Plan 9 from Bell Labs’s /usr/web/sources/contrib/stallion/root/386/go/src/runtime/asm_386.s

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "go_asm.h"
#include "go_tls.h"
#include "funcdata.h"
#include "textflag.h"

// _rt0_386 is common startup code for most 386 systems when using
// internal linking. This is the entry point for the program from the
// kernel for an ordinary -buildmode=exe program. The stack holds the
// number of arguments and the C-style argv.
TEXT _rt0_386(SB),NOSPLIT,$8
	MOVL	8(SP), AX	// argc
	LEAL	12(SP), BX	// argv
	MOVL	AX, 0(SP)
	MOVL	BX, 4(SP)
	JMP	runtime·rt0_go(SB)

// _rt0_386_lib is common startup code for most 386 systems when
// using -buildmode=c-archive or -buildmode=c-shared. The linker will
// arrange to invoke this function as a global constructor (for
// c-archive) or when the shared library is loaded (for c-shared).
// We expect argc and argv to be passed on the stack following the
// usual C ABI.
TEXT _rt0_386_lib(SB),NOSPLIT,$0
	PUSHL	BP
	MOVL	SP, BP
	PUSHL	BX
	PUSHL	SI
	PUSHL	DI

	MOVL	8(BP), AX
	MOVL	AX, _rt0_386_lib_argc<>(SB)
	MOVL	12(BP), AX
	MOVL	AX, _rt0_386_lib_argv<>(SB)

	// Synchronous initialization.
	CALL	runtime·libpreinit(SB)

	SUBL	$8, SP

	// Create a new thread to do the runtime initialization.
	MOVL	_cgo_sys_thread_create(SB), AX
	TESTL	AX, AX
	JZ	nocgo

	// Align stack to call C function.
	// We moved SP to BP above, but BP was clobbered by the libpreinit call.
	MOVL	SP, BP
	ANDL	$~15, SP

	MOVL	$_rt0_386_lib_go(SB), BX
	MOVL	BX, 0(SP)
	MOVL	$0, 4(SP)

	CALL	AX

	MOVL	BP, SP

	JMP	restore

nocgo:
	MOVL	$0x800000, 0(SP)                    // stacksize = 8192KB
	MOVL	$_rt0_386_lib_go(SB), AX
	MOVL	AX, 4(SP)                           // fn
	CALL	runtime·newosproc0(SB)

restore:
	ADDL	$8, SP
	POPL	DI
	POPL	SI
	POPL	BX
	POPL	BP
	RET

// _rt0_386_lib_go initializes the Go runtime.
// This is started in a separate thread by _rt0_386_lib.
TEXT _rt0_386_lib_go(SB),NOSPLIT,$8
	MOVL	_rt0_386_lib_argc<>(SB), AX
	MOVL	AX, 0(SP)
	MOVL	_rt0_386_lib_argv<>(SB), AX
	MOVL	AX, 4(SP)
	JMP	runtime·rt0_go(SB)

DATA _rt0_386_lib_argc<>(SB)/4, $0
GLOBL _rt0_386_lib_argc<>(SB),NOPTR, $4
DATA _rt0_386_lib_argv<>(SB)/4, $0
GLOBL _rt0_386_lib_argv<>(SB),NOPTR, $4

TEXT runtime·rt0_go(SB),NOSPLIT|NOFRAME,$0
	// Copy arguments forward on an even stack.
	// Users of this function jump to it, they don't call it.
	MOVL	0(SP), AX
	MOVL	4(SP), BX
	SUBL	$128, SP		// plenty of scratch
	ANDL	$~15, SP
	MOVL	AX, 120(SP)		// save argc, argv away
	MOVL	BX, 124(SP)

	// set default stack bounds.
	// _cgo_init may update stackguard.
	MOVL	$runtime·g0(SB), BP
	LEAL	(-64*1024+104)(SP), BX
	MOVL	BX, g_stackguard0(BP)
	MOVL	BX, g_stackguard1(BP)
	MOVL	BX, (g_stack+stack_lo)(BP)
	MOVL	SP, (g_stack+stack_hi)(BP)

