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Introduction

The application of quantitative genetic theory to natural

populations has stressed the importance of understand-

ing the evolution of genetic architecture, which can be

represented as a matrix of additive genetic variances and

covariances of quantitative traits (G matrix). In the past,

most studies of genetic architecture have focused on

trying to empirically validate the use of the multivariate

response to selection equation R � Gb, where R is the

vector of phenotypic responses in the traits under study,

G is the matrix of additive genetic (co)variances, and b is

the vector of selection gradients (Lande & Arnold, 1983).

This equation can be used to predict long-term response

to selection or to retrospectively estimate the selection

gradient that gave rise to differences between popula-

tions or taxa (Lande, 1979). In either case a necessary

assumption of the model is that G remains constant or

that it is changed only proportionally throughout pheno-

typic evolution (Lande, 1979). This assumption was

originally justi®ed by the proposition that selection

intensities in nature are typically weak and thus variance

that is eroded by selection will be replaced by pleiotropic

mutation (Lande, 1976, 1980).

The problem with this proposition is that there is no

theoretical reason to assume that G typically does

not change with time and phylogenetic relationship

(Lofsvold, 1986; Turelli, 1988; Camara & Pigliucci, 1999).

Arti®cial selection experiments have clearly demonstra-

ted that under strong selection genetic variances and

covariances are not stable (Shaw et al., 1995; see

Table 4.3 and pp. 174±178 in Roff, 1997) and empirical

estimates of selection intensities in the wild have shown

that these can be as large as those used in arti®cial

selection experiments (Endler, 1986). Furthermore,

selection intensities and their effects on genetic architec-

ture inevitably vary from case to case, making the

assumption of a constant G dif®cult to justify. This is

not to say that G matrices must change during popula-

tion differentiation or that the predictive equation cannot

be used, but rather that the evolution of genetic archi-

tecture is a continuous process which cannot be des-

cribed as an equal/different dichotomy. An alternative

approach is to assume that the G matrices of two or more

populations may differ to any degree and investigate
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relative differences between matrices instead of testing

for statistical rejection of the null hypothesis of equality

(i.e. interval estimation rather than hypothesis testing).

In addition to the direct information provided by the

distance between matrices, the pattern of matrix differ-

ences is hypothesized to contain footprints of past

evolutionary forces that shaped present-day genetic

architecture. Theory predicts that selection should cause

divergence in matrices (Lande, 1979), that random

genetic drift alone should result in proportional changes

(Lande, 1979; Lofsvold, 1988) and that low levels of

selection and drift should not alter the structure of the

matrices (Lande, 1979, 1980). Investigating G matrix

variation between species might thus provide important

insights into population evolution and might help to link

changes in genetic constraints with phenotypic evolu-

tion.

Patterns of G matrix variation within species are also

informative. Because genetic parameter estimates are

theoretically only valid for the environment in which

they are measured (Falconer & Mackay, 1996; Roff,

1997), it is reasonable to expect that the expression of the

genetic architecture of a population will vary with the

environment. In addition to providing information on

that interaction, such investigations might help in the

comparison of G matrices across species, because the

optimal rearing conditions may not be the same and thus

observed differences between species may instead re¯ect

differences due to environment.

Analyses of G matrix evolution should therefore allow

the investigation of two questions: what is the degree of

similarity between matrices and what can this reveal

about the evolutionary history of these matrices. Unfor-

tunately multivariate data sets, such as the ones repre-

sented by G matrices, are extremely dif®cult to compare,

and ®nding a satisfactory statistical method to do so is at

present an unresolved problem. Several different tech-

niques exist (reviewed in Roff, 1997, 2000) but it is not

clear which approach, if any, is preferable. However, one

method, the Flury hierarchy (Phillips & Arnold, 1999),

currently receives strong support from investigators

(Steppan, 1997a,b; Arnold & Phillips, 1999; Camara &

Pigliucci, 1999; MerilaÈ & BjoÈ rklund, 1999). It is therefore

important to evaluate the ability of the Flury hierarchy to

answer the two previously stated objectives of G matrix

analysis. In this paper we do so by comparing the Flury

hierarchy with two other published methods; the ele-

ment by element approach (Roff et al., 1999) and the

method of percentage reduction in mean square errors

(Roff, 2000). Because all these use different statistical

approaches, we expect the Flury hierarchy to yield

similar but not necessarily identical results compared

with the other methods.

In the present analysis we compare the G matrices of

two species of wing dimorphic crickets; a Gryllus ®rmus

population derived from Florida, USA and a G. pennsyl-

vanicus population collected in QueÂbec, Canada. These

two populations are isolated by over 1500 km and hence

there has probably been no direct or indirect gene

exchange for thousands of generations. Gryllus ®rmus

occurs in coastal and lowland areas of Eastern North

America from Florida to Connecticut (Harrison & Arnold,

1982). In contrast, G. pennsylvanicus is widely distributed

throughout inland North America (Alexander, 1957a;

Vickery & Kevan, 19831 ). The two species hybridize in a

zone of overlap in the Appalachian and Blue Ridge

mountains (Harrison & Arnold, 1982; Harrison, 1985).

Although these species differ in a number of morpholo-

gical characters (body size, ovipositor length, hind wing

length, colour of tegmina, number of ®le teeth), none are

diagnostic (Fulton, 1952; Alexander, 1957a; Harrison &

Arnold, 1982). We therefore expect the G matrix of these

two closely related cricket species to have remained

relatively constant through species divergence.

This paper investigates three major questions. (1) Are

the results produced by the Flury hierarchy corroborated

by other statistical approaches and does using several

methods improve the ability to perceive all aspects of

matrix evolution? (2) What is the degree of similarity

between the G matrices of two closely related cricket

species and what type of evolutionary forces could have

shaped the observed difference? (3) Within a species,

does G vary with rearing condition?

