Plan 9 from Bell Labs’s /usr/web/sources/contrib/stallion/root/386/go/src/crypto/cipher/example_test.go

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package cipher_test

import (
	"bytes"
	"crypto/aes"
	"crypto/cipher"
	"crypto/rand"
	"encoding/hex"
	"fmt"
	"io"
	"os"
)

func ExampleNewGCM_encrypt() {
	// Load your secret key from a safe place and reuse it across multiple
	// Seal/Open calls. (Obviously don't use this example key for anything
	// real.) If you want to convert a passphrase to a key, use a suitable
	// package like bcrypt or scrypt.
	// When decoded the key should be 16 bytes (AES-128) or 32 (AES-256).
	key, _ := hex.DecodeString("6368616e676520746869732070617373776f726420746f206120736563726574")
	plaintext := []byte("exampleplaintext")

	block, err := aes.NewCipher(key)
	if err != nil {
		panic(err.Error())
	}

	// Never use more than 2^32 random nonces with a given key because of the risk of a repeat.
	nonce := make([]byte, 12)
	if _, err := io.ReadFull(rand.Reader, nonce); err != nil {
		panic(err.Error())
	}

	aesgcm, err := cipher.NewGCM(block)
	if err != nil {
		panic(err.Error())
	}

	ciphertext := aesgcm.Seal(nil, nonce, plaintext, nil)
	fmt.Printf("%x\n", ciphertext)
}

func ExampleNewGCM_decrypt() {
	// Load your secret key from a safe place and reuse it across multiple
	// Seal/Open calls. (Obviously don't use this example key for anything
	// real.) If you want to convert a passphrase to a key, use a suitable
	// package like bcrypt or scrypt.
	// When decoded the key should be 16 bytes (AES-128) or 32 (AES-256).
	key, _ := hex.DecodeString("6368616e676520746869732070617373776f726420746f206120736563726574")
	ciphertext, _ := hex.DecodeString("c3aaa29f002ca75870806e44086700f62ce4d43e902b3888e23ceff797a7a471")
	nonce, _ := hex.DecodeString("64a9433eae7ccceee2fc0eda")

	block, err := aes.NewCipher(key)
	if err != nil {
		panic(err.Error())
	}

	aesgcm, err := cipher.NewGCM(block)
	if err != nil {
		panic(err.Error())
	}

	plaintext, err := aesgcm.Open(nil, nonce, ciphertext, nil)
	if err != nil {
		panic(err.Error())
	}

	fmt.Printf("%s\n", plaintext)
	// Output: exampleplaintext
}

func ExampleNewCBCDecrypter() {
	// Load your secret key from a safe place and reuse it across multiple
	// NewCipher calls. (Obviously don't use this example key for anything
	// real.) If you want to convert a passphrase to a key, use a suitable
	// package like bcrypt or scrypt.
	key, _ := hex.DecodeString("6368616e676520746869732070617373")
	ciphertext, _ := hex.DecodeString("73c86d43a9d700a253a96c85b0f6b03ac9792e0e757f869cca306bd3cba1c62b")

	block, err := aes.NewCipher(key)
	if err != nil {
		panic(err)
	}

	// The IV needs to be unique, but not secure. Therefore it's common to
	// include it at the beginning of the ciphertext.
	if len(ciphertext) < aes.BlockSize {
		panic("ciphertext too short")
	}
	iv := ciphertext[:aes.BlockSize]
	ciphertext = ciphertext[aes.BlockSize:]

	// CBC mode always works in whole blocks.
	if len(ciphertext)%aes.BlockSize != 0 {
		panic("ciphertext is not a multiple of the block size")
	}

	mode := cipher.NewCBCDecrypter(block, iv)

	// CryptBlocks can work in-place if the two arguments are the same.
	mode.CryptBlocks(ciphertext, ciphertext)

	// If the original plaintext lengths are not a multiple of the block
	// size, padding would have to be added when encrypting, which would be
	// removed at this point. For an example, see
	// https://tools.ietf.org/html/rfc5246#section-6.2.3.2. However, it's
	// critical to note that ciphertexts must be authenticated (i.e. by
	// using crypto/hmac) before being decrypted in order to avoid creating
	// a padding oracle.

	fmt.Printf("%s\n", ciphertext)
	// Output: exampleplaintext
}

func ExampleNewCBCEncrypter() {
	// Load your secret key from a safe place and reuse it across multiple
	// NewCipher calls. (Obviously don't use this example key for anything
	// real.) If you want to convert a passphrase to a key, use a suitable
	// package like bcrypt or scrypt.
	key, _ := hex.DecodeString("6368616e676520746869732070617373")
	plaintext := []byte("exampleplaintext")