	// find out information about the processor we're on
#ifdef GOOS_nacl // NaCl doesn't like PUSHFL/POPFL
	JMP 	has_cpuid
#else
	// first see if CPUID instruction is supported.
	PUSHFL
	PUSHFL
	XORL	$(1<<21), 0(SP) // flip ID bit
	POPFL
	PUSHFL
	POPL	AX
	XORL	0(SP), AX
	POPFL	// restore EFLAGS
	TESTL	$(1<<21), AX
	JNE 	has_cpuid
#endif

bad_proc: // show that the program requires MMX.
	MOVL	$2, 0(SP)
	MOVL	$bad_proc_msg<>(SB), 4(SP)
	MOVL	$0x3d, 8(SP)
	CALL	runtime·write(SB)
	MOVL	$1, 0(SP)
	CALL	runtime·exit(SB)
	CALL	runtime·abort(SB)

has_cpuid:
	MOVL	$0, AX
	CPUID
	MOVL	AX, SI
	CMPL	AX, $0
	JE	nocpuinfo

	// Figure out how to serialize RDTSC.
	// On Intel processors LFENCE is enough. AMD requires MFENCE.
	// Don't know about the rest, so let's do MFENCE.
	CMPL	BX, $0x756E6547  // "Genu"
	JNE	notintel
	CMPL	DX, $0x49656E69  // "ineI"
	JNE	notintel
	CMPL	CX, $0x6C65746E  // "ntel"
	JNE	notintel
	MOVB	$1, runtime·isIntel(SB)
	MOVB	$1, runtime·lfenceBeforeRdtsc(SB)
notintel:

	// Load EAX=1 cpuid flags
	MOVL	$1, AX
	CPUID
	MOVL	CX, DI // Move to global variable clobbers CX when generating PIC
	MOVL	AX, runtime·processorVersionInfo(SB)

	// Check for MMX support
	TESTL	$(1<<23), DX // MMX
	JZ	bad_proc

nocpuinfo:
	// if there is an _cgo_init, call it to let it
	// initialize and to set up GS.  if not,
	// we set up GS ourselves.
	MOVL	_cgo_init(SB), AX
	TESTL	AX, AX
	JZ	needtls
#ifdef GOOS_android
	// arg 4: TLS base, stored in slot 0 (Android's TLS_SLOT_SELF).
	// Compensate for tls_g (+8).
	MOVL	-8(TLS), BX
	MOVL	BX, 12(SP)
	MOVL	$runtime·tls_g(SB), 8(SP)	// arg 3: &tls_g
#else
	MOVL	$0, BX
	MOVL	BX, 12(SP)	// arg 3,4: not used when using platform's TLS
	MOVL	BX, 8(SP)
#endif
	MOVL	$setg_gcc<>(SB), BX
	MOVL	BX, 4(SP)	// arg 2: setg_gcc
	MOVL	BP, 0(SP)	// arg 1: g0
	CALL	AX

	// update stackguard after _cgo_init
	MOVL	$runtime·g0(SB), CX
	MOVL	(g_stack+stack_lo)(CX), AX
	ADDL	$const__StackGuard, AX
	MOVL	AX, g_stackguard0(CX)
	MOVL	AX, g_stackguard1(CX)

#ifndef GOOS_windows
	// skip runtime·ldt0setup(SB) and tls test after _cgo_init for non-windows
	JMP ok
#endif
needtls:
#ifdef GOOS_plan9
	// skip runtime·ldt0setup(SB) and tls test on Plan 9 in all cases
	JMP	ok
#endif
#ifdef GOOS_darwin
	// skip runtime·ldt0setup(SB) on Darwin
	JMP	ok
#endif

	// set up %gs
	CALL	ldt0setup<>(SB)

	// store through it, to make sure it works
	get_tls(BX)
	MOVL	$0x123, g(BX)
	MOVL	runtime·m0+m_tls(SB), AX
	CMPL	AX, $0x123
	JEQ	ok
	MOVL	AX, 0	// abort
ok:
	// set up m and g "registers"
	get_tls(BX)
	LEAL	runtime·g0(SB), DX
	MOVL	DX, g(BX)
	LEAL	runtime·m0(SB), AX

	// save m->g0 = g0
	MOVL	DX, m_g0(AX)
	// save g0->m = m0
	MOVL	AX, g_m(DX)

	CALL	runtime·emptyfunc(SB)	// fault if stack check is wrong

	// convention is D is always cleared
	CLD

	CALL	runtime·check(SB)

	// saved argc, argv
	MOVL	120(SP), AX
	MOVL	AX, 0(SP)
	MOVL	124(SP), AX
	MOVL	AX, 4(SP)
	CALL	runtime·args(SB)
	CALL	runtime·osinit(SB)
	CALL	runtime·schedinit(SB)

	// create a new goroutine to start program
	PUSHL	$runtime·mainPC(SB)	// entry
	PUSHL	$0	// arg size
	CALL	runtime·newproc(SB)
	POPL	AX
	POPL	AX

	// start this M
	CALL	runtime·mstart(SB)