Materials and methods

Experimental protocol

The data used in the present analysis come from two

experiments already described (Simons & Roff, 1994;

Roff, 1995) and thus we present here only an overview.

Crickets were reared on rabbit chow and housed in 4-L

buckets at a density of 25 (G. pennsylvanicus) or 60

(G. ®rmus) newly hatched nymphs. The G. pennsylvanicus

nymphs were the offspring of nymphs collected from a

®eld at Mont St-Hilaire, QueÂbec, the previous year,

whereas the G. ®rmus were taken from a stock originally

collected from northern Florida and maintained in the

lab for approximately 35 generations prior to the study.

Full-sib families of G. pennsylvanicus were each divided

among four cages, two cages placed outside at the

collecting location where they experienced ambient

temperature and photoperiod (39 families, 705 individ-

uals), and two cages maintained in a growth chamber at

24 °C and a photoperiod of 17 h of light (39 families, 505

individuals). These two treatments will be referred to as

`P®eld' and `Plab'. Note that the temperature and

photoperiod chosen for the lab environment are not

signi®cantly different from the typical natural conditions

encountered by this species during the rearing period

(Simons & Roff, 1994).

The full-sib families of G. ®rmus were raised in a growth

chamber at 25 °C and 15 h of light (43 families, 382

individuals) and at 30 °C and 17 h of light (49 families,
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587 individuals). For simplicity we shall refer to the two

environments of G. ®rmus as `F25' and `F30'. Note that

the number of ®rmus families used here slightly differs

from Roff (1995) because only one sex was used (see

below) and because the number of families for each

environment were reversed in the previous paper.

Because there are differences in morphology between

the sexes and the morphs, we only selected females of

the most common wing morph within each treatment.

For G. pennsylvanicus, only micropterous (short wing)

females were included, whereas for G. ®rmus, short wing

females were selected from the 25 °C treatment and

macropterous (long wing) females from the 30 °C treat-

ment. Because the wing morph is not the same in the

two G. ®rmus treatments, it will not be possible to ascribe

G matrix differences speci®cally to rearing conditions or

morph. The term `environment' will thus be interpreted

to include both variables.

From each female, ®ve morphological measurements

were taken: femur length (FEMUR), head width (HEAD),

prothorax length (PTHL), prothorax width (PTHW) and

ovipositor length (OVIP). The normality of the data was

tested using the one-sample-Kolmogorov±Smirnov test

(Lilliefors option). Results (not shown) indicate that nine

of 20 traits (two species with two treatments each, ®ve

traits per treatment) have a distribution that deviates

signi®cantly from normality. However, frequency histo-

grams showed that none of the traits are highly skewed,

which suggests that the signi®cant deviation from nor-

mality is partly caused by the large sample sizes. Various

transformations did not solve the problem. To test the

effect of data distribution on G matrix comparison, we

used original, log transformed and standardized data sets

to construct matrices and compared them using the Flury

and element by element methods (see description of

these methods below). Results (not shown) indicate that

matrix comparisons are not substantially affected. There-

fore, we report the analyses for the untransformed data.

However, tests using randomization (see below) involve

standardization to a common mean.

Quantitative genetic methodology

The vector of selection gradients, b, can be decomposed

into P±1S, where P is the inverse of the matrix of

phenotypic variance and covariances and S is a vector of

selection differentials. This decomposition illustrates that

the P matrix plays an important role in trait evolution.

Thus in addition to considering G matrix variation we

also analysed the P matrices. A second reason for the

latter analysis is to address the conjecture that this matrix

can be used as a surrogate measure of G (Cheverud,

1988; Roff, 1995, 1996, 1997). Genetic correlation

matrices were not compared as they are not useful to

reconstruct evolutionary trajectories (Deng et al., 1999).

Quantitative genetic parameters were estimated using

the Bootstrap method (5000 reshuf¯ing runs) carried out

by the package H2boot (Phillips, 1998a). These calcula-

tions are based on a one-way analysis of (co)variance

among full-sib families. By de®nition, the genetic vari-

ances so estimated include additive and nonadditive

genetic components and may be contaminated by

maternal effects. A general review of the heritability of

morphological traits indicated that heritabilities estima-

ted from full-sib designs are generally similar to those

estimated from parent-offspring regressions (Mousseau &

Roff, 1987). Moreover, this was veri®ed for the herita-

bility of femur length in G. ®rmus, suggesting no signi-

®cant effects because of nonadditive genetic or maternal

effects (Roff, 1998). For this study, it is therefore probable

that genetic (co)variances estimated using full-sib famil-

ies represent additive genetic (co)variances. However, to

be cautious, we will not make that assumption.

Because the H2boot and CPCrand programs (see

description below) do not allow nesting of cages within

families, estimation of genetic (co)variances was carried

out by pooling all the individuals of a family. This

procedure results in an overall in¯ation of these

parameters, measured as a 27% (or 0.03) absolute

average difference between genetic (co)variances arizing

from nested and non-nested ANOVAANOVA/ANCOVAANCOVA models.

For 13 out of 20 traits, cage effects are signi®cant. The

non-nested genetic parameters are thus generally con-

taminated by common environmental effects and should

be considered as higher limit estimates. To test the effect

of this in¯ation on G matrix comparison, genetic param-

eters were calculated using a nested design (cages nested

within families) and matrices constructed from these

were analysed using the element by element method

(see description below). It was found (results not

shown) that the omission of nesting does not substan-

tially affect the comparison of matrices. Therefore, we

report comparisons based on non-nested analyses of

(co)variance.

The Flury hierarchy

The Flury hierarchy is a principal components approach

to the comparison of matrices (Flury, 1988) that has been

applied to G matrix analysis by Phillips & Arnold (1999).

