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Empirical models of substitution are often used in protein sequence analysis because the large alphabet of amino acids
requires that many parameters be estimated in all but the simplest parametric models. When information about structure
is used in the analysis of substitutions in structured RNA, a similar situation occurs. The number of parameters necessary
to adequately describe the substitution process increases in order to model the substitution of paired bases.

We have developed a method to obtain substitution rate matrices empirically from RNA alignments that include
structural information in the form of base pairs. Our data consisted of alignments from the European Ribosomal RNA
Database of Bacterial and Eukaryotic Small Subunit and Large Subunit Ribosomal RNA (Wuyts et al. 2001. Nucleic
Acids Res. 29:175–177; Wuyts et al. 2002. Nucleic Acids Res. 30:183–185). Using secondary structural information, we
converted each sequence in the alignments into a sequence over a 20-symbol code: one symbol for each of the four
individual bases, and one symbol for each of the 16 ordered pairs. Substitutions in the coded sequences are defined in the
natural way, as observed changes between two sequences at any particular site. For given ranges (windows) of sequence
divergence, we obtained substitution frequency matrices for the coded sequences. Using a technique originally developed
for modeling amino acid substitutions (Veerassamy, Smith, and Tillier. 2003. J. Comput. Biol. 10:997–1010), we were
able to estimate the actual evolutionary distance for each window. The actual evolutionary distances were used to derive
instantaneous rate matrices, and from these we selected a universal rate matrix.

The universal rate matrices were incorporated into the Phylip Software package (Felsenstein 2002. http://
evolution.genetics.washington.edu/phylip.html), and we analyzed the ribosomal RNA alignments using both distance
and maximum likelihood methods. The empirical substitution models performed well on simulated data, and produced
reasonable evolutionary trees for 16S ribosomal RNA sequences from sequenced Bacterial genomes.

Empirical models have the advantage of being easily implemented, and the fact that the code consists of 20 symbols
makes the models easily incorporated into existing programs for protein sequence analysis. In addition, the models are
useful for simulating the evolution of RNA sequence and structure simultaneously.

Introduction

The conserved nature of ribosomal RNA structure,
facilitated by compensating substitutions of paired bases,
means that the evolution of bases in structurally related
positions may be highly dependent. Ribosomal RNA
(rRNA) sequences thus violate a key assumption of many
phylogeny methods: that different sites in a sequence have
independent evolutionary rates (Tillier and Collins 1995).
Because many rRNA structures are well known, we are
now in a position to incorporate structural information into
the analysis of rRNA. Indeed, several methods and models
have already done so (reviewed in Savill, Hoyle, and
Higgs 2001), recognizing the likely evolutionary de-
pendence between sites.

Probabilistic methods of phylogenetic analysis, such
as Bayesian phylogeny (Yang and Rannala 1997),
maximum likelihood (Felsenstein 1981), and modified
distance measures (Kimura 1981), make use of sub-
stitution models that define probabilities for the transition
from one base to another. When base substitution is
adequately modeled using a low number of states (or
under restricting assumptions), parametric models are
feasible. Simultaneously modeling the evolution of
sequence and structure has been done with several
parametric models, but this approach has been shown

to be accurate only when large numbers of parameters are
used (Savill, Hoyle, and Higgs 2001). In the common
case where a reasonable description of the substitution
process requires a large number of parameters (e.g., for
models of amino acid substitution), empirical models are
often used. For empirical models, the relative substitution
probabilities are derived from databases of alignments;
the PAM model of amino acid substitution is a well-
known example (Dayhoff, Schwartz, and Orcutt 1978).
The estimation of empirical substitution rates in rRNA
has been attempted previously (Tillier and Collins 1998;
Higgs 2000).