	CALL	runtime·abort(SB)
	RET

DATA	bad_proc_msg<>+0x00(SB)/61, $"This program can only be run on processors with MMX support.\n"
GLOBL	bad_proc_msg<>(SB), RODATA, $61

DATA	runtime·mainPC+0(SB)/4,$runtime·main(SB)
GLOBL	runtime·mainPC(SB),RODATA,$4

TEXT runtime·breakpoint(SB),NOSPLIT,$0-0
	INT $3
	RET

TEXT runtime·asminit(SB),NOSPLIT,$0-0
	// Linux and MinGW start the FPU in extended double precision.
	// Other operating systems use double precision.
	// Change to double precision to match them,
	// and to match other hardware that only has double.
	FLDCW	runtime·controlWord64(SB)
	RET

/*
 *  go-routine
 */

// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB), NOSPLIT, $0-4
	MOVL	buf+0(FP), AX		// gobuf
	LEAL	buf+0(FP), BX		// caller's SP
	MOVL	BX, gobuf_sp(AX)
	MOVL	0(SP), BX		// caller's PC
	MOVL	BX, gobuf_pc(AX)
	MOVL	$0, gobuf_ret(AX)
	// Assert ctxt is zero. See func save.
	MOVL	gobuf_ctxt(AX), BX
	TESTL	BX, BX
	JZ	2(PC)
	CALL	runtime·badctxt(SB)
	get_tls(CX)
	MOVL	g(CX), BX
	MOVL	BX, gobuf_g(AX)
	RET

// void gogo(Gobuf*)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB), NOSPLIT, $8-4
	MOVL	buf+0(FP), BX		// gobuf
	MOVL	gobuf_g(BX), DX
	MOVL	0(DX), CX		// make sure g != nil
	get_tls(CX)
	MOVL	DX, g(CX)
	MOVL	gobuf_sp(BX), SP	// restore SP
	MOVL	gobuf_ret(BX), AX
	MOVL	gobuf_ctxt(BX), DX
	MOVL	$0, gobuf_sp(BX)	// clear to help garbage collector
	MOVL	$0, gobuf_ret(BX)
	MOVL	$0, gobuf_ctxt(BX)
	MOVL	gobuf_pc(BX), BX
	JMP	BX

// func mcall(fn func(*g))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall(SB), NOSPLIT, $0-4
	MOVL	fn+0(FP), DI

	get_tls(DX)
	MOVL	g(DX), AX	// save state in g->sched
	MOVL	0(SP), BX	// caller's PC
	MOVL	BX, (g_sched+gobuf_pc)(AX)
	LEAL	fn+0(FP), BX	// caller's SP
	MOVL	BX, (g_sched+gobuf_sp)(AX)
	MOVL	AX, (g_sched+gobuf_g)(AX)

	// switch to m->g0 & its stack, call fn
	MOVL	g(DX), BX
	MOVL	g_m(BX), BX
	MOVL	m_g0(BX), SI
	CMPL	SI, AX	// if g == m->g0 call badmcall
	JNE	3(PC)
	MOVL	$runtime·badmcall(SB), AX
	JMP	AX
	MOVL	SI, g(DX)	// g = m->g0
	MOVL	(g_sched+gobuf_sp)(SI), SP	// sp = m->g0->sched.sp
	PUSHL	AX
	MOVL	DI, DX
	MOVL	0(DI), DI
	CALL	DI
	POPL	AX
	MOVL	$runtime·badmcall2(SB), AX
	JMP	AX
	RET

// systemstack_switch is a dummy routine that systemstack leaves at the bottom
// of the G stack. We need to distinguish the routine that
// lives at the bottom of the G stack from the one that lives
// at the top of the system stack because the one at the top of
// the system stack terminates the stack walk (see topofstack()).
TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
	RET

// func systemstack(fn func())
TEXT runtime·systemstack(SB), NOSPLIT, $0-4
	MOVL	fn+0(FP), DI	// DI = fn
	get_tls(CX)
	MOVL	g(CX), AX	// AX = g
	MOVL	g_m(AX), BX	// BX = m

	CMPL	AX, m_gsignal(BX)
	JEQ	noswitch

	MOVL	m_g0(BX), DX	// DX = g0
	CMPL	AX, DX
	JEQ	noswitch

	CMPL	AX, m_curg(BX)
	JNE	bad

	// switch stacks
	// save our state in g->sched. Pretend to
	// be systemstack_switch if the G stack is scanned.
	MOVL	$runtime·systemstack_switch(SB), (g_sched+gobuf_pc)(AX)
	MOVL	SP, (g_sched+gobuf_sp)(AX)
	MOVL	AX, (g_sched+gobuf_g)(AX)

