

MCMCcoal

Markov Chain Monte Carlo Coalescent Program
Version 1.1, April 2005

© Ziheng Yang, September 2002 onwards

The program is provided "as is" without warranty of any kind.
The program is provided free of charge for academic use only.

Ziheng Yang

Department of Biology
University College London

Gower Street, London WC1E 6BT
Email: z.yang@ucl.ac.uk

Phone: +44 (20) 7679 4379
Fax: +44 (20) 7679 7096

Introduction
The ANSI C program MCMCcoal implements the Bayes Markov chain Monte Carlo (MCMC)
algorithm of Yang and Rannala (2003) for estimating species divergence times and population
sizes from DNA sequence alignments at multiple loci. Consult the paper for details of the model
assumptions and the theory. The program can also be used to estimate θ from a sample from
one modern species under the standard neutral coalescent. A simulation program (MCcoal) can
be compiled from the same source code, to simulate sequence data sets under the same
model; read the section “The simulation program (MCcoal)”.

Getting Started
• Compiling the program (already done if you are using MS Windows)
• Execute the program by typing the following command at the command line

 MCMCcoal
The program reads the control file MCMCcoal.dat by default.
If you type
 MCMCcoal MCMCcoalChenLi4s.dat
The program will use the data set of Chen and Li (2001) and duplicate the analysis of
Rannala and Yang (2003: table 2 “Posterior (53 loci)”).
If you type
 MCMCcoal MCMCcoalYu2001.dat
The program will use the data set of Yu et al. (2001), which is a sample from the
human species, to estimate θ. This should duplicate the result of table 3 (first row) in
Rannala and Yang (2003).
(Note: The output on one line is longer than 80 characters, so you should make the
window wider, to 110 characters. You can try to drag the window to make it wider. On
MS Windows, you should right-click on the title bar, then choose Properties, and change
Layout - Window size.)

• Print out a copy of the control file and read it together with this document.

 1

http://abacus.gene.ucl.ac.uk/
http://www.ucl.ac.uk/biology/
http://www.ucl.ac.uk/
mailto:z.yang@ucl.ac.uk

Compiling the Program
Win32 executables are included, so you can use the .exe executables on windows
95/98/NT/2K/XP.

If you are using UNIX (linux, MAC OSX), you should remove the .exe files and then compile the
program. You need to do this only once. You can use gcc or any ANSI C-compatible compiler.
The program used some source codes from my PAML package (paml.h, tools.c, treesub.c),
and I did not bother to edit those files. Try the following:

 cc -o MCMCcoal -O3 MCMCcoal.c tools.c -lm

The –o flag specifies the name of the output executable file, -O3 optimizes the code, and –lm
links to the math library. You might want to change some of flags. For example you might use
gcc instead of cc, -fast, -O4 instead of –O3, and you might not need the –lm flag.

The Control File

Analysis of Multiple Species Data
Three example control files are included in the package, for three different runs.
MCMCMCcoalChenLi4s.dat provides the control file to analyze the Chen & Li (2002) data set,
included in the package. This should duplicate the results of table 2 “Posterior (53 loci)” in
Rannala and Yang (2003). The control file MCMCcoalYu2001.dat is for analyzing a sample from
one single species to estimate parameter θ = 4Nµ. This should duplicate table 3 (first row) in
Rannala and Yang (2003). This is explained in the next subsection.

The description below uses the third control file MCMCMCcoal.dat. This is not for a real
data set, but is used below to explain the general features of the program. You can print out
the copy included in the package. Also look at (but do not print) the included example
sequence data file NeksTestData.txt for the data format. In the following, “population size”
means θ = 4Nµ, the product of population size and the mutation rate µ, and “speciation time”
means τ, the age of species divergence multiplied by the mutation rate µ. See Rannala and
Yang (2003) for the notation.