Databases of rRNA sequences are now sufficiently
large (with over 50,000 sequences represented) to form
the basis of an empirical model of substitution for rRNA.
Here we present an empirical model of substitution for
both individual and paired bases in structurally annotated
rRNA. Our model is based on sequence alignments from
RNA databases and conserved reference secondary
structures. The method we used to obtain substitution
matrices from rRNA data is an extension of a procedure
we recently applied to derive models of amino acid
substitution (Veerassamy, Smith, and Tillier 2003). We
accomplish this by converting the rRNA sequences into
sequences over a 20-symbol code. Although the 20-
symbol code reflects the number of individual bases and
ordered pairs of bases, the size of the alphabet is
fortuitous: the resulting rRNA models have 20 3 20
substitution rate matrices, and can be used in many
applications designed to analyze the evolution of proteins
using 20 3 20 amino acid substitution rate matrices. Such
programs were modified to allow the analysis of rRNA
sequences with the same methods.
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Methods
Data

Sequence alignments were obtained from the Euro-
pean Databases on Small and Large Subunit Ribosomal
RNAs (Wuyts et al. 2001; 2002). For each alignment,
a reliable reference sequence, with a known secondary
structure, was selected from the comparative RNA Web
site (CRW) database (Cannone et al. 2002). The reference
structures we used were Escherichia coli (J01695) for both
the Large Subunit (LSU) and Small Subunit (SSU)
Bacterial alignments, Mit. Zea mays (X00794) for the
SSU Mitochondrial alignment, Mit. Xenopus laevis
(M10217) for the LSU Mitochondrial alignment, Saccha-
romyces cerevisiae (U53879) for both SSU and LSU
Eukaryotic alignments, and Methanococcus jannaschii
(U67517) for the SSU Archaeal alignment (because of
insufficient data, we did not apply our method to the LSU
Archaeal alignment). We used the secondary structure as
a reference to identify paired bases in all sequences in the
alignments. This assumes that the ribosomal RNA
structures are similar for species within an alignment.

Sequence Coding

We converted each rRNA sequence into a sequence
over a 20-symbol alphabet in order to treat single-stranded
and double-stranded bases uniformly. The code is given in
figure 1a, and an example conversion is shown in figure
1b. The code uses four symbols to represent the single-
stranded bases: the unpaired bases or bases paired with
a gap (which are also single stranded) and 16 symbols to
represent ordered pairs of bases, as given by the reference
secondary structure. Bases that were not A, C, G, U, or –
were coded as unknowns (X), as were pairs having the
form (–,–), and unknowns were ignored in subsequent
analyses. The symbol for each pair appears exactly once in
the converted sequence, and the symbols are ordered
according to the position of the 39 base in a pair.

Deriving the Empirical Model

Our model was constructed using an approach similar
to that of Veerassamy, Smith, and Tillier (2003), designed
to obtain an amino acid substitution model from the
BLOCKS database (Henikoff and Henikoff 1992). The
model uses empirical data in the form of matrices that
count substitutions between pairs of coded sequences
(from the alignment) having a distance falling within
a particular range (window). We were able to obtain count
matrices for the sliding windows, each containing data
corresponding to a different degree of sequence diver-
gence. As described in more detail below, the count
matrices are converted into mutability matrices. Each
mutability matrix is a function of two unknowns:
a universal rate matrix, and an actual evolutionary
distance. The approach first estimates the actual evolu-
tionary distance using a differential equation. The
estimated actual evolutionary distance is then used to
derive an instantaneous rate matrix for each window. From
the set of instantaneous rate matrices, we select one as our
estimate of the universal rate matrix.

Substitution Frequency Matrices and
Observed Distances

From the alignments, each pair of converted se-
quences was compared, and their observed sequence
divergence (frequency of substitution) was recorded.
Those sites containing X were disregarded. Sequence
pairs were disregarded altogether when there were fewer
than 200 comparable sites between them. This was done to
prevent the artificial situation of observing very high
divergence between two sequences purely because very
few sites were comparable.