	// switch to g0
	get_tls(CX)
	MOVL	DX, g(CX)
	MOVL	(g_sched+gobuf_sp)(DX), BX
	// make it look like mstart called systemstack on g0, to stop traceback
	SUBL	$4, BX
	MOVL	$runtime·mstart(SB), DX
	MOVL	DX, 0(BX)
	MOVL	BX, SP

	// call target function
	MOVL	DI, DX
	MOVL	0(DI), DI
	CALL	DI

	// switch back to g
	get_tls(CX)
	MOVL	g(CX), AX
	MOVL	g_m(AX), BX
	MOVL	m_curg(BX), AX
	MOVL	AX, g(CX)
	MOVL	(g_sched+gobuf_sp)(AX), SP
	MOVL	$0, (g_sched+gobuf_sp)(AX)
	RET

noswitch:
	// already on system stack; tail call the function
	// Using a tail call here cleans up tracebacks since we won't stop
	// at an intermediate systemstack.
	MOVL	DI, DX
	MOVL	0(DI), DI
	JMP	DI

bad:
	// Bad: g is not gsignal, not g0, not curg. What is it?
	// Hide call from linker nosplit analysis.
	MOVL	$runtime·badsystemstack(SB), AX
	CALL	AX
	INT	$3

/*
 * support for morestack
 */

// Called during function prolog when more stack is needed.
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT,$0-0
	// Cannot grow scheduler stack (m->g0).
	get_tls(CX)
	MOVL	g(CX), BX
	MOVL	g_m(BX), BX
	MOVL	m_g0(BX), SI
	CMPL	g(CX), SI
	JNE	3(PC)
	CALL	runtime·badmorestackg0(SB)
	CALL	runtime·abort(SB)

	// Cannot grow signal stack.
	MOVL	m_gsignal(BX), SI
	CMPL	g(CX), SI
	JNE	3(PC)
	CALL	runtime·badmorestackgsignal(SB)
	CALL	runtime·abort(SB)

	// Called from f.
	// Set m->morebuf to f's caller.
	NOP	SP	// tell vet SP changed - stop checking offsets
	MOVL	4(SP), DI	// f's caller's PC
	MOVL	DI, (m_morebuf+gobuf_pc)(BX)
	LEAL	8(SP), CX	// f's caller's SP
	MOVL	CX, (m_morebuf+gobuf_sp)(BX)
	get_tls(CX)
	MOVL	g(CX), SI
	MOVL	SI, (m_morebuf+gobuf_g)(BX)

	// Set g->sched to context in f.
	MOVL	0(SP), AX	// f's PC
	MOVL	AX, (g_sched+gobuf_pc)(SI)
	MOVL	SI, (g_sched+gobuf_g)(SI)
	LEAL	4(SP), AX	// f's SP
	MOVL	AX, (g_sched+gobuf_sp)(SI)
	MOVL	DX, (g_sched+gobuf_ctxt)(SI)

	// Call newstack on m->g0's stack.
	MOVL	m_g0(BX), BP
	MOVL	BP, g(CX)
	MOVL	(g_sched+gobuf_sp)(BP), AX
	MOVL	-4(AX), BX	// fault if CALL would, before smashing SP
	MOVL	AX, SP
	CALL	runtime·newstack(SB)
	CALL	runtime·abort(SB)	// crash if newstack returns
	RET

TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0-0
	MOVL	$0, DX
	JMP runtime·morestack(SB)

// reflectcall: call a function with the given argument list
// func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.
// Caution: ugly multiline assembly macros in your future!

#define DISPATCH(NAME,MAXSIZE)		\
	CMPL	CX, $MAXSIZE;		\
	JA	3(PC);			\
	MOVL	$NAME(SB), AX;		\
	JMP	AX
// Note: can't just "JMP NAME(SB)" - bad inlining results.