NeksTestData.txt
-1
4 H C G O
 3 2 1 1
(((H, C), G), O);

 0 # use data? 0: prior; 1: posterior
10000 2 100000 # burnin output nsample

0.05 0.01 0.01 0.02 0.8 # finetune for GBtj, GBtip, theta, tau, mix

 2 2 2 2 2 7.4 4 20 # a_gamma
2000 2000 2000 2000 2000 1000 2500 4000 # b_gamma

Below are details of the control variables.

NeksTestData.txt

sequence data file name.

-1
Random number seed to determine the starting point of the MCMC run. If you use –1, the
program will pick up a seed at random, and different runs will use different random number
seed. If you use a positive integer, the program will use it as the seed, in which case different

 2

runs of the program should produce exactly identical results.

4 H C G O
 3 2 1 1

There are 4 species in the species tree: H (human), C (chimp), G (gorilla), O (orang). Species
names are case-sensitive.
The next line says that there are 3 humans, 2 chimps, 1 gorilla, and 1 orang. These numbers
are like upper bounds and serve two purposes. First, they are used to determine which θ
parameters are involved in the model and should be estimated. The specification here means
that we should estimate θH and θC, as well as the three θ’s for the ancestral populations, but not
θG and θO. (The other parameters are the speciation times τHCGO, τHCG, τHC.) Second, they
specify the maximum number of sequences at a locus. The exact rules are as follows: (i) If the
number of sequences specified here is 1, that species (such as the gorilla) cannot have more
than 1 sequence at any locus in the sequence data file; (ii) If a species never has two or more
sequences at any locus, you must use 1 (not 2 or 3) for that species here. (iii) The total
number of sequences at any locus in the data file should not exceed the total number specified
here (7 in the example). So given the specifications in this example, feasible cases in the data
file include H2C3G0O0 and H2C3G1O1, but not H0C0G2O1. Each locus in the data file should have
at least 2 sequences.

In case the above is confusing, you can just specify the maximum number, among loci, of
sequences for each species.

(((H, C), G), O);

The species tree is fixed.
 0 # use data? 0: prior; 1: posterior
When 0 is used, the MCMC runs without using the sequence data (except for the number of loci
and number sequences at each locus); it should thus approximate the prior for parameters.
This option can be used to test the algorithm. When 1 is used, the MCMC run uses sequence
data to approximate the posterior.

10000 2 100000 # burnin output nsample

The first number (10000) is the number of generations of the MCMC used as burnin. These are
discarded before samples are taken from the chain. After the burnin, samples are taken every
2 generations, , and 100,000 samples are taken. The total number of MCMC generations is
burnin + output × nsample. Parameter values sampled from the MCMC run are collected in a
plain text file named mcmc.out. Note that this file can get very large if many samples are
taken.

0.05 0.01 0.002 0.005 1.5 # for GBtj, GBtip, theta, tau, mix

These are the five fine-tuning variables ε1, ε2, ε3, ε4, ε5 in Rannala & Yang (2003). They are
used in the five MCMC proposal steps for (1) changing internal node ages in the gene tree, (2)
pruning and re-grafting nodes in the gene tree, (3) updating θs, (4) updating τs using the
rubber-band algorithm, and (5) the mixing step. You should run the MCMC for a small number
of generations and look at the screen output for the five acceptance proportions (see below).
There are no hard rules, but theory says that those proportions should best be in the range
(0.1, 0.7). The results are entirely untrustworthy if any of the proportions are 0. So if the
recorded proportion is too high (low), you should increase (reduce) the corresponding fine-
tuning parameter. Note if there is only one species, step 4 is not used and ε4 is irrelevant.

 2 2 2 2 2 7.4 4 20 # a_gamma
2000 2000 2000 2000 2000 1000 2500 4000 # b_gamma

These two lines specify the values of α and β in the gamma priors for parameters θ’s and τs in
the model. The mean of the gamma is α/β, while the variance is α/β2. Note that α is called the
shape parameter of the gamma distribution while β is the scale parameter. If α ≤ 1, the
distribution has an L shape, with the most likely values near 0, while if α > 1, the distribution

 3

has a peak in the middle. I suggest you always use α > 1 since it is almost certain that all θ
and τ parameters are strictly positive.