A series of overlapping windows representing the full
range of sequence divergence were defined. The first
window included all sequence pairs with divergence less
than or equal to the fixed window size w. The ith window
included all pairwise sequence comparisons with a relative
divergence between i and wþ i. For each alignment, each
type of substitution was counted for all of the sequence
pairs in each window. In this manner, a count matrix was
obtained for each window, and these were converted into
frequency matrices. Because direction of substitution is not
known, each substitution was counted for both directions,
and the diagonal entries in the matrix were doubled. Using
this method, consecutive windows are expected to contain
a nearly identical set of pairs, and windows corresponding
to sufficiently high divergence are expected to be empty.
The sliding-window strategy allowed us to ensure that we
had observations from many different levels of sequence
divergence. By manipulating the window size we were
able to control the amount of data in each window.
The sizes for the sliding windows were selected according
to the quality of matrices produced for the sizes (see
below).

Estimating Actual Evolutionary Distances

Each count matrix was converted to a frequency
matrix, denoted by F. From the frequency matrices, we
calculated the vector p of observed frequencies for each
code symbol

pi ¼
P20

j¼1 Fij
P20

i9¼1

P20

j¼1 Fi9j

; ð1Þ

for 1 � i � 20. For each row of the frequency matrix, we
divide the entries in that row by the row sum, resulting in
mutability matrix M:

Mij ¼
FijP20

j9¼1 Fij9

; ð2Þ

where 1 � i, j � 20. Mutability matrices were only
computed for windows where the frequency matrices had
nonzero row sums in order to prevent division by zero in
equation 2. Mutability matrices describe the frequency of
any symbol being substituted by any other (including
itself). Because each element of a mutability matrix falls
between 0 and 1, and the sum of the elements in each row
is equal to 1, mutability matrices are stochastic matrices.
The mutability matrices derived from the frequency
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matrices are reversible and thus fulfill the detailed balance
equation:

piMij ¼ pjMji: ð3Þ

The average substitution frequency can be calculated from
the mutability matrices and the frequency of the code
symbols using the following formula:

DðMÞ ¼ 1 �
X20

i¼1

piMii: ð4Þ

The mutability matrices describe the observed frequencies
of substitution (observed distance) expected after an
unknown actual evolutionary distance P. Therefore, in
addition to the definition given above, a mutability matrix
can also be considered a function of P. To reflect the
dependence of a mutability matrix on the (unknown)
evolutionary distance of the sequences from which M was
derived, we let M(P) denote the mutability matrix M as
a function of evolutionary distance P. The value of P is
unknown, because sequences ancestral to those in the
alignment are unknown, and because multiple substitu-
tions may have actually occurred at any site. Because
actual evolutionary distance is additive, taking the square
(square root) of a mutability matrix will double (halve) the
actual evolutionary distance. In general, for any mutability
matrix M, and any number n,

MðPÞn ¼ MðnPÞ; ð5Þ

which expresses a special form of the Chapman-Kolmo-
gorov equation for Markov chains. We used this property
to derive the instantaneous rate matrix from the mutability
matrices. Because this required taking fractional powers
and logarithms of the mutability matrices, the mutability
matrices were used only if their eigenvalues were all non-
negative.

We estimated the derivatives of the observed dis-
tances with respect to actual distance numerically, using
the five-point formula (Burden and Faires 1985),

dDðMðPÞÞ
dP

¼ 1

12ðkÞP ðDðMðð1 � 2kÞPÞÞ � 8DðMðð1 � kÞPÞÞ

þ 8DðMðð1 þ kÞPÞÞ � DðMðð1 þ 2kÞPÞÞÞ
ð6Þ

with k ¼ 0.01:

dDðMðPÞÞ
dP

¼ 1

12ð0:01ÞP ðDðMð0:98PÞÞ � 8DðMð0:99PÞÞ

þ 8DðMð1:01PÞÞ � DðMð1:02PÞÞÞ: ð7Þ
We used the additivity of mutability matrices and the
memoryless property of Markov chains (eq. 5) to obtain
the following equivalent formula:

P
dDðMðPÞÞ

dP
¼ 1

0:12
ðDðMðPÞ0:98Þ � 8DðMðPÞ0:99Þ

þ 8DðMðPÞ1:01Þ � DðMðPÞ1:02ÞÞ: ð8Þ
The expression on the right can be estimated by
a polynomial in D(M(P)). For notational convenience, let
D¼D(M(P)). We found that a cubic polynomial with four
unknown coefficients was sufficient to characterize the
observed data (fig. 2), yielding the differential equation:

P
dD

dP
’ a3D

3 þ a2D
2 þ a1Dþ a0; ð9Þ

We also know the initial conditions because, at sufficiently
low distance there are no overlapping substitutions and the
number of actual substitutions is equal to the number of
observed substitutions. Therefore,

lim
P!0

DðMðPÞÞ ¼ 0 and lim
P!0

dDðMðPÞÞ
dP

¼ 1; ð10Þ

allowing us to conclude that a0 ¼ 0 and a1 ¼ 1. The
differential simplifies to the quadratic

P

D

dD

dP
’ c2D

2 þ c1Dþ 1; ð11Þ

with only two unknown coefficients, c2 and c1. The
differential is separable and easily solved. The solution

FIG. 1.—rRNA sequence conversion. a. The conversion code for the
rRNA single-stranded bases and double-stranded base pairs to the 20-
symbol code. b. An example of how a sequence and its structure are
denoted with the new code.

FIG. 2.—Graph of PdD/dP vs D. These graphs indicate the quality of
fit, and the range of valid data compared with the range of observable data.
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defines a multiple-hit correction formula from which the
estimated actual P distances can be estimated from ob-
served D distances

P ¼ correctedðDÞ ð12Þ
The correction formula depends on the data set, and
several examples are shown in figure 3.

Instantaneous and Universal Rate Matrices

Once the actual evolutionary distances had been
estimated, we had sufficient information to derive in-
stantaneous rate matrices for each window. The following
formula was used to obtain the instantaneous rate matrix:

A ¼ lnðMÞ=P: ð13Þ
Equation 13 can only be used when the logarithm is well
defined, which requires that all eigenvalues of M be non-
negative. A valid instantaneous rate matrix is required to
have both a corresponding valid mutability matrix, and
also not have any negative values off the main diagonal.

This scheme can provide up to n(1 � w) þ 1
instantaneous rate matrices, but many fewer were found to
be valid. Both the negative eigenvalues in mutability
matrices and the negative off-diagonal rates in instanta-

neous rate matrices have been found to be associated with
insufficient observations in the count matrix and/or high
divergence.

From the set of valid instantaneous rate matrices, one
was selected as the universal rate matrix. The selection
criteria were based on how well an instantaneous matrix
could predict the observed mutability matrices, given the
estimated actual evolutionary distance. For each valid
instantaneous rate matrix A, we evaluated the sum of
relative residuals. This is calculated as the difference in the
norm (largest singular value) between the exponential of
the estimated log of the matrix and the original matrix:

X

i

kexpðAPiÞ �Mik
kMik

; ð14Þ

where the sum is over all valid mutability matrices. The
instantaneous matrix minimizing this quantity was selected
as the universal rate matrix. Examples of rate matrices are
shown in figure 4.

Simulations Experiments

Experiments were conducted to assess how well the
matrices could recover phylogenetic trees obtained from
simulated data. Our Bacterial 16S rRNA model was
incorporated into PSeq-Gen (Grassly, Adachi, and Ram-
baut 1997), a program designed to generate protein
sequences from a given tree and an amino-acid substitution
model such as PAM (Dayhoff, Schwartz, and Orcutt
1978). Because the matrices that describe our model have
the same dimensions as amino acid substitution matrices,
programs using amino acid substitution matrices can easily
be modified to implement our empirical model instead. We
modified the PSeq-Gen program to incorporate the SSU
bacterial empirical rRNA substitution model.