TEXT ·reflectcall(SB), NOSPLIT, $0-20
	MOVL	argsize+12(FP), CX
	DISPATCH(runtime·call16, 16)
	DISPATCH(runtime·call32, 32)
	DISPATCH(runtime·call64, 64)
	DISPATCH(runtime·call128, 128)
	DISPATCH(runtime·call256, 256)
	DISPATCH(runtime·call512, 512)
	DISPATCH(runtime·call1024, 1024)
	DISPATCH(runtime·call2048, 2048)
	DISPATCH(runtime·call4096, 4096)
	DISPATCH(runtime·call8192, 8192)
	DISPATCH(runtime·call16384, 16384)
	DISPATCH(runtime·call32768, 32768)
	DISPATCH(runtime·call65536, 65536)
	DISPATCH(runtime·call131072, 131072)
	DISPATCH(runtime·call262144, 262144)
	DISPATCH(runtime·call524288, 524288)
	DISPATCH(runtime·call1048576, 1048576)
	DISPATCH(runtime·call2097152, 2097152)
	DISPATCH(runtime·call4194304, 4194304)
	DISPATCH(runtime·call8388608, 8388608)
	DISPATCH(runtime·call16777216, 16777216)
	DISPATCH(runtime·call33554432, 33554432)
	DISPATCH(runtime·call67108864, 67108864)
	DISPATCH(runtime·call134217728, 134217728)
	DISPATCH(runtime·call268435456, 268435456)
	DISPATCH(runtime·call536870912, 536870912)
	DISPATCH(runtime·call1073741824, 1073741824)
	MOVL	$runtime·badreflectcall(SB), AX
	JMP	AX

#define CALLFN(NAME,MAXSIZE)			\
TEXT NAME(SB), WRAPPER, $MAXSIZE-20;		\
	NO_LOCAL_POINTERS;			\
	/* copy arguments to stack */		\
	MOVL	argptr+8(FP), SI;		\
	MOVL	argsize+12(FP), CX;		\
	MOVL	SP, DI;				\
	REP;MOVSB;				\
	/* call function */			\
	MOVL	f+4(FP), DX;			\
	MOVL	(DX), AX; 			\
	PCDATA  $PCDATA_StackMapIndex, $0;	\
	CALL	AX;				\
	/* copy return values back */		\
	MOVL	argtype+0(FP), DX;		\
	MOVL	argptr+8(FP), DI;		\
	MOVL	argsize+12(FP), CX;		\
	MOVL	retoffset+16(FP), BX;		\
	MOVL	SP, SI;				\
	ADDL	BX, DI;				\
	ADDL	BX, SI;				\
	SUBL	BX, CX;				\
	CALL	callRet<>(SB);			\
	RET

// callRet copies return values back at the end of call*. This is a
// separate function so it can allocate stack space for the arguments
// to reflectcallmove. It does not follow the Go ABI; it expects its
// arguments in registers.
TEXT callRet<>(SB), NOSPLIT, $16-0
	MOVL	DX, 0(SP)
	MOVL	DI, 4(SP)
	MOVL	SI, 8(SP)
	MOVL	CX, 12(SP)
	CALL	runtime·reflectcallmove(SB)
	RET

CALLFN(·call16, 16)
CALLFN(·call32, 32)
CALLFN(·call64, 64)
CALLFN(·call128, 128)
CALLFN(·call256, 256)
CALLFN(·call512, 512)
CALLFN(·call1024, 1024)
CALLFN(·call2048, 2048)
CALLFN(·call4096, 4096)
CALLFN(·call8192, 8192)
CALLFN(·call16384, 16384)
CALLFN(·call32768, 32768)
CALLFN(·call65536, 65536)
CALLFN(·call131072, 131072)
CALLFN(·call262144, 262144)
CALLFN(·call524288, 524288)
CALLFN(·call1048576, 1048576)
CALLFN(·call2097152, 2097152)
CALLFN(·call4194304, 4194304)
CALLFN(·call8388608, 8388608)
CALLFN(·call16777216, 16777216)
CALLFN(·call33554432, 33554432)
CALLFN(·call67108864, 67108864)
CALLFN(·call134217728, 134217728)
CALLFN(·call268435456, 268435456)
CALLFN(·call536870912, 536870912)
CALLFN(·call1073741824, 1073741824)

TEXT runtime·procyield(SB),NOSPLIT,$0-0
	MOVL	cycles+0(FP), AX
again:
	PAUSE
	SUBL	$1, AX
	JNZ	again
	RET

TEXT ·publicationBarrier(SB),NOSPLIT,$0-0
	// Stores are already ordered on x86, so this is just a
	// compile barrier.
	RET

// void jmpdefer(fn, sp);
// called from deferreturn.
// 1. pop the caller
// 2. sub 5 bytes (the length of CALL & a 32 bit displacement) from the callers
//    return (when building for shared libraries, subtract 16 bytes -- 5 bytes
//    for CALL & displacement to call __x86.get_pc_thunk.cx, 6 bytes for the
//    LEAL to load the offset into BX, and finally 5 for the call & displacement)
// 3. jmp to the argument
TEXT runtime·jmpdefer(SB), NOSPLIT, $0-8
	MOVL	fv+0(FP), DX	// fn
	MOVL	argp+4(FP), BX	// caller sp
	LEAL	-4(BX), SP	// caller sp after CALL
#ifdef GOBUILDMODE_shared
	SUBL	$16, (SP)	// return to CALL again
#else
	SUBL	$5, (SP)	// return to CALL again
#endif
	MOVL	0(DX), BX
	JMP	BX	// but first run the deferred function