For n species, the number of θ parameters is c + (n – 1), where c is the number of species
for which more than one sequence is available at some loci in the data. In the example above,
c = 2 (for H and C). The number of speciation time parameters τs is (n – 1), corresponding to
the (n – 1) ancestral nodes. There should be c + (n – 1) × 2 values on each of the two lines.

Parameters θs are before parameters τs, but the exact order of θs and τs is determined by
the program rather than by the user. So what you should do is to count the total number of
parameters, and supply the right number of α and β values on those two lines. You then start
the program and stop it (Ctrl-C), and use the screen output to figure out the order of the
parameters. In the example, the following screen output suggests that the parameters are in
the order θH, θC, θHC, θHCG, θHCGO, (τHCGO – τHCG), (τHCG – τHC), and τHC. Note that the speciation
times are defined as gaps.

Gamma prior: mean +- SE (95% CI) for theta's and tau's
theta_H 0.00100 +- 0.00071 (0.00012, 0.00279)
theta_C 0.00100 +- 0.00071 (0.00012, 0.00279)
theta_HC 0.00100 +- 0.00071 (0.00012, 0.00279)
theta_HCG 0.00100 +- 0.00071 (0.00012, 0.00279)
theta_HCGO 0.00100 +- 0.00071 (0.00012, 0.00279)
tau_HCGO - tau_HCG 0.00740 +- 0.00272 (0.00307, 0.01361) tau_HCGO 0.01400
tau_HCG - tau_HC 0.00160 +- 0.00080 (0.00044, 0.00351) tau_HCG 0.00660
tau_HC 0.00500 +- 0.00112 (0.00305, 0.00742) tau_HC 0.00500

Analysis of Data from One Species
Run the analysis by
 MCMCcoal MCMCcoalYu2001.dat
The control file MCMCcoalYu2001.dat is for analyzing a sample from one single species to
estimate parameter θ = 4Nµ under the standard neutral coalescent. This should duplicate table
3 (first row) in Rannala and Yang (2003).

The control file is copied below. I think everything is explained above. Here are a few
more notes. There is only one species so there is no tree. Multiple loci can be used in the data
file, but one locus will work fine. The proposal step for changing tau is not used in the MCMC
for analyzing data of one species. As a result, the fourth acceptance ratio printed on the
monitor is always 0. You still need all the five numbers in the control file, and the program
reads the fourth number and ignores it.

There is only one parameter in the model: θ. Note that the mutation rate is assumed to be
the same in the program so that only one θ is involved in the model.

The printout on the monitor will include the current posterior mean of θ, and the current
posterior means of µtMRCA for the loci. If you have many loci, only the first few µtMRCA are
printed in the monitor.

If you have g loci, the output file mcmc.out will list g + 2 columns. The first is θ, followed
by the µtMRCA for the g loci. The µtMRCA are not parameters, but sometimes people are
interested in them, so they are included in the output and summarized as well. The last
column is the log likelihood, which you should ignore.

yu2001.txt
-1
1 H
 100 # max # of sequences

 1 # use data? 0: prior; 1: posterior
2000 2 2000 # burnin output nsample

0.8 0.0001 0.0005 0.01 1 # finetune for GBtj, GBtip, theta, tau, mix

 2 # a_gamma
2000 # b_gamma

 4

Sequence Data File
I include an example data file NeksTestData.txt, which works with the default control file
MCMCcoal.dat. The other data file, ChenLiData4s.nuc, has the 53-loci data of Chen and Li
(2001). You can use those files as examples to assemble your data in the right format. The
format is basically phylip/paml format but you need to provide more information. The
beginning of NeksTestData.txt is as follows.

