny(interp, objv[2], NULL, NULL) != TCL_OK){
return TCL_ERROR;
}
}
Tcl_SetObjResult(interp, TclDisassembleByteCodeObj(objv[2]));
break;
}
return TCL_OK;
}
/*
* Local Variables:
* mode: c
* c-basic-offset: 4
* fill-column: 78
* End:
*/
|