// Save state of caller into g->sched.
TEXT gosave<>(SB),NOSPLIT,$0
	PUSHL	AX
	PUSHL	BX
	get_tls(BX)
	MOVL	g(BX), BX
	LEAL	arg+0(FP), AX
	MOVL	AX, (g_sched+gobuf_sp)(BX)
	MOVL	-4(AX), AX
	MOVL	AX, (g_sched+gobuf_pc)(BX)
	MOVL	$0, (g_sched+gobuf_ret)(BX)
	// Assert ctxt is zero. See func save.
	MOVL	(g_sched+gobuf_ctxt)(BX), AX
	TESTL	AX, AX
	JZ	2(PC)
	CALL	runtime·badctxt(SB)
	POPL	BX
	POPL	AX
	RET

// func asmcgocall(fn, arg unsafe.Pointer) int32
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.go for more details.
TEXT ·asmcgocall(SB),NOSPLIT,$0-12
	MOVL	fn+0(FP), AX
	MOVL	arg+4(FP), BX

	MOVL	SP, DX

	// Figure out if we need to switch to m->g0 stack.
	// We get called to create new OS threads too, and those
	// come in on the m->g0 stack already.
	get_tls(CX)
	MOVL	g(CX), BP
	CMPL	BP, $0
	JEQ	nosave	// Don't even have a G yet.
	MOVL	g_m(BP), BP
	MOVL	m_g0(BP), SI
	MOVL	g(CX), DI
	CMPL	SI, DI
	JEQ	noswitch
	CMPL	DI, m_gsignal(BP)
	JEQ	noswitch
	CALL	gosave<>(SB)
	get_tls(CX)
	MOVL	SI, g(CX)
	MOVL	(g_sched+gobuf_sp)(SI), SP

noswitch:
	// Now on a scheduling stack (a pthread-created stack).
	SUBL	$32, SP
	ANDL	$~15, SP	// alignment, perhaps unnecessary
	MOVL	DI, 8(SP)	// save g
	MOVL	(g_stack+stack_hi)(DI), DI
	SUBL	DX, DI
	MOVL	DI, 4(SP)	// save depth in stack (can't just save SP, as stack might be copied during a callback)
	MOVL	BX, 0(SP)	// first argument in x86-32 ABI
	CALL	AX

	// Restore registers, g, stack pointer.
	get_tls(CX)
	MOVL	8(SP), DI
	MOVL	(g_stack+stack_hi)(DI), SI
	SUBL	4(SP), SI
	MOVL	DI, g(CX)
	MOVL	SI, SP

	MOVL	AX, ret+8(FP)
	RET
nosave:
	// Now on a scheduling stack (a pthread-created stack).
	SUBL	$32, SP
	ANDL	$~15, SP	// alignment, perhaps unnecessary
	MOVL	DX, 4(SP)	// save original stack pointer
	MOVL	BX, 0(SP)	// first argument in x86-32 ABI
	CALL	AX

	MOVL	4(SP), CX	// restore original stack pointer
	MOVL	CX, SP
	MOVL	AX, ret+8(FP)
	RET

// cgocallback(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt)
// Turn the fn into a Go func (by taking its address) and call
// cgocallback_gofunc.
TEXT runtime·cgocallback(SB),NOSPLIT,$16-16
	LEAL	fn+0(FP), AX
	MOVL	AX, 0(SP)
	MOVL	frame+4(FP), AX
	MOVL	AX, 4(SP)
	MOVL	framesize+8(FP), AX
	MOVL	AX, 8(SP)
	MOVL	ctxt+12(FP), AX
	MOVL	AX, 12(SP)
	MOVL	$runtime·cgocallback_gofunc(SB), AX
	CALL	AX
	RET

// cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize, uintptr ctxt)
// See cgocall.go for more details.
TEXT ·cgocallback_gofunc(SB),NOSPLIT,$12-16
	NO_LOCAL_POINTERS