This method based on maximum likelihood determines

which model is the best descriptor of the structural

differences between two or more matrices. The hierar-

chically nested models are (a) unrelated structure (mat-

rices don't have a single principal component in

common), (b) Partial Common Principal Components

(matrices share 1, 2 or 3 principal components), (c) Com-

mon Principal Components (all principal components are

shared), (d) proportionality (all principal components are

shared and the eigenvalues all differ by the same

constant between matrices) and (e) equality (identical

principal components and eigenvalues). For each model,

the Flury hierarchy calculates a log-likelihood statistic to

quantify the ®t of that model to the observed matrices.
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We used the jump up procedure (Phillips & Arnold,

1999) to test the goodness of ®t of each model against the

model of unrelated structure, thus providing a signi®-

cance test for each model.

To avoid the assumption of multivariate normality in

hypothesis testing, randomization is used to determine

the probability that the unrelated structure model ®ts

the data signi®cantly better than each other models. In

this analysis, 4999 randomized data sets were created,

each run randomly assigning whole families to a

population. The best ®tting model (referred to as the

verdict) is determined as the model immediately under

the ®rst signi®cant probability, going from the bottom

(unrelated structure) to the top (equality) of the

hierarchy (Phillips & Arnold, 1999). For simplicity,

only the verdict is given in the results section. This

analysis was performed using the program CPCrand

(Phillips, 1998b).

The element by element approach

This method (Roff et al., 1999) is based on an element by

element comparison of matrices and can be used to

obtain three different types of information. The ®rst use

is to test the hypothesis of matrix equality by calculating

T, de®ned as the sum of the absolute difference between

each pair of elements:

T �
Xc

i�1

jĥi1 ÿ ĥi2j

where ĥij is the estimate of the ith element of the jth

matrix and c is the number of elements in the matrix

(sum of the number of diagonal elements plus the

number of elements above the diagonal). The probability

PT that the two matrices come from the same statistical

population is estimated by randomization (4999 runs):

PT � 1� number of randomizations in which Tr � Tobs

5000

where Tr and Tobs are the comparison statistics for the

randomized and observed data sets, respectively. For

simplicity, only the verdict (`equal' or `not equal') is

given in the results section.

Second, the element by element method can be used

for the comparison of individual pairs of (co)variances

with the E statistic (Roff et al., 1999):

E � jĥi1 ÿ ĥi2j :
The probability that the two matrix elements come from

the same statistical population is obtained by random-

ization as in the previous method, using E instead of T.

Because of the multiple estimations these values cannot

be used individually but they do provide an indication of

whether differences between the matrices arise because

of a few strikingly variable elements or because of overall

differences (the situation is analogous to the examination

of individual cell values in a v2 test).

The third use of the element by element approach is to

quantify the difference between matrices. The absolute

average percentage difference statistic T% is de®ned as:

T% � T=c

�ĥ1 � ĥ2�=2
100

where ĥi is the average estimate of the (co)variances in

matrix i. This statistic measures the absolute difference

between the elements of two matrices as a percentage of

the average size of the matrix elements.

The method of percentage reduction in MSE

The following statistical procedure (Roff, 2000) can be

used to partition the effects attributable to drift and

selection, assuming that drift alone causes proportional

changes in matrices and that selection causes any other

type of change. This method is based on the calculation of

the mean square errors for three regression models:

Model 1, equal matrices:

MSE1 � 1

c

X
�ĥi1 ÿ ĥi2�2

Model 2, proportional matrices:

MSE2 � 1

2c

X
�ĥi1 ÿ b0ĥi2�2 � 1

2c

X
�ĥi2 ÿ b0ĥi1�2

Model 3, different matrices:

MSE3 � 1

2c

X
�ĥi1ÿ�a� bĥi2��2� 1

2c

X
�ĥi2ÿ �A�Bĥi1��2

where b0 and B0 (B0 � 1/b0) are the slopes of the reduced

major axis regression forced through the origin, and a, b,

A and B are parameters of the reduced major axis

regression with the intercept included. Percentage re-

duction of the MSE from models 1 to 2 or 3 is then

calculated as an estimator of the effect of drift alone

(reduction from model 1 to 2) and of the effect of

drift + selection (reduction from model 1 to 3).

Results

Overview of the data

In conformity with the published literature (Alexander,

1957a; Harrison & Arnold, 1982) the G. pennsylvanicus

females are smaller than the G. ®rmus females (Fig. 1). An

exception is ovipositor length for which both species are

similar. More surprising is the extremely large differences

in the variances of ovipositor length, the G. pennsylvanicus

females being almost twice as variable (Fig. 1).

G matrix analyses performed in this paper are based on

genetic (co)variances estimated from a one way ANOVAANOVA/

ANCOVAANCOVA (non-nested). To provide more accurate values

we show heritabilities and genetic correlations estimated

from a jack-knifed nested analysis of (co)variance (cages

nested within full-sib families). Heritabilities (Table 1)

are medium sized for morphological traits (mean values

of 0.37 and 0.34 for F25 and F30, respectively; mean
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values of 0.51 and 0.32 for Plab and P®eld, respectively).

The genetic correlations between traits (Table 1) are

positive and generally high (mean values of 0.78 and

0.49 for F25 and F30, respectively; mean values of 0.67

and 0.69 for Plab and P®eld, respectively). These data

indicate that there is an abundance of genetic variance

and covariance among the traits (P and G matrices are

listed in Appendices 1 and 2).

The Flury hierarchy

The results of the Flury hierarchy (and of the element by

element method) for all six possible pairwise comparisons

of matrices are given in Table 2. The comparison of P

matrices indicates that all but one comparison (Plab±

P®eld) are best described by the unrelated structure

model. This reveals that, given the degrees of freedom

available, the Flury method `sees' statistically large

differences between most P matrices. The analysis of

the G matrices yields a different pattern (Table 2). The

verdicts indicate a general trend of conservation of

matrix structure, as each comparison is described by

either the CPC or equality models. The results also reveal

that two comparisons (F30-P®eld and F25-F30) include

pairs of matrices for which the equality and proportion-

ality models are rejected.