	// CBC mode works on blocks so plaintexts may need to be padded to the
	// next whole block. For an example of such padding, see
	// https://tools.ietf.org/html/rfc5246#section-6.2.3.2. Here we'll
	// assume that the plaintext is already of the correct length.
	if len(plaintext)%aes.BlockSize != 0 {
		panic("plaintext is not a multiple of the block size")
	}

	block, err := aes.NewCipher(key)
	if err != nil {
		panic(err)
	}

	// The IV needs to be unique, but not secure. Therefore it's common to
	// include it at the beginning of the ciphertext.
	ciphertext := make([]byte, aes.BlockSize+len(plaintext))
	iv := ciphertext[:aes.BlockSize]
	if _, err := io.ReadFull(rand.Reader, iv); err != nil {
		panic(err)
	}

	mode := cipher.NewCBCEncrypter(block, iv)
	mode.CryptBlocks(ciphertext[aes.BlockSize:], plaintext)

	// It's important to remember that ciphertexts must be authenticated
	// (i.e. by using crypto/hmac) as well as being encrypted in order to
	// be secure.

	fmt.Printf("%x\n", ciphertext)
}

func ExampleNewCFBDecrypter() {
	// Load your secret key from a safe place and reuse it across multiple
	// NewCipher calls. (Obviously don't use this example key for anything
	// real.) If you want to convert a passphrase to a key, use a suitable
	// package like bcrypt or scrypt.
	key, _ := hex.DecodeString("6368616e676520746869732070617373")
	ciphertext, _ := hex.DecodeString("7dd015f06bec7f1b8f6559dad89f4131da62261786845100056b353194ad")

	block, err := aes.NewCipher(key)
	if err != nil {
		panic(err)
	}

	// The IV needs to be unique, but not secure. Therefore it's common to
	// include it at the beginning of the ciphertext.
	if len(ciphertext) < aes.BlockSize {
		panic("ciphertext too short")
	}
	iv := ciphertext[:aes.BlockSize]
	ciphertext = ciphertext[aes.BlockSize:]

	stream := cipher.NewCFBDecrypter(block, iv)

	// XORKeyStream can work in-place if the two arguments are the same.
	stream.XORKeyStream(ciphertext, ciphertext)
	fmt.Printf("%s", ciphertext)
	// Output: some plaintext
}

func ExampleNewCFBEncrypter() {
	// Load your secret key from a safe place and reuse it across multiple
	// NewCipher calls. (Obviously don't use this example key for anything
	// real.) If you want to convert a passphrase to a key, use a suitable
	// package like bcrypt or scrypt.
	key, _ := hex.DecodeString("6368616e676520746869732070617373")
	plaintext := []byte("some plaintext")

	block, err := aes.NewCipher(key)
	if err != nil {
		panic(err)
	}

	// The IV needs to be unique, but not secure. Therefore it's common to
	// include it at the beginning of the ciphertext.
	ciphertext := make([]byte, aes.BlockSize+len(plaintext))
	iv := ciphertext[:aes.BlockSize]
	if _, err := io.ReadFull(rand.Reader, iv); err != nil {
		panic(err)
	}

	stream := cipher.NewCFBEncrypter(block, iv)
	stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext)

	// It's important to remember that ciphertexts must be authenticated
	// (i.e. by using crypto/hmac) as well as being encrypted in order to
	// be secure.
	fmt.Printf("%x\n", ciphertext)
}

func ExampleNewCTR() {
	// Load your secret key from a safe place and reuse it across multiple
	// NewCipher calls. (Obviously don't use this example key for anything
	// real.) If you want to convert a passphrase to a key, use a suitable
	// package like bcrypt or scrypt.
	key, _ := hex.DecodeString("6368616e676520746869732070617373")
	plaintext := []byte("some plaintext")

	block, err := aes.NewCipher(key)
	if err != nil {
		panic(err)
	}

	// The IV needs to be unique, but not secure. Therefore it's common to
	// include it at the beginning of the ciphertext.
	ciphertext := make([]byte, aes.BlockSize+len(plaintext))
	iv := ciphertext[:aes.BlockSize]
	if _, err := io.ReadFull(rand.Reader, iv); err != nil {
		panic(err)
	}

	stream := cipher.NewCTR(block, iv)
	stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext)

	// It's important to remember that ciphertexts must be authenticated
	// (i.e. by using crypto/hmac) as well as being encrypted in order to
	// be secure.

