Plan 9 from Bell Labs’s /usr/web/sources/contrib/pac/sys/src/ape/cmd/img/refocit-2.0.0/lambda.c

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


/*
 * Written 2003 Lukas Kunc <Lukas.Kunc@seznam.cz>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 */

#include <stdlib.h>
#include "xmalloc.h"
#include "lambda.h"

static void get_variance_mirror(image_t* variance, image_t* img, real_t* pmin, real_t* pmax, int winsize)
{
  int i, j, k, l;
  real_t sum, sum2;
  real_t c;
  real_t num_points;
  real_t var, minvar, maxvar;

  minvar = R(1e20);
  maxvar = R(0.0);
  num_points = (real_t)((2*winsize+1)*(2*winsize+1));

  for (i = 0; i < variance->x; i++) {
    for (j = 0; j < variance->y; j++) {
      sum = R(0.0);
      sum2 = R(0.0);
      for (k = -winsize; k <= winsize; k++) {
        for (l = -winsize; l <= winsize; l++) {
          c = image_get_mirror(img, i+k, j+l);
          sum += c;
          sum2 += c*c;
        }
      }
      sum /= num_points;
      sum2 /= num_points;
      sum *= sum;
      var = sum2 - sum;
      image_set(variance, i, j, var);
      if (var > maxvar) {
        maxvar = var;
      }
      else if (var < minvar) {
        minvar = var;
      }      
    }
  }
  *pmax = maxvar;
  *pmin = minvar;
}

static void get_variance_period(image_t* variance, image_t* img, real_t* pmin, real_t* pmax, int winsize)
{
  int i, j, k, l;
  real_t sum, sum2;
  real_t c;
  real_t num_points;
  real_t var, minvar, maxvar;

  minvar = R(1e20);
  maxvar = R(0.0);
  num_points = (real_t)((2*winsize+1)*(2*winsize+1));

  for (i = 0; i < variance->x; i++) {
    for (j = 0; j < variance->y; j++) {
      sum = R(0.0);
      sum2 = R(0.0);
      for (k = -winsize; k <= winsize; k++) {
        for (l = -winsize; l <= winsize; l++) {
          c = image_get_period(img, i+k, j+l);
          sum += c;
          sum2 += c*c;
        }
      }
      sum /= num_points;
      sum2 /= num_points;
      sum *= sum;
      var = sum2 - sum;
      image_set(variance, i, j, var);
      if (var > maxvar) {
        maxvar = var;
      }
      else if (var < minvar) {
        minvar = var;
      }      
    }
  }
  *pmax = maxvar;
  *pmin = minvar;
}

lambda_t* lambda_create(lambda_t* lambda, int x, int y, real_t minlambda, int winsize, convmask_t* filter)
{
  lambda->x = x;
  lambda->y = y;
  lambda->minlambda = minlambda;
  lambda->winsize = winsize;
  lambda->filter = filter;
  lambda->lambda = (real_t*)xmalloc(sizeof(real_t) * x * y);
  return lambda;
}

void lambda_destroy(lambda_t* lambda)
{
  xfree(lambda->lambda);
}

void lambda_set_mirror(lambda_t* lambda, int mirror)
{
	lambda->mirror = mirror;
}

void lambda_set_nl(lambda_t* lambda, int nl)
{
	lambda->nl = nl;
}

lambda_t* lambda_calculate_period(lambda_t* lambda, image_t* image)
{
  image_t imgenh, *imgcal;
  image_t variance;
  real_t minvar, maxvar;
  real_t akoef, bkoef;
  int i, size;

  if (lambda->filter)
  {
    imgcal = image_create_copyparam(&imgenh, image);
    image_convolve_period(imgcal, image, lambda->filter);
  }
  else
  {
    imgcal = image;
  }

  image_create_copyparam(&variance, imgcal);

  get_variance_period(&variance, imgcal, &minvar, &maxvar, lambda->winsize);

  bkoef = (R(1.0) - lambda->minlambda)/(minvar - maxvar);
  akoef = R(1.0) - (minvar*(R(1.0) - lambda->minlambda))/(minvar - maxvar);
  
  size = lambda->x * lambda->y;
  for (i = 0; i < size; i++) {
    lambda->lambda[i] = akoef + bkoef*variance.data[i];
  }