 3

0 2 1 1
 4 50
C1 ?CCAGGCGG? TTACGCGCTA TTAGGCCGTT AGAATGCACG CGAGTCTCCT
C2 YCCAGGCGGT TTACGC---- TTAGGCCGTT AGAATGCACG CGAGTCTCCT
G YCCAGGCGGT TTACGCGCTA TTAGGCCGTT AGAATGCACG CGAGTCTCCT
O CCCAGGAGGT TTTCGCGCTG TTAAGGCGCT AGAATGCACG TGCCTTTCTT

The first number means 3 loci.

There are then 3 blocks for the 3 loci. Each block begins by telling the program how many
sequences are in the data for each species. So the first locus has 0 Humans, 2 Chimps, 1
Gorilla, and 1 Orang. The order of the species is fixed according to the control file
MCMCcoal.dat.

The rest of the block should be the same as a standard paml/phylip sequence data file; see
the PAML manual if you need more details. The locus has 4 (= 0 + 2 + 1 + 1) sequences, and
50 nucleotides in each sequence. The 4 sequences have to be in the right order; that is, they
are 2 chimps, followed by 1 gorilla, and followed by 1 orang. Similarly, the second locus has 3
humans, 0 chimps, 1 gorilla, and 1 orang, while the third locus has 1 human, 2 chimp, 1 gorilla,
and 1 orang (see the file NeksTestData.txt). Different numbers of sequences can be used at
different loci. For the program to run, each locus should have at least 2 sequences.

By default, alignment gaps in the sequence data are treated as ambiguity characters,
which seems a valid choice, since in closely related species, alignment gaps are rare, where
gaps at the ends of the alignments do represent undetermined nucleotides. This is the case for
the Chen & Li data. It is not possible to tell the program to remove ambiguity characters at
some loci while keeping them at others. Details of likelihood calculation concerning ambiguity
characters are in Yang (2000). Dealing with ambiguity characters slows down the program. So
if you would rather have ambiguity characters at some loci removed, you should do that
yourself before assembling the alignments into one data file. You can use baseml to do that.
Otherwise if you want ambiguity characters removed at every locus, you can change
com.cleandata = 0 into com.cleandata = 1 at the beginning of the routine main() in the file
MCMCcoal.c and recompile.

Running the program
For MCMC runs, parameters θ and τ included in the species tree, if any, are ignored. The
starting values of the parameters θ and τ are generated as random numbers, and the starting
gene trees and coalescent times are generated from their priors given those values of
parameters.

You should do a short run of the program to understand the order of the parameters
assumed by the program and to get estimates of the acceptance proportions of the five
proposal steps. You can run the program for some seconds or even minutes and then stop it
(use Ctrl-C, for example). You use the order of the parameters to specify parameters α and β
of the prior gamma distributions, and you use the acceptance proportions to adjust the five
fine-tuning parameters in the control file. Note that the optimum fine-tuning parameters might
depend on the prior, and on whether you are approximating the prior or the posterior. As a
guide, you should try to bring the acceptance proportions into the range (0.1, 0.5). Although
the exact values should not matter much to the MCMC run, you should be aware that an
acceptance proportion of near 0 may mean lack of convergence.

 5

Read the section on Screen Outputs below for details.
When the MCMC run is finished at long last, the program will read and process the output

in mcmc.out. It uses kernel density estimation method to smooth the histogram. It also can
estimate bi-variate densities. So it asks you how many 2-D densities you want. (This is a bit
awkward when the program asks a question after running for a day.) In general the MCMC run
should take much longer than summarizing the results.

A separate program ds (for descriptive statistics) can read and summarize output in
mcmc.out. So you can finish the MCMC run and summarize results later on. If you use ds to
process output from other MCMC programs, look at mcmc.out for the input data format.

Monitoring Convergence
You can read some notes in Rannala and Yang (2003) or in any books on MCMC. Here are a
few tips:

• Run the program at least twice using different random number seeds, and confirm that
the results are similar between runs.

• Plot the output in mcmc.out against generation (iteration) and examine the pattern.
• Examine the serial correlation coefficient in the output and confirm that they all go

down to 0 with the increase of the lag length.