We simulated sequences using a 20-species tree (see
fig. 5), and the resulting sequences were analyzed with our
own programs, and programs from the PHYLIP package
(Felsenstein 2002). We used both the dnaml program and
the combination of the dnadist and neighbor programs
from PHYLIP on sequences obtained by converting the
simulated sequences (over the 20-symbol code) back into

FIG. 3.—Corrected distances. The corrected evolutionary distance is
shown as a function of the observed evolutionary distance for 3 SSU
rRNA data sets and 1 LSU rRNA data set.

FIG. 4.—Rate matrices for SSU rRNA. The entries of instantaneous rate matrices derived for the bacteria and eukaryote data sets are divided by the
frequency of the base/ base pair for that column. The resulting matrices are symmetrical. The Bacterial matrix is shown on the upper right and the
Eukaryotic matrix in the lower left. The order of the rows/columns has been changed to show them in order of single-stranded bases, Watson-Crick and
GU base pairs, and non-Watson-Crick pairings.
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the four bases of RNA (using our program called 20to4).
We also used the programs rrnadist and rrnaml, which are
modified versions of the PHYLIP protdist and protml that
incorporate our 16S rRNA matrices. Finally, our own
distance program rnadist, which implements the para-
metric model OTRNA from Tillier and Collins (1998),
was also used.

Example Data Set: Bacterial Phylogeny

We selected 16S rRNA sequences from the set of
completely sequenced genomes for which there was
a representative alignment in the European Ribosomal
RNA Database (a total of 70 full-length sequences). We
used Escherichia coli as a reference sequence and the
secondary structure obtained from the RNA database
(Cannone et al. 2002), and we converted the sequences to
the 20-letter code with our program 4to20. We analyzed
this data set using the same programs listed above for the
simulated data. We allowed for gamma-distributed rates,
with a gamma parameter of 1, for all methods; for the
maximum likelihood methods, we used two categories in
the Hidden Markov Model (HMM). All trees were
bootstrapped 100 times. The trees obtained using the
maximum likelihood methods are shown in figure 6.

Results
The rRNA Matrices

We applied our method to several alignments from
the European RNA databases (Wuyts et al. 2001; 2002)
attempting to obtain matrices specific to Bacterial,
Eukaryotic, Archeal, and Mitochondrial ribosomal RNAs,
for both the Small Subunit and the Large Subunit. Some
properties of these alignments are given in table 1.

The alignments were of varying sizes. The number of
observations that can be extracted from an alignment is
proportional to the number of pairs of sequences and the
number of comparable sites in each pair. The number of
sequences in the alignments ranged from 156 for
Eukaryote LSU, to 12,107 for Bacterial SSU. The
alignment lengths ranged from 1,000 to 2,500 bases, but
the number of comparable sites varied considerably, even
within an alignment. The most important factor affecting
the number of observations for any alignment is the
number of sequences in that alignment. Only four
alignments (Bacterial, Mitochondrial, Eukaryote SSU,
and Eukaryote LSU) produced a universal rate matrix.
For the remainder, the alignments were too small (too few
observations). The Eukaryote LSU alignment is an

FIG. 5.—Simulation results. The numbers at the nodes indicate how
often the correct branching was found out of 100 simulations using five
different analysis methods. The simulated tree topology is shown in panel f.

FIG. 6.—Bacterial SSU rRNA trees. Results of 100 bootstrap
samples for the bacterial 16S rRNA sequences using maximum likelihood
methods. dnaml was run with a discrete approximation of gamma-
distribution with a gamma parameter of 1 and four categories of sites.
rrnaml was run with the same gamma parameter and only two categories.
The values at the nodes indicate the number of bootstrap samples with the
corresponding branching. Although the trees are almost identical, the
bootstrap values for the dnaml tree are generally higher.
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exception to this trend. Having only 156 sequences, this
alignment still produced many valid instantaneous rate
matrices from which to select a universal rate matrix.