Fig. 1 Trait means (mm) plus or minus one

standard deviation for the ®ve traits used in

the present analysis of G. ®rmus and G. penn-

sylvanicus.
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The element by element approach

Hypothesis testing using the T statistic (Table 2) reveals

rejection of equality for all pairwise comparisons of P

matrices. It is interesting to note that the variation in T%

was not re¯ected in the verdicts, as the T-test had enough

power to perceive statistical differences between all

matrices. The comparison of G matrices produces a

different pattern (Table 2). The hypothesis of equality is

rejected in two cases (F30-Plab and F30-P®eld) whereas

the verdict of the four other comparisons is `equal'.

Moreover, the T% statistic suggests that two comparisons

include relatively similar matrices (F25-Plab and Plab±

P®eld), whereas the two comparisons yielding the verdict

`not equal' are associated with the two largest T% values.

It can also be observed that the magnitude of T% is

similar for P and G comparisons (Table 2). A correlation

analysis reveals a marginally signi®cant positive slope

between P and G-values of T% (P � 0.04, r � 0.83). The

T% value for each comparison of G matrices was also

regressed against the corresponding values of PT (prob-

abilities not shown). There is a highly signi®cant negative

regression (P � 0.005, r � 0.94) from which it was

determined that a G matrix PT of 0.05 corresponds to a

T% of 76.7%.

Investigation of the E statistic for all G matrix

comparisons (results not shown) reveal that for each of

the four pairs of equal matrices (according to the element

by element method, Table 2), no individual element

differs signi®cantly between matrices (i.e. PE is always

greater than 0.05 with a majority of probabilities greater

than 0.20). On the other hand, the two comparisons that

rejected equality (F30-Plab and F30-P®eld) include at

least one PE value under 0.05. Concerning these two

comparisons, it is interesting to note that in both cases

the genetic variance of the ovipositor length (OVIP) has a

PE value under 0.05, and that several covariances

involving ovipositor length also differ signi®cantly in

F30-P®eld. The genetic variance of this trait consistently

yields one of the lowest PE in each comparison (results

not shown).

The method of percent reduction in MSE

The calculation of differential reduction in MSE under

the two models for P matrices (Table 3) reveals that the

percentage difference between models 2 and 3 (maxi-

mum � 11.5%) is small compared with the difference

between models 1 and 2 (range � 81.7±97.4%). These

results indicate that including an additional parameter in

Table 1 Heritabilities (diagonal) and genetic correlations (off

diagonal) followed by their standard error. These estimates are based

on a jack-knifed nested ANOVAANOVA/ANCOVAANCOVA (cages within full-sib

families) and correspond to the ®ve traits used in the present

analysis.

FEMUR HEAD PTHL PTHW OVIP

Gryllus ®rmus 25 °C
FEMUR 0.33 (0.16) 0.82 (0.13) 0.72 (0.47) 0.89 (0.07) 0.59 (0.20)

HEAD 0.41 (0.13) 0.80 (0.15) 0.92 (0.05) 0.70 (0.14)

PTHL 0.23 (0.17) 0.85 (0.10) 0.68 (0.21)

PTHW 0.52 (0.15) 0.79 (0.12)

OVIP 0.38 (0.13)

G. ®rmus 30 °C
FEMUR 0.30 (0.11) 0.51 (0.23) 0.63 (0.16) 0.62 (0.15) 0.42 (0.31)

HEAD 0.35 (0.10) 0.36 (0.21) 0.90 (0.05) 0.52 (0.23)

PTHL 0.35 (0.09) 0.35 (0.18) 0.14 (0.27)

PTHW 0.41 (0.09) 0.49 (0.22)

OVIP 0.31 (0.09)

G. pennsylvannicus lab

FEMUR 0.62 (0.15) 0.80 (0.07) 0.67 (0.14) 0.84 (0.07) 0.62 (0.17)

HEAD 0.65 (0.12) 0.74 (0.11) 0.86 (0.06) 0.55 (0.17)

PTHL 0.39 (0.10) 0.66 (0.12) 0.40 (0.17)

PTHW 0.63 (0.14) 0.53 (0.20)

OVIP 0.24 (0.09)

G. pennsylvannicus ®eld

FEMUR 0.50 (0.14) 0.89 (0.06) 0.77 (0.13) 0.90 (0.07) 0.53 (0.12)

HEAD 0.29 (0.11) 0.72 (0.16) 0.91 (0.05) 0.52 (0.16)

PTHL 0.22 (0.12) 0.67 (0.19) 0.46 (0.25)

PTHW 0.38 (0.13) 0.49 (0.16)

OVIP 0.22 (0.07)

Table 2 Results of the Flury hierarchy and element by element

method for the pairwise comparisons of matrices from G. ®rmus

reared in two environments (F25 and F30) and G. pennsylvanicus also

reared in two environments (Plab and P®eld). T% refers to the

average absolute percentage difference statistic. A large T% value

corresponds to a large difference between two matrices. Bold

characters indicate the two G matrix comparisons in which the Flury

and element by element methods do not agree.

Verdict

Comparison Flury hierarchy Element by element T %

P matrices

Across species

F25-Plab unrelated not equal 37.0

F25-P®eld unrelated not equal 64.4

F30-Plab unrelated not equal 65.5

F30-P®eld unrelated not equal 94.7

Across environments*

F25-F30 unrelated not equal 36.5

Plab-P®eld equality not equal 38.1

G matrices

Across species

F25-Plab equality equal 27.6

F25-P®eld equality equal 45.8

F30-Plab equality not equal 78.4

F30-P®eld CPC not equal 96.0

Across environments*

F25-F30 CPC equal 58.5

Plab±P®eld equality equal 22.7

* `environment' is here interpreted to include rearing conditions and

wing morph.
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model 3 (the intercept) does not produce a substantial

reduction in MSE. Therefore, all six comparisons of P

matrices are best represented by the proportionality

model (model 2) although the percentage difference in

MSE between models 2 and 3 cannot be neglected. The

same pattern is observed for G matrices (Table 3). The

percentage difference between models 2 and 3 (maxi-

mum � 6.3%) is once again small compared with the

difference between models 1 and 2 (range � 85.4±

96.0%). Proportionality thus seems to be the best ®tting

model.