  if (lambda->filter)
  {
    image_destroy(imgcal);
  }
  image_destroy(&variance);

  return lambda;
}

lambda_t* lambda_calculate_period_nl(lambda_t* lambda, image_t* image)
{
  image_t imgenh, *imgcal;
  image_t variance;
  real_t minvar, maxvar;
  real_t alpha;
  int i, size;

  if (lambda->filter)
  {
    imgcal = image_create_copyparam(&imgenh, image);
    image_convolve_period(imgcal, image, lambda->filter);
  }
  else
  {
    imgcal = image;
  }

  image_create_copyparam(&variance, imgcal);

  get_variance_period(&variance, imgcal, &minvar, &maxvar, lambda->winsize);

  alpha = (R(1.0)-lambda->minlambda)/(lambda->minlambda*(maxvar-minvar));
  
  size = lambda->x * lambda->y;
  for (i = 0; i < size; i++) {
    lambda->lambda[i] = R(1.0)/(R(1.0)+alpha*(variance.data[i]-minvar));
  }

  if (lambda->filter)
  {
    image_destroy(imgcal);
  }
  image_destroy(&variance);

  return lambda;
}


lambda_t* lambda_calculate_mirror(lambda_t* lambda, image_t* image)
{
  image_t imgenh, *imgcal;
  image_t variance;
  real_t minvar, maxvar;
  real_t akoef, bkoef;
  int i, size;

  if (lambda->filter)
  {
    imgcal = image_create_copyparam(&imgenh, image);
    image_convolve_mirror(imgcal, image, lambda->filter);
  }
  else
  {
    imgcal = image;
  }

  image_create_copyparam(&variance, imgcal);

  get_variance_mirror(&variance, imgcal, &minvar, &maxvar, lambda->winsize);

  bkoef = (R(1.0) - lambda->minlambda)/(minvar - maxvar);
  akoef = R(1.0) - (minvar*(R(1.0) - lambda->minlambda))/(minvar - maxvar);
  
  size = lambda->x * lambda->y;
  for (i = 0; i < size; i++) {
    lambda->lambda[i] = akoef + bkoef*variance.data[i];
  }

  if (lambda->filter)
  {
    image_destroy(imgcal);
  }
  image_destroy(&variance);

  return lambda;
}

lambda_t* lambda_calculate_mirror_nl(lambda_t* lambda, image_t* image)
{
  image_t imgenh, *imgcal;
  image_t variance;
  real_t minvar, maxvar;
  real_t alpha;
  int i, size;

  if (lambda->filter)
  {
    imgcal = image_create_copyparam(&imgenh, image);
    image_convolve_mirror(imgcal, image, lambda->filter);
  }
  else
  {
    imgcal = image;
  }

  image_create_copyparam(&variance, imgcal);

  get_variance_mirror(&variance, imgcal, &minvar, &maxvar, lambda->winsize);

  alpha = (R(1.0)-lambda->minlambda)/(lambda->minlambda*(maxvar-minvar));
  
  size = lambda->x * lambda->y;
  for (i = 0; i < size; i++) {
    lambda->lambda[i] = R(1.0)/(R(1.0)+alpha*(variance.data[i]-minvar));
  }

  if (lambda->filter)
  {
    image_destroy(imgcal);
  }
  image_destroy(&variance);

  return lambda;
}

lambda_t* lambda_calculate(lambda_t* lambda, image_t* image)
{
	if (lambda->mirror)
	{
		if (lambda->nl) return lambda_calculate_mirror_nl(lambda, image);
		else return lambda_calculate_mirror(lambda, image);
	}
	else
	{
		if (lambda->nl) return lambda_calculate_period_nl(lambda, image);
		else return lambda_calculate_period(lambda, image);
	}
}


/*
 * GET / SET
 */

#if !defined(INLINE) && !defined(INLINE_MACRO)

real_t lambda_get_mirror(lambda_t* lambda, int x, int y)
{
  return MACRO_LAMBDA_GET_MIRROR(lambda, x, y);
}

real_t lambda_get_period(lambda_t* lambda, int x, int y)
{
  return MACRO_LAMBDA_GET_PERIOD(lambda, x, y);
}

#endif


Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.