Window sizes were selected to produce the greatest
number of valid matrices. For the Bacterial, Mitochondrial,
and Archaeal alignments, a window size of 10% of the
alignment length was found to produce very good results,
and deviation from this size did not produce significantly
more valid matrices. For Eukaryote (SSU and LSU)
alignments, increasing the window size resulted in
improvements up to 20%. Because we wish to cover the
largest range of actual divergences, the window size was
selected to balance the sometimes conflicting requirements
of producing instantaneous rate matrices corresponding to
large divergence, and also to keep the residuals low.

Table 1 shows the number of windows in each
alignment from which observations were made. The total
number of windows is the number of count matrices with
non-zero row sums. All of these were used in our analysis
when testing the universal rate matrices according to
predictive ability. Not all of these could be used when
fitting the curves needed to estimate the actual distances.
Those windows for which the mutability matrix had
negative eigenvalues could not be used in Equation 8. We
also required that the numerically estimated derivatives
from Equation 8 be non-negative. The mutability matrices
corresponding to all windows fitting this criterion were
used to fit the curve given by equation 11. Figure 2 gives
the curves for Bacterial SSU, Mitochondrial SSU, and
Eukaryote SSU and LSU, where the data points used to
estimate the curve are plotted, along with the resulting
curve. The fitted curve is shown over the range of
divergence for non-empty windows. Figure 3 shows the
resulting distance correction for the different datasets.

The valid windows are those that meet the require-
ments for fitting the curve; they also produced a valid
instantaneous rate matrix with no negative values off the
diagonal. Table 1 shows that the Eukaryote alignments
produced many valid windows, whereas the mitochondrial
alignment produced very few.

The most important statistic in table 1 is the average
relative residual of the observed mutability matrices with the
mutability matrices predicted using the universal rate
matrix. The relative residual measures how well the selected
universal rate matrix can predict the observed data (the
mutability matrices). We calculated residuals predicting
mutability matrices from all non-empty windows; we also
predicted mutability matrices from those windows with
a valid instantaneous rate matrix. When predicting muta-
bility matrices for those windows producing valid in-
stantaneous matrices, we observed that the universal rate
matrix had residuals less than 0.1. The residual for
predicting Bacterial matrices was based on 144 compar-
isons. For the Mitochondrial SSU matrix, the residual with
respect to valid matrices was 0.048, but it was averaged over
only 19 matrices, each corresponding to a window close to
the one used to obtain the universal rate matrix. The
Eukaryotic alignments produced a large number of valid
matrices.

Simulations

Because of the unusual nature of our parametric
substitution model for recoded RNA sequences, and
because we would be using protein-analysis programs
for the analysis of rRNA data, we first established the
feasibility of our approach by means of simulated
sequences. The Bacterial SSU rRNA matrix was in-
corporated into PSeq-Gen (Grassly, Adachi, and Rambaut
1997) and used to generate 100 simulated data sets which
we then analyzed with several methods; the results are
given in figure 5. The values on the branches are the
number of simulations in which the correct tree (given in
figure 5f) was found. The topology and branch lengths of
the tree in figure 5f were chosen to reflect a range for the
degree of difficulty in correctly identifying the branching
by standard methods. The rRNA methods (rrnaml [fig. 5b]
and rrnadist [fig. 5a] using our Bacterial SSU rRNA matrix
with default parameters) did well in recovering the trees.
This is not surprising because these methods applied the

Table 1
Properties of Alignments Used to Derive rRNA Matrices

Bacteria Mitochondria Eukaryote Archaea

Database SSU LSU SSU LSU SSU LSU SSU

Number of sequences 12,107 399 1,039 659 6,590 156 590
Alignment length (bp) 1,064 2,035 1,504 1,258 1,303 2,488 1,013
Window size 0.10 0.10 0.10 0.10 0.20 0.20 0.10

Number of windows

All windows 828 1049 1430 1071 1302 2117 483
Valid windows 144 0 19 0 532 530 0

Maximum divergence

All windows 0.680 0.416 0.852 0.753 0.836 0.636 0.378
Valid windows 0.162 NA 0.203 NA 0.351 0.412 NA