Comparative analysis of statistical methods

Because the results of the method of percentage reduc-

tion in MSE are constant for all types of comparisons, we

will focus on the two other methods. The Flury and

element by element methods (Table 2) agree that P

matrices are statistically different. One exception is the

Plab±P®eld comparison for which the equality model

could not be rejected by the Flury method.

There also seems to be similarities between the Flury

and element by element methods for the comparison of

G matrices. These methods agree that the F25-Plab, F25-

P®eld and Plab±P®eld comparisons contain similar mat-

rices and that the F30-P®eld comparison includes the

most divergent pair. However, the other two cases are

problematic. For the F30-Plab comparison, the Flury

method cannot reject the hypothesis of equality whereas

the element by element method describes it as the second

most divergent pair of G matrices. Conversely, the

element by element method cannot reject equality for

the F25±F30 comparison whereas the Flury method

describes it as more divergent than four other compar-

isons. The reasons behind the discrepancy for these two

problematic comparisons should thus be examined for

each method.

Starting with the Flury hierarchy, we computed and

compared the principal components corresponding to

each genetic matrix. This data exploration procedure

provides a visual and simpli®ed way of comparing

matrices on a similar ground as the Flury hierarchy.

The results were obtained by performing a principal

component analysis on the genetic matrices directly. We

expect this analysis to corroborate the results of the

Flury hierarchy which indicate that F30 is closer to Plab

than to F25. It can be observed from Table 4 that the

structure of the ®rst principal component is relatively

similar in all matrices. However, the second component

may differ more in F25±F30 than in F30±Plab, mostly

because of the component loading of prothorax length.

On the other hand, the eigenvalues seem to differ more

in F30-Plab than in F25±F30. This ambiguous observa-

tion is hard to reconcile with the results of the Flury

hierarchy. However, note that the Flury hierarchy does

not compute and then compare individual principal

component structures. Therefore, a lack of correspon-

dence between the results from the Flury hierarchy and

this data exploration procedure do not invalidate the

Flury method.

Second, we investigated the results of the element by

element method for these same two problematic com-

parisons. To do so, we used the individual element aspect

of the method (the E statistic) to explore the differences

one by one between each pair of (co)variances (Table 5).

We expect that this analysis will corroborate the results

from the T% statistic, that F30 is closer to F25 than to

Plab. Observing the individual probabilities across the

two comparisons reveals that 12 out of the 15 elements

are more similar in the F25±F30 comparison than in the

F30-Plab comparison. In addition to this general pattern,

the ovipositor variance has a very low probability

(PE � 0.01, Table 5) in F30-Plab. Both observations

support the results from the T statistic.

Despite these two problematic cases, we conclude that

the results from the Flury and element by element

Table 3 Percent reduction in mean square error (MSE) for

comparisons of matrices from G. ®rmus reared in two environments

(F25 and F30) and from G. pennsylvanicus also reared in two

environments (Plab and P®eld). Results are given for reduction from

model 1±2 (drift) and model 1±3 (drift + selection).

Reduction of models (%)

P matrices G matrices

Comparison 2 3 2 3

Across species

F25-Plab 81.7 93.2 85.4 91.7

F25-P®eld 93.0 97.9 91.2 95.7

F30-Plab 84.3 96.5 92.2 96.4

F30-P®eld 90.2 98.2 92.4 96.8

Across environments*

F25-F30 92.2 99.0 89.4 91.1

Plab-P®eld 97.4 97.9 96.0 97.7

* `environment' is here interpreted to include rearing conditions and

wing morph.

Table 4 Principal component analysis of the three individual G

matrices included in the two problematic comparisons. The

eigenvalues and the component loadings corresponding to each of

the ®ve traits are given for the ®rst two principal components.

G. pennsylvanicus

lab G. ®rmus 30 °C G. ®rmus 25 °C

PC 1 PC 2 PC 1 PC 2 PC 1 PC 2

Eigenvalue 0.99 0.17 0.36 0.11 0.73 0.11

FEMUR 0.36 0.70 0.40 0.62 0.36 0.78

HEAD 0.18 0.28 0.26 0.19 0.20 0.24

PTHL 0.10 0.21 0.15 0.41 0.16 0.07

PTHW 0.21 0.41 0.32 0.30 0.30 0.29

OVIP 0.89 )0.46 0.80 )0.57 0.85 )0.50
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methods yield some resemblance, on which the biologi-

cal interpretation can be built. However, the results of

the MSE method (Table 3) do not seem to relate to

the pattern seen in Table 2. We will therefore deal with

these results separately and concentrate on the Flury

and element by element methods in the following

paragraphs.

Comparison of matrices across environments

The Flury and element by element analyses of P matrices

(Table 2) clearly demonstrate that the G. ®rmus matrices

(corresponding to two different environments) are dif-

ferent from each other. The G matrix analysis is not as

obvious to interpret (Table 2) because the two methods

are not in full agreement. The Flury hierarchy indicates

differences, whereas the element by element method

cannot reject the hypothesis of equality. However, the

absolute average percentage difference statistic

(T% � 58.5%) suggests that the two matrices are not

highly similar and approach the signi®cance threshold of

the test (T%0.05 � 76.7%). Overall, there seems to be

some variation in the P and G matrices corresponding to

the two environments of G. ®rmus.