Outputs

Output Files
The main output is in a file named out. The program also output the MCMC states (current
values of parameters θ and τ sampled from the MCMC) in another file named mcmc.out. Do not
use those names for your files as otherwise they will be overwritten. The main output file has
information from processing sequence alignments at each locus, as well as summary
information generated when the program summarizes the results in mcmc.out. The program
also uses kernel density estimation methods to smooth the histogram so that you can plot the
marginal posterior density for each variable. It can also use kernel smoothing to estimate 2-D
densities, but you need many samples (say 100,000) to produce a smooth density.

Screen Outputs
Pay attention to screen outputs to make sure that the specifications in the control file and the
format of the sequence data file are correct. Most of the screen output is self-explanatory. The
program prints out the tree topology, as well as a population-population table, which you can
ignore. It then defines the θ and τ parameters, as explained in the section “The Control File”.

The program then reads and processes the sequence data file.
It then starts the Markov chain. The initial values for parameters θs and τs are random

numbers, and the starting gene trees and coalescent times at loci are sampled from the prior
given θ and τ. The program prints out the initial θs and τs (gaps or inter-arrival times in the
species tree), as well as the initial log likelihood lnL0. During the MCMC, the program
continuously updates a line of result like the following. (You might have to resize the window
width so that the line will fit.)

-3.9% 0.25 0.38 0.46 0.54 0.16 0.00102 0.00288 0.00124 0.00399 0.00198 0.03057 0.00338 0.01050 -1560.31

The first number is the percentage of the run achieved; a negative number means burnin. This
is followed by five numbers, which are the recorded acceptance proportions of the five proposal
steps. You use those proportions to adjust the fine-tuning parameters ε1, ε2, ε3, ε4, ε5 so that
the acceptance proportions lie in the interval (0.1, 0.5). If a proportion is too low, you should
decrease the corresponding ε value in the control file, and if the proportion is too high, you
should increase the corresponding ε value. Next are the posterior means of the parameters
from the MCMC run. In the example, the 8 parameters are in the order θH, θC, θHC, θHCG, θHCGO,
(τHCGO – τHCG), (τHCG – τHC), and τHC. If no sequence data are used, those means should
approach the expected means α/β. For the example data set included, the posterior means of

 6

the eight parameters should approach
0.00093 0.00288 0.00133 0.00416 0.00174 0.03193 0.00316 0.01019

The last number on the line is the current log likelihood.
The program will then read and process the file mcmc.out to calculate min, max, median,

percentiles, and histogram information. This may take quite some time if many samples (say
>1M) are collected in the file.

Disk Space and Memory Requirements
The output file mcmc.out can become big. For every sample you take, the program prints out
the θ and τ parameters as well as the log likelihood. The disk space required is about (8 × p +
12) × nsample bytes, where p is the number of θ and τ parameters and nsample is the number
of samples specified in the control file MCMCcoal.dat. For the example data, p = 8, so the
output takes 76MB disk space to take 1,000,000 samples or 760MB of space for 10M samples.
For the Chen & Li data of four species, p = 6, 60MB is needed for 1M samples and 600MB for
10M samples.

The program does not keep those sampled parameter values in memory, and does not use
much memory during the MCMC. When the MCMC run is finished, the program summarizes
results by reading the file mcmc.out. It does this multiple times to save memory. The big
chunk of memory is required when it reads in all the sampled values for one parameter, which
is 8 × nsample bytes (that is, 8MB for 1M samples or 80MB for 10M samples).

The small program ds can also calculate such descriptive statistics. Run it with
 ds mcmc.out

This does exactly the same calculation as from within MCMCcoal. If you want to use it to
process output from other programs, look at mcmc.out to see the format of the input file for
ds.

To get accurate estimation of the 2-D density, you need many samples, say >100,000.