Mean relative residual

All windows 0.184 NA 0.109 NA 0.167 0.103 NA
Valid windows 0.073 NA 0.048 NA 0.048 0.050 NA

NoTE.—The reference structures were: Escherichia coli (J01695) for Bacteria, Mit. Zea mays for Mitochondria (SSU) and Mit. Xenopus laevis for Mitochondria (LSU),

Saccharomyces cerevisiae (U53879) for Eukaryotes, and Methanococcus jannaschii (U67517) for Archaea.
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same model that was employed to generate the sequences.
Nevertheless, this result means that such models are useful
for the simulation of rRNA evolution and for phylogenetic
analysis of such sequences. The simulated sequences were
also analyzed with the distances calculated according to
the OTRNA model (figure 5c), which is a parametric
model for RNA evolution (Tillier and Collins 1998).
Although rnadist does not do as well as the rrnadist (fig.
5a), it does perform better than the standard DNA methods
dnadist (fig. 5e) and dnaml (fig. 5d) on the same data.
The DNA methods were applied after reverse coding the
sequences back to the four-base RNA code, so that the
secondary structure information was lost. The observed
reduction in the methods’ ability to obtain the correct tree
shows that the consideration of structural information is
important for obtaining the correct phylogeny.

Bacterial Phylogeny

Because the rrnadist and rrnaml programs were
successful in simulations, we were confident in applying
the empirical models to actual rRNA data. We chose the
sequenced Bacterial genomes because of our interest in
these genomes, and because their true phylogeny is
unknown. The resulting rrnaml tree is compared to the
dnaml tree in figure 6. The trees are remarkably similar,
but with generally lower bootstrap values for the rrnaml
tree. The distance trees obtained with dnadist, rnadist, and
rrnadist are also not significantly different from one
another (data not shown).

Discussion

Obtaining the matrices that describe our model
required making several methodological assumptions, as
well as various assumptions and approximations about the
data sets we used.

The assumptions of our method for deriving the em-
pirical matrix have largely been addressed by Veerassamy,
Smith, and Tillier (2003). Some minor methodological
changes were made to apply the method to the coded
rRNA sequences. Unlike the amino acid substitution
frequency matrices from the BLOCKS database (Henikoff
and Henikoff 1992), the rRNA substitution frequency
matrices often had negative eigenvalues for higher
sequence divergence levels and thus could not be used
for estimating a rate matrix. Negative eigenvalues in
mutability matrices are often associated with an insuffi-
cient number of observations in the corresponding count
matrix. Instead of using the clustering approach of Blosum
(Henikoff and Henikoff 1992), we used a sliding-window
strategy. The purpose of the sliding window was to obtain
a large number of count matrices, corresponding to many
different levels of sequence divergence, and to ensure that
each count matrix contained a high number of counts.

Negative eigenvalues are also observed when the fre-
quency matrix is too far from identity (Devauchelle et al.
2002). Biologically speaking, this is the situation of too
many overlapping substitutions to determine a set of
positive substitution rates that produced the observed data.
This phenomenon has been observed before and accounts
for the difficulty in obtaining distance estimates from

rRNA (Hoyle and Higgs 2003). Negative eigenvalues
occur earlier (i.e., at lower levels of observed divergence)
in the Bacterial data set than in the Eukaryotic data set. A
likely cause is higher rates of simultaneous compensatory
base substitutions in Bacteria, and stronger conservation of
secondary structure in Bacteria.

Certain assumptions underlying our model are in-
dependent of our methods. The most evident assumption is
that the sequence data and the alignments used are correct.
The huge alignments from the rRNA databases represent
solutions to an extremely difficult global multiple
sequence alignment problem, and they cannot realistically
be expected to be optimal with respect to any measure of
alignment quality. The nature of our empirical model
requires that very large multiple alignments be used, so we
must assume that the alignment given is sufficiently
accurate to form a basis of inference.