The situation is different for G. pennsylvanicus (Table 2).

The Flury hierarchy cannot reject the hypothesis of

equality of P matrices for the two environments. Con-

versely, the element by element method yields the

verdict `not equal'. However, the T% statistic

(T% � 38.1) is one of the lowest for P matrix compar-

isons and suggests that there are some similarities

between the two matrices (Plab±P®eld). The G matrix

analysis for these two treatments yields a unanimous

verdict of matrix similarity. Overall, there is no evidence

of large P and G matrix variation across the two

environments of G. pennsylvanicus.

Comparison of matrices across species

To analyse the variation between G. ®rmus and G. penn-

sylvanicus, we focus on F25-Plab because it compares

individuals of the same wing morph (short wing) reared

in similar laboratory conditions (25 °C/15 h light and

24 °C/17 h light, respectively). The Flury and element by

element methods (Table 2) agree relatively well on the

results from that comparison. Both methods are able to

reject the equality model for P matrices, although the T%

statistic is relatively low (T% � 37.0). The G matrix

analysis is unequivocal, as both methods suggest conser-

vation of matrices.

It is interesting to note that the across species G matrix

comparisons involving F30 do not lead to the same

conclusions as those including F25 (Table 2). The Flury

and element by element methods do not agree perfectly

on this, but for both F30-Plab and F30-P®eld, at least one

of the two methods indicates differences. Genetic matri-

ces of G. ®rmus and G. pennsylvanicus thus seem to be

similar if they correspond to similar environments, but

can differ when rearing conditions and wing morph

differ.

Discussion

Analyses of G matrices have always been plagued by

statistical problems arising from the complexity of

multivariate data sets. Such studies would bene®t

greatly from a consensus on which method(s) is(are)

the most reliable, thus allowing researchers to focus on

the biological rather than statistical aspect of the

problem. This paper attempts to comparatively evaluate

three statistical approaches and to integrate information

collected from all of them to get a general sense of G

matrix variation within and between two species of

crickets.

Comparative analysis of statistical methods

As expected, the results from some of the statistical

approaches share similarities but are not identical. The

Flury and element by element methods are able to

discern common patterns of matrix similarity but the

approach of percentage reduction in MSE provides a very

different view of the matrices. The important questions

are therefore `why do these methods give different

results?' and `do these differences re¯ect different aspects

of matrix evolution?'.

The Flury and element by element methods both

have the ability to evaluate the distance between two

matrices. The Flury hierarchy does it by assigning one of

the seven possible models to the observed difference

whereas the element by element method uses a

numerical measure (T%), which is a more intuitive

estimation of distance. However, the models of the

Flury hierarchy are advantageous because they also

Table 5 Results of the individual element tests (E statistic) for the

two problematic G matrix comparisons. Probabilities corresponding

to the null hypothesis of element equality (PE) are given for each

trait (co)variance. A low probability indicates a large difference

between the two matrices for that particular element.

FEMUR HEAD PTHL PTHW OVIP

F30-Plab

FEMUR 0.10 0.11 0.71 0.12 0.07

HEAD 0.48 0.38 0.53 0.17

PTHL 0.37 0.40 0.20

PTHW 0.33 0.18

OVIP 0.01

F25±F30

FEMUR 0.45 0.38 0.89 0.22 0.22

HEAD 0.94 0.49 0.75 0.24

PTHL 0.43 0.25 0.07

PTHW 0.42 0.08

OVIP 0.08
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provide a way to investigate past evolutionary forces

(e.g. proportionality/genetic drift), something that the

element by element method cannot do. The approach of

percentage reduction in MSE cannot evaluate distances

but is designed to evaluate the type of differences

between matrices.

The statistical approach of each method also differs.

The Flury hierarchy compares the overall structure

of the matrices whereas the other two methods look at

the individual elements. This difference in approach is

potentially responsible for the difference between the

results of each method. For example the element by

element method is probably more affected by a

single very divergent element than is the Flury hier-

archy. However, little is known about the statistical

behaviour of these methods and simulation studies are

needed.

The statistical approach also has implications for the

biological interpretation of the data. The Flury hierarchy

provides an overall view of the matrices which seems

appropriate for studying a set of correlated traits. The

element by element and MSE methods provide a less

general view of the matrices, but compensate by being

more transparent as the difference between matrices can

be easily linked with particular elements (e.g. by visually

inspecting a bivariate plot of two matrices). Information

on individual elements is potentially useful because it

provides a way to link G matrix evolution with the

ecological function of important traits. Because each

method provides a different biological perspective, there

appears to be no single `best' method.

Another potential problem for interpretation is the

typically low power available in G matrix studies. No

power analysis is currently available for these methods.

It is possible that the observed differences between

methods are caused by the large error associated with

(co)variance components estimation. The only hint

currently available to investigate that question is the

comparison of parametric and nonparametric results of

the Flury hierarchy (Phillips & Arnold, 1999). The

parametric version (Phillips, 1998c), which computes

the genetic (co)variances directly from the sample

using family means, produces biased but statistically

well behaved estimates. This version also appears to

have more power than the nonparametric one (Phil-

lips, personal communication). The results of the

parametric analysis for G matrix comparisons (not

shown) indicate much less shared structure across all

matrices than does the nonparametric version. Our

data does not allow us to know whether this result is

because of the bias induced by the occasionally low

number of individuals per family or to the problems

associated with estimating (co)variance components,

but it suggests that the results of the Flury hierarchy as

presented in this paper may be affected by low power.

This could also be the case for the two other methods

and might be a cause of difference across methods.

Taken together, all the above uncertainties suggest that

using one statistical method by itself might not be

suf®cient to obtain all necessary information on matrix

variation. Until more is known about the properties of

each method, we recommend the use of several different

statistical approaches.