	// If g is nil, Go did not create the current thread.
	// Call needm to obtain one for temporary use.
	// In this case, we're running on the thread stack, so there's
	// lots of space, but the linker doesn't know. Hide the call from
	// the linker analysis by using an indirect call through AX.
	get_tls(CX)
#ifdef GOOS_windows
	MOVL	$0, BP
	CMPL	CX, $0
	JEQ	2(PC) // TODO
#endif
	MOVL	g(CX), BP
	CMPL	BP, $0
	JEQ	needm
	MOVL	g_m(BP), BP
	MOVL	BP, DX // saved copy of oldm
	JMP	havem
needm:
	MOVL	$0, 0(SP)
	MOVL	$runtime·needm(SB), AX
	CALL	AX
	MOVL	0(SP), DX
	get_tls(CX)
	MOVL	g(CX), BP
	MOVL	g_m(BP), BP

	// Set m->sched.sp = SP, so that if a panic happens
	// during the function we are about to execute, it will
	// have a valid SP to run on the g0 stack.
	// The next few lines (after the havem label)
	// will save this SP onto the stack and then write
	// the same SP back to m->sched.sp. That seems redundant,
	// but if an unrecovered panic happens, unwindm will
	// restore the g->sched.sp from the stack location
	// and then systemstack will try to use it. If we don't set it here,
	// that restored SP will be uninitialized (typically 0) and
	// will not be usable.
	MOVL	m_g0(BP), SI
	MOVL	SP, (g_sched+gobuf_sp)(SI)

havem:
	// Now there's a valid m, and we're running on its m->g0.
	// Save current m->g0->sched.sp on stack and then set it to SP.
	// Save current sp in m->g0->sched.sp in preparation for
	// switch back to m->curg stack.
	// NOTE: unwindm knows that the saved g->sched.sp is at 0(SP).
	MOVL	m_g0(BP), SI
	MOVL	(g_sched+gobuf_sp)(SI), AX
	MOVL	AX, 0(SP)
	MOVL	SP, (g_sched+gobuf_sp)(SI)

	// Switch to m->curg stack and call runtime.cgocallbackg.
	// Because we are taking over the execution of m->curg
	// but *not* resuming what had been running, we need to
	// save that information (m->curg->sched) so we can restore it.
	// We can restore m->curg->sched.sp easily, because calling
	// runtime.cgocallbackg leaves SP unchanged upon return.
	// To save m->curg->sched.pc, we push it onto the stack.
	// This has the added benefit that it looks to the traceback
	// routine like cgocallbackg is going to return to that
	// PC (because the frame we allocate below has the same
	// size as cgocallback_gofunc's frame declared above)
	// so that the traceback will seamlessly trace back into
	// the earlier calls.
	//
	// In the new goroutine, 4(SP) holds the saved oldm (DX) register.
	// 8(SP) is unused.
	MOVL	m_curg(BP), SI
	MOVL	SI, g(CX)
	MOVL	(g_sched+gobuf_sp)(SI), DI // prepare stack as DI
	MOVL	(g_sched+gobuf_pc)(SI), BP
	MOVL	BP, -4(DI)
	MOVL	ctxt+12(FP), CX
	LEAL	-(4+12)(DI), SP
	MOVL	DX, 4(SP)
	MOVL	CX, 0(SP)
	CALL	runtime·cgocallbackg(SB)
	MOVL	4(SP), DX

	// Restore g->sched (== m->curg->sched) from saved values.
	get_tls(CX)
	MOVL	g(CX), SI
	MOVL	12(SP), BP
	MOVL	BP, (g_sched+gobuf_pc)(SI)
	LEAL	(12+4)(SP), DI
	MOVL	DI, (g_sched+gobuf_sp)(SI)

	// Switch back to m->g0's stack and restore m->g0->sched.sp.
	// (Unlike m->curg, the g0 goroutine never uses sched.pc,
	// so we do not have to restore it.)
	MOVL	g(CX), BP
	MOVL	g_m(BP), BP
	MOVL	m_g0(BP), SI
	MOVL	SI, g(CX)
	MOVL	(g_sched+gobuf_sp)(SI), SP
	MOVL	0(SP), AX
	MOVL	AX, (g_sched+gobuf_sp)(SI)

	// If the m on entry was nil, we called needm above to borrow an m
	// for the duration of the call. Since the call is over, return it with dropm.
	CMPL	DX, $0
	JNE 3(PC)
	MOVL	$runtime·dropm(SB), AX
	CALL	AX

	// Done!
	RET

// void setg(G*); set g. for use by needm.
TEXT runtime·setg(SB), NOSPLIT, $0-4
	MOVL	gg+0(FP), BX
#ifdef GOOS_windows
	CMPL	BX, $0
	JNE	settls
	MOVL	$0, 0x14(FS)
	RET
settls:
	MOVL	g_m(BX), AX
	LEAL	m_tls(AX), AX
	MOVL	AX, 0x14(FS)
#endif
	get_tls(CX)
	MOVL	BX, g(CX)
	RET