Technical Notes

Control Variables in the Source File
Occasionally you may want to change some variables at the beginning of the routine MCMC() in
the source file MCMCcoal.c, which control the MCMC run. The default are as follows.

 mcmc.print=1;
 mcmc.moveinnode=1; /* moves internal nodes in the gene tree as well */
 mcmc.speciation[0]=0; /* =0 for gaps; 1 for ages for the prior */
 mcmc.speciation[1]=0; /* =0 for gaps; 1 for ages for the output */
 mcmc.mixtheta_change=0;

mcmc.print. If you do not want the MCMC output in the file mcmc.out, you can change print
to 0. This way, the means of the parameters will still be outputted on the screen, but the
program will not write results in the file mcmc.out.

mcmc.moveinnode. If you want the proposal step updating gene tree topologies to move the
tips only but not the internal nodes, you can have moveinnode = 0. The default prunes and re-
grafts both tips and internal nodes in the gene tree and seems worthwhile if the gene tree is
large with many sequences.

mcmc.speciation[0] & mcmc.speciation[1]. Those two variables specify whether gaps
(inter-arrival times) or ages are used to specify the speciation times in the prior and the output.
The default uses gaps for both. If you want to use ages for both, you should have
speciation[0]=1 and speciation[1]=1. If you want the prior to be specified using gaps in
MCMCcoal.dat, but the output (both to the screen and the mcmc.out file) to be in ages, you can
have speciation[0]=0 and speciation[1]=1. You cannot specify the prior using ages while
having output using gaps; that is, speciation[0]=1 and speciation[0]=0 are not permitted.

 7

The MCMC algorithm always operates using the node ages.

mcmc.mixtheta_change = 0. This variable affects the updating of the θ parameters during the
mixing step. When it is 0, the algorithm will multiply all parameters including θs, τs, and
coalescent times in all gene trees by a constant c around 1. If this variable is 1, the algorithm
may multiply some θs by c, dividing some by c, while leaving others unchanged. The decision
is based on the correlations between the θ parameter and the τs collected during the MCMC
run. The strategy is implemented to overcome the strong correlation between some speciation
times (τs) and some θs.

Prior for Speciation Times
Node ages in the species tree are probably more natural to use than gaps. However, node ages
are constrained. For example, in the species tree (((H, C), G), O), we have τHC ≤ τHCG ≤ τHCGO.
Thus the gamma priors for the ages cannot be independent. When you specify “independent”
gamma priors for node ages in the control file MCMCcoal.dat, the prior used by the program is
really the joint gamma density conditioned on the constraint τHC ≤ τHCG ≤ τHCGO, and the marginal
expectations of the node ages are not the same as α/β from the gamma distribution. You can
get the expectations of the conditioned distribution by running the MCMC without data, or by
using another program such as Mathematica. Perhaps I should use Monte Carlo simulation to
calculate them more quickly. Note that the only difficulty with using node ages is that the prior
used by the program will be conditioned on the constraint, and it may take quite some trial and
error for the prior to match your expectations. For example, if we have complied MCMCcoal to
use node ages (speciation[0]=1 and speciation[1]=1; see above) and use the following
control file MCMCcoal.dat. The gamma distributions for the speciation times (node ages) τHCGO,
τHCG, and τHC have means 0.0014, 0.0066, and 0.0050, which would correspond to divergence
times of 14MY, 6.6MY, and 5MY, respectively. However, because of the constraints, the means
used by the program for the constrained prior are 0.0143, 0.0072, and 0.0041.

ChenLiData4s.nuc
-1
4 H C G O
 1 1 1 1
(((H, C), G), O);
 0 # use data? 0: prior; 1: posterior
10000 2 100000 # burnin output nsample
0.05 0.01 0.002 0.005 0.5 # finetune for GBtj, GBtip, theta, tau, mix

 2 2 2 14 6.6 5 # a_gamma
2000 2000 2000 1000 1000 1000 # b_gamma

Using gaps (inter-arrival times) in the species tree essentially removes the non-

independence and makes it easier to specify the prior. So by default, priors for speciation
times are specified as priors for the gaps. If the node is not a tip, the prior is specified for the
gap between the age of the node and the age of its first (left) daughter node. For the species
tree (((H, C), G), O), the speciation time parameters are thus (τHCGO – τHCG), (τHCG – τHC), and
τHC.