Quantitative genetics issues

The proposition of using P as a surrogate for G was

addressed using the average absolute percentage differ-

ence statistic. The range of T% values from Table 2 and

the signi®cant positive correlation between phenotypic

and genetic T% values (see results) suggest that, in our

analysis, these two types of matrices are characterized by

approximately similar absolute differences. However,

working only on phenotypic matrices would have been

slightly misleading. The results thus loosely support the

hypothesis that phenotypic covariation patterns re¯ect

underlying genetic constraints (Cheverud, 1988). How-

ever, sample size might be an important confounding

factor. Because phenotypic (co)variances are estimated

more accurately than genetic parameters, the T% values

associated with each type of matrix are, similarly,

different in accuracy. Additional investigation is needed.

Sample sizes also cause problems in the interpretation

of hypothesis testing results. In this study, P matrices

have been found to generally differ signi®cantly whereas

G matrices tend to be much more similar. However, this

conclusion is not necessarily biologically relevant

because it could primarily re¯ect the degrees of freedom

available for each type of analysis. This question could

ideally be answered by linking the statistical difference

between two matrices with the biological relevance of

that difference. In the case of G matrix analysis, linking

both aspects is not easy. The interpretation depends on

the importance of the studied traits in the ecology of the

organisms and on the time scale. If such analyses were to

be applied in conservation biology programmes for

example, only large differences in genetic architecture

would be important whereas phylogenetic orientated

studies should consider even small differences because

these can have huge impacts over long periods of time.

The average absolute percentage difference (T%), a

scale free index of similarity, is a suitable tool with

which to assess the question of biological importance of

observed differences, although it cannot replace an

analysis of the role of the G matrix within its ecological

context (e.g. Roff & Mousseau, 1999). Results from

Table 2 suggest that several comparisons include matrices

that differ by more than 50% and that the divergence can

be as large 96% in one case. This represents a substantial

variation which may have evolutionary implications. It

was also determined that the G matrix signi®cance

threshold for the T statistic corresponds to a 76.7%

average absolute difference, which could reasonably be

assumed to represent real differences.
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G matrix variation within and across species

Since divergence from their ancestral population,

G. ®rmus and G. pennsylvanicus can be presumed to have

undergone some evolutionary changes. The phenotypic

differences between the two species measured in a range

of environments (Fig. 1) support this presumption.

Phylogenetic studies have also demonstrated evolution-

ary divergence between the two species (Harrison, 19782 ;

Huang et al., 2000). Thus the evolutionary forces that

acted on the two species could have modi®ed their G

matrix. However, changes in traits may or may not

induce changes in the corresponding genetic architecture

(Lande, 1979).

The comparative analysis of G. ®rmus and G. pennsyl-

vanicus indicates that the differences in genetic architec-

ture between these two species are relatively small. Note,

however, that this conclusion only holds when rearing

environments are similar. According to the theory

(Lande, 1979), low intensities of selection on the meas-

ured traits could be responsible for this small amount of

G matrix variation. The low levels of morphological

divergence between G. ®rmus and G. pennsylvanicus

(within a genus, cricket species tend to be dif®cult to

distinguish on morphological grounds (Alexander,

1957b; Harrison, 1978)), and the fact that they can still

interbreed suggest that this set of morphological traits as

a whole have not been strongly selected during species

divergence.

However, it appears that ovipositor length is an

exception in that it may have been the target of stronger

selection pressures. The ovipositor shows very high

phenotypic and genetic variances, is the only trait with

a similar average across the two species and yielded low

probabilities for the E statistic in each comparison. These

observations suggest that the evolution of the ovipositor

has been important in the divergence of the two species.

This is not surprising because the ovipositor length

strongly in¯uences the depth at which females lay their

eggs in the soil, a reproductive behaviour which is

known to be under selection (Masaki, 1979; CarrieÁre

et al., 1997). To test the effect of ovipositor length on G

matrix variation, we removed this trait from the analysis.

Results for both the Flury and element by element

methods (not shown) indicate that the omission of this

trait does not affect substantially the comparison of

matrices. Therefore, we conclude that the genetic basis of

the ovipositor length has diverged more than that of the

other traits but its effect is not strong enough to obscure

general patterns of G matrix similarity.

Results from the method of percentage reduction in

MSE suggest that proportionality is the principal source of

observed variation between G matrices. This can be

interpreted as meaning that random genetic drift has been

the predominant force acting on G matrices whereas

selection was weak enough to have its effect counteracted

by mutation (Lande, 1979; Lofsvold, 1988). Both G. ®rmus

and G. pennsylvanicus usually live in temporally heteroge-

neous environments (Harrison, 1978) that probably pro-

duce frequent population bottlenecks. On these occasions,

surviving individuals are the ones that are able to migrate

and colonize a new habitat. This frequent reduction in

numbers could cause random genetic drift to be strong

enough to alter the genetic architecture of the cricket

populations. On the other hand, the proportionality model

also explains variation of matrices within each species.

Obviously this variation cannot be interpreted as the drift

between the two matrices because these were estimated

from the same population. The observed variation across

environments may be caused by environmental effects

and is discussed in the following paragraphs. Without

further investigation, it is dif®cult to assess the evolution-

ary importance of the observed proportionality in the

comparisons between these species of crickets.

Another interesting result is that, according to the Flury

and element by element methods, the matrix correspond-

ing to G. ®rmus reared at 30 °C (F30) seems to differ from

all other matrices, including F25. It is important to note

that the F30 matrix comes from long wing individuals

reared at a relatively high temperature. Both aspects of

this environment are different from the other treatments.

Because we cannot separate the effects of wing morph and

rearing conditions with the present experimental design,

we conclude that the environment (including both

aspects) can have an effect on the G matrix.