	// CTR mode is the same for both encryption and decryption, so we can
	// also decrypt that ciphertext with NewCTR.

	plaintext2 := make([]byte, len(plaintext))
	stream = cipher.NewCTR(block, iv)
	stream.XORKeyStream(plaintext2, ciphertext[aes.BlockSize:])

	fmt.Printf("%s\n", plaintext2)
	// Output: some plaintext
}

func ExampleNewOFB() {
	// Load your secret key from a safe place and reuse it across multiple
	// NewCipher calls. (Obviously don't use this example key for anything
	// real.) If you want to convert a passphrase to a key, use a suitable
	// package like bcrypt or scrypt.
	key, _ := hex.DecodeString("6368616e676520746869732070617373")
	plaintext := []byte("some plaintext")

	block, err := aes.NewCipher(key)
	if err != nil {
		panic(err)
	}

	// The IV needs to be unique, but not secure. Therefore it's common to
	// include it at the beginning of the ciphertext.
	ciphertext := make([]byte, aes.BlockSize+len(plaintext))
	iv := ciphertext[:aes.BlockSize]
	if _, err := io.ReadFull(rand.Reader, iv); err != nil {
		panic(err)
	}

	stream := cipher.NewOFB(block, iv)
	stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext)

	// It's important to remember that ciphertexts must be authenticated
	// (i.e. by using crypto/hmac) as well as being encrypted in order to
	// be secure.

	// OFB mode is the same for both encryption and decryption, so we can
	// also decrypt that ciphertext with NewOFB.

	plaintext2 := make([]byte, len(plaintext))
	stream = cipher.NewOFB(block, iv)
	stream.XORKeyStream(plaintext2, ciphertext[aes.BlockSize:])

	fmt.Printf("%s\n", plaintext2)
	// Output: some plaintext
}

func ExampleStreamReader() {
	// Load your secret key from a safe place and reuse it across multiple
	// NewCipher calls. (Obviously don't use this example key for anything
	// real.) If you want to convert a passphrase to a key, use a suitable
	// package like bcrypt or scrypt.
	key, _ := hex.DecodeString("6368616e676520746869732070617373")

	encrypted, _ := hex.DecodeString("cf0495cc6f75dafc23948538e79904a9")
	bReader := bytes.NewReader(encrypted)

	block, err := aes.NewCipher(key)
	if err != nil {
		panic(err)
	}

	// If the key is unique for each ciphertext, then it's ok to use a zero
	// IV.
	var iv [aes.BlockSize]byte
	stream := cipher.NewOFB(block, iv[:])

	reader := &cipher.StreamReader{S: stream, R: bReader}
	// Copy the input to the output stream, decrypting as we go.
	if _, err := io.Copy(os.Stdout, reader); err != nil {
		panic(err)
	}

	// Note that this example is simplistic in that it omits any
	// authentication of the encrypted data. If you were actually to use
	// StreamReader in this manner, an attacker could flip arbitrary bits in
	// the output.

	// Output: some secret text
}

func ExampleStreamWriter() {
	// Load your secret key from a safe place and reuse it across multiple
	// NewCipher calls. (Obviously don't use this example key for anything
	// real.) If you want to convert a passphrase to a key, use a suitable
	// package like bcrypt or scrypt.
	key, _ := hex.DecodeString("6368616e676520746869732070617373")

	bReader := bytes.NewReader([]byte("some secret text"))

	block, err := aes.NewCipher(key)
	if err != nil {
		panic(err)
	}

	// If the key is unique for each ciphertext, then it's ok to use a zero
	// IV.
	var iv [aes.BlockSize]byte
	stream := cipher.NewOFB(block, iv[:])

	var out bytes.Buffer

	writer := &cipher.StreamWriter{S: stream, W: &out}
	// Copy the input to the output buffer, encrypting as we go.
	if _, err := io.Copy(writer, bReader); err != nil {
		panic(err)
	}

	// Note that this example is simplistic in that it omits any
	// authentication of the encrypted data. If you were actually to use
	// StreamReader in this manner, an attacker could flip arbitrary bits in
	// the decrypted result.

	fmt.Printf("%x\n", out.Bytes())
	// Output: cf0495cc6f75dafc23948538e79904a9
}

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.