If the species tree is ((A, B), (C, D)), the following time parameters are used: (τABCD – τAB),
τAB, and τCD. In this case there is a constraint, which is τABCD, calculated as (τABCD − τAB) + τAB,
should be > τCD. Thus the gamma priors are not really independent even with the use of the
gaps for parameters. As mentioned above, the issue only concern the interpretation of the
priors for speciation times. To reduce the problem, try to use the smaller gap as parameter.
So if you expect τAB < τCD, you should use the tree topology ((C, D), (A, B)), so that the
parameters used will be (τABCD – τCD), τCD, and τAB.

Incompatibility with future versions.
I hope to add some other components such as population growth and migration into the
program. The current user interface is awkward and will almost certainly change.

 8

The Simulation Program (MCcoal)
I did not spend much time on the interface for the simulation program, and you might have to
change some variables in the program to simulate data.

To compile the simulation program, you should delete or comment out (using the pair /* and */
to bracket) the following line

#define MetropolisHastings 1

and then compile the program and generate the output into an executable with a different file
name such as MCcoal.
 cc -o MCcoal -O3 MCMCcoal.c tools.c –lm

The program takes input from the control file MCcoal.dat. This is shorter than the control file
MCMCcoal.dat for the MCMC program, and uses the first few lines only. Note that the file name
in the control file now is used to hold simulated sequence data set.

As explained early in this document, the following variables specify the sequence data file name
to be generated, the random number seed, the number of species, species names, and the
number of sequences in each species. In the tree, the prefix ‘:’ specifies the node ages
(parameters τ). Note that this symbol is conventionally used to specify branch lengths, and the
usage here is nonstandard. Also the prefix ‘#’ specifies the population size parameters θs. So
the tree in the following specifies the following parameters:
θH = 0.001, θC = 0.001, θHC = 0.001, θHCG = 0.001, θHCGO = 0.001, τHCGO = 0.014, τHCG =
0.0066, and τHC = 0.005.

SimulatedData.txt
1234567
4 H C G O
 3 2 1 1
(((H #0.001, C #0.001) : 0.005 #.001, G) : 0.0066 #.001, O) :.014 #.001;

You may have to change some other variables in the source code MCMCcoal.c. Search for

the following line at the beginning of the routine SimulateData(): nr is the number of replicate
data sets or the number of loci, and ls is the sequence length (number of nucleotides).
 nr=20; com.ls=1000;

References
Chen, F.-C., and W.-H. Li, 2001 Genomic divergences between humans and other Hominoids

and the effective population size of the common ancestor of humans and chimpanzees.
American Journal of Human Genetics 68: 444-456.

Rannala, B., and Z. Yang, 2003 Bayes estimation of species divergence times and ancestral
population sizes using DNA sequences from multiple loci. Genetics submitted.

Yang, Z. 2002. Likelihood and Bayes estimation of ancestral population sizes in Hominoids
using data from multiple loci. Genetics 162: 1811-1823

Yu, N., Z. Zhao, Y. X. Fu, N. Sambuughin, M. Ramsay, T. Jenkins, E. Leskinen, L. Patthy, L. B.
Jorde, T. Kuromori, and W. H. Li. 2001. Global patterns of human DNA sequence variation
in a 10-kb region on chromosome 1. Molecular Biology and Evolution 18:214-222.

 9

	Introduction
	Getting Started
	Compiling the Program
	The Control File
	Analysis of Multiple Species Data
	Analysis of Data from One Species

	Sequence Data File
	Running the program
	Monitoring Convergence
	Outputs
	Output Files
	Screen Outputs

	Disk Space and Memory Requirements
	Technical Notes
	Control Variables in the Source File
	Prior for Speciation Times
	Incompatibility with future versions.

	The Simulation Program (MCcoal)
	References