The results also reveal that comparisons of G matrices

across environments show larger differences in G. ®rmus

than in G. pennsylvanicus. This observation (along with

the preceding paragraph) stresses the importance of

understanding the expression of the genetic architecture

with respect to the environment. Different species may

have different environmental patterns of genetic expres-

sion, and comparing the matrices of two species reared in

one chosen environment might be misleading and only

reveal part of the total difference. To avoid this con-

founding factor and to learn more about the expression

of genetic architecture, comparisons of G matrices across

species should ideally include several environments.

Similarly, it is important to know if laboratory esti-

mates of genetic architecture are reliable predictors of

genetic architecture in nature. Our results reveal that

rearing condition (laboratory vs. natural environment)

do not produce substantial variation at the G matrix level

in G. pennsylvanicus. This result is complementary to two

other studies that looked at the differences in genetic

parameter expression between laboratory and natural

environments in G. pennsylvanicus (Simons & Roff, 1994,

1996). These studies demonstrated that, for the same ®ve

morphological traits, heritabilities are generally higher in

the lab than in the ®eld, whereas genetic correlations are

stable. The present results suggest that despite variation

in genetic parameters, G matrices measured in a homo-

geneous laboratory environment can provide a good

representation of natural genetic architecture.
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The evolution of genetic architecture is at present

poorly understood. Empirical studies of G matrix vari-

ation are greatly needed to shed light on theoretical

models (Turelli, 1988). Our study demonstrated, using

several statistical approaches, that the G matrix can be

relatively conserved at the species level when rearing

environments are similar. However, the expression of

the genetic architecture can vary between environ-

ments, making comparisons across species dif®cult.

Additional studies are required to test the generality of

these results.
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FEMUR HEAD PTHL PTHW OVIP

G. ®rmus 25 °C
FEMUR 0.39 (0.04) 0.15 (0.02) 0.12 (0.02) 0.20 (0.02) 0.46 (0.05)

HEAD 0.09 (0.01) 0.06 (0.01) 0.10 (0.01) 0.23 (0.04)

PTHL 0.08 (0.01) 0.08 (0.01) 0.18 (0.02)

PTHW 0.14 (0.01) 0.28 (0.03)

OVIP 1.33 (0.12)

G. ®rmus 30 °C
FEMUR 0.27 (0.02) 0.13 (0.01) 0.11 (0.01) 0.14 (0.01) 0.28 (0.03)

HEAD 0.10 (0.01) 0.06 (0.01) 0.09 (0.01) 0.17 (0.02)

PTHL 0.11 (0.01) 0.07 (0.01) 0.13 (0.02)

PTHW 0.13 (0.01) 0.19 (0.02)

OVIP 0.77 (0.06)

G. pennsylvannicus lab

FEMUR 0.35 (0.03) 0.13 (0.01) 0.10 (0.01) 0.16 (0.02) 0.53 (0.06)

HEAD 0.08 (0.01) 0.05 (0.01) 0.08 (0.01) 0.24 (0.03)

PTHL 0.07 (0.01) 0.06 (0.01) 0.17 (0.02)

PTHW 0.12 (0.01) 0.28 (0.03)

OVIP 2.72 (0.35)

G. pennsylvannicus ®eld

FEMUR 0.55 (0.05) 0.21 (0.02) 0.14 (0.01) 0.26 (0.03) 0.91 (0.08)

HEAD 0.11 (0.01) 0.06 (0.01) 0.12 (0.01) 0.41 (0.03)

PTHL 0.08 (0.01) 0.08 (0.01) 0.25 (0.03)

PTHW 0.17 (0.01) 0.47 (0.04)

OVIP 3.75 (0.28)

Appendix 1 Phenotypic (co)variance

matrices (SE) for G. ®rmus and

G. pennsylvanicus. These estimates correspond

to the ®ve traits used in the present analysis.
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Appendix 2 Genetic (co)variance matrices

(SE) for G. ®rmus and G. pennsylvanicus.

These estimates correspond to the ®ve traits

used in the present analysis.

FEMUR HEAD PTHL PTHW OVIP

G. ®rmus 25 °C
FEMUR 0.16 (0.06) 0.07 (0.03) 0.04 (0.03) 0.10 (0.04) 0.18 (0.09)

HEAD 0.04 (0.01) 0.03 (0.01) 0.05 (0.02) 0.11 (0.04)

PTHL 0.03 (0.01) 0.04 (0.02) 0.09 (0.03)

PTHW 0.08 (0.02) 0.17 (0.06)

OVIP 0.55 (0.18)

G. ®rmus 30 °C
FEMUR 0.11 (0.03) 0.04 (0.02) 0.05 (0.02) 0.06 (0.02) 0.08 (0.04)

HEAD 0.04 (0.01) 0.02 (0.01) 0.05 (0.01) 0.06 (0.02)

PTHL 0.04 (0.01) 0.02 (0.01) 0.02 (0.02)

PTHW 0.06 (0.01) 0.07 (0.03)

OVIP 0.27 (0.07)

G. pennsylvannicus lab

FEMUR 0.22 (0.06) 0.09 (0.03) 0.06 (0.02) 0.12 (0.04) 0.26 (0.10)

HEAD 0.05 (0.01) 0.03 (0.01) 0.06 (0.02) 0.13 (0.04)

PTHL 0.03 (0.01) 0.03 (0.01) 0.07 (0.03)

PTHW 0.08 (0.02) 0.15 (0.06)

OVIP 0.81 (0.24)

G. pennsylvannicus ®eld

FEMUR 0.32 (0.08) 0.11 (0.03) 0.07 (0.02) 0.15 (0.04) 0.36 (0.08)

HEAD 0.04 (0.01) 0.03 (0.01) 0.06 (0.01) 0.13 (0.03)

PTHL 0.02 (0.01) 0.03 (0.01) 0.09 (0.03)

PTHW 0.08 (0.02) 0.17 (0.04)

OVIP 1.06 (0.27)
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