We also analyzed alignments obtained from the
RDPII database (Maidak et al. 2001) and obtained similar
results (data not shown). We chose to focus on the
European rRNA database, so that we could refine our
methods for a specific database. The European rRNA
database was more complete in terms of 23S sequences.
Also, in the RDPII database, the crucial distinction
between deleted nucleotides and unknown (unsequenced)
nucleotides was not always clear.

Other assumptions had to do with the correctness of
the reference structures, and how well conserved is the
secondary structure in any of the alignments used. The
structures we used were obtained from the CRW database
(Cannone et al. 2002). The structures were largely
obtained by comparative sequence analysis (Gutell, Lee,
and Cannone 2002), which also assumes conserved
structures throughout sequences. Although the structure
of rRNA is quite conserved, it is not immutable.
Particularly the Eukaryote sequences have shown changes
in structure (Wuyts, Van de Peer, and Wachter 2001).
These variations are reflected in the universal rate matrix
we derived for them, which showed some significant
substitution rates between paired and unpaired bases (see
fig. 4). These rates reflect changes in structure or problems
with the alignments. The matrices will be refined by
considering more reference secondary structures in an
alignment. The same methods can easily be applied in the
extreme case where each sequence has a known secondary
structure.

The idea that the base pairs rather than the bases in
the sequences are the independently evolving units in an
structured RNA sequence has been used before (Tillier
and Collins 1995), and sophisticated parametric models
considering up to the 16 base combinations possible in
a pairing have been developed. The disadvantages of these
models are that they can be slow and difficult to
implement, although some such models have been
implemented in a Bayesian phylogenetic framework
(PHASE) (Jow et al. 2002; Hudelot et al. 2003), and for
distance analyses (rrnadist). It has also been shown that
RNA models models require many free parameters to be
accurate (Savill, Hoyle, and Higgs 2001) because of
differences in the rates of substitution between the base
pairs. However, the models are usually applied only to
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rRNA molecules for phylogenetic analysis. The large size
of the rRNA database makes it possible to empirically
derive the substitution rates between the base pairs, and
including the single-stranded bases in the model allowed
us to easily implement the combined analysis of single-
stranded and double-stranded regions. This task was made
even easier by the fact that 20 3 20 empirical matrices
have commonly been implemented for the analysis of
protein sequences.

A recoding approach could be applied to other RNA
molecules (tRNAs for example), but different recoding
alphabets might also be used on other types of sequences.
For example, it is conceivable to derive an empirical model
for codon evolution (a 64 3 64 matrix). The method used
to then derive a matrix is independent of the recoding.
Our method for deriving the empirical matrices (from
Veerassamy, Smith, and Tillier 2003), requires large
amounts of data (as does the approach of Muller and
Vingron [2000]). Other approaches for deriving matrices
could be used in more specific cases with smaller datasets
(Arvestad and Bruno 1997; Whelan and Goldman 2001;
Devauchelle et al. 2002).

The phylogenetic trees obtained with the new
method show reduced levels of statistical support, as
expected, because of the reduced number of indepen-
dently evolving characters considered in the recoded
sequences (Tillier and Collins 1995). The new method
therefore does not allow better resolution of the tree;
rather it gives a more accurate estimate of the (generally
low) confidence in the branch estimates. The branching
order is not significantly different from the one obtained
with the standard DNA approaches, however. This
similarity is reassuring in two ways, the first being that
the standard DNA methods on this data set show some
robustness with respect to the violation of the assumption
of independence of sites, and second because it shows
that the methods using our empirical models do at least
as well as the parametric approaches.

We have shown that empirical matrices can be used
for the study of rRNA evolution with both simulations and
with an example phylogenetic analysis of Bacterial 16S
rRNA sequences. The ability to analyze and simulate
rRNA sequence evolution including secondary structure
constraints should be very useful in other studies.

Supplementary Material

All programs and matrices developed here are
available from the URL www.uhnres.utoronto.ca/tillier/
rRNA/rna.html.
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