// void setg_gcc(G*); set g. for use by gcc
TEXT setg_gcc<>(SB), NOSPLIT, $0
	get_tls(AX)
	MOVL	gg+0(FP), DX
	MOVL	DX, g(AX)
	RET

TEXT runtime·abort(SB),NOSPLIT,$0-0
	INT	$3
loop:
	JMP	loop

// check that SP is in range [g->stack.lo, g->stack.hi)
TEXT runtime·stackcheck(SB), NOSPLIT, $0-0
	get_tls(CX)
	MOVL	g(CX), AX
	CMPL	(g_stack+stack_hi)(AX), SP
	JHI	2(PC)
	CALL	runtime·abort(SB)
	CMPL	SP, (g_stack+stack_lo)(AX)
	JHI	2(PC)
	CALL	runtime·abort(SB)
	RET

// func cputicks() int64
TEXT runtime·cputicks(SB),NOSPLIT,$0-8
	CMPB	internal∕cpu·X86+const_offsetX86HasSSE2(SB), $1
	JNE	done
	CMPB	runtime·lfenceBeforeRdtsc(SB), $1
	JNE	mfence
	LFENCE
	JMP	done
mfence:
	MFENCE
done:
	RDTSC
	MOVL	AX, ret_lo+0(FP)
	MOVL	DX, ret_hi+4(FP)
	RET

TEXT ldt0setup<>(SB),NOSPLIT,$16-0
	// set up ldt 7 to point at m0.tls
	// ldt 1 would be fine on Linux, but on OS X, 7 is as low as we can go.
	// the entry number is just a hint.  setldt will set up GS with what it used.
	MOVL	$7, 0(SP)
	LEAL	runtime·m0+m_tls(SB), AX
	MOVL	AX, 4(SP)
	MOVL	$32, 8(SP)	// sizeof(tls array)
	CALL	runtime·setldt(SB)
	RET

TEXT runtime·emptyfunc(SB),0,$0-0
	RET

// hash function using AES hardware instructions
TEXT runtime·aeshash(SB),NOSPLIT,$0-16
	MOVL	p+0(FP), AX	// ptr to data
	MOVL	s+8(FP), BX	// size
	LEAL	ret+12(FP), DX
	JMP	aeshashbody<>(SB)

TEXT runtime·aeshashstr(SB),NOSPLIT,$0-12
	MOVL	p+0(FP), AX	// ptr to string object
	MOVL	4(AX), BX	// length of string
	MOVL	(AX), AX	// string data
	LEAL	ret+8(FP), DX
	JMP	aeshashbody<>(SB)

// AX: data
// BX: length
// DX: address to put return value
TEXT aeshashbody<>(SB),NOSPLIT,$0-0
	MOVL	h+4(FP), X0	            // 32 bits of per-table hash seed
	PINSRW	$4, BX, X0	            // 16 bits of length
	PSHUFHW	$0, X0, X0	            // replace size with its low 2 bytes repeated 4 times
	MOVO	X0, X1                      // save unscrambled seed
	PXOR	runtime·aeskeysched(SB), X0 // xor in per-process seed
	AESENC	X0, X0                      // scramble seed

	CMPL	BX, $16
	JB	aes0to15
	JE	aes16
	CMPL	BX, $32
	JBE	aes17to32
	CMPL	BX, $64
	JBE	aes33to64
	JMP	aes65plus

aes0to15:
	TESTL	BX, BX
	JE	aes0

	ADDL	$16, AX
	TESTW	$0xff0, AX
	JE	endofpage

	// 16 bytes loaded at this address won't cross
	// a page boundary, so we can load it directly.
	MOVOU	-16(AX), X1
	ADDL	BX, BX
	PAND	masks<>(SB)(BX*8), X1

final1:
	AESENC	X0, X1  // scramble input, xor in seed
	AESENC	X1, X1  // scramble combo 2 times
	AESENC	X1, X1
	MOVL	X1, (DX)
	RET

endofpage:
	// address ends in 1111xxxx. Might be up against
	// a page boundary, so load ending at last byte.
	// Then shift bytes down using pshufb.
	MOVOU	-32(AX)(BX*1), X1
	ADDL	BX, BX
	PSHUFB	shifts<>(SB)(BX*8), X1
	JMP	final1

aes0:
	// Return scrambled input seed
	AESENC	X0, X0
	MOVL	X0, (DX)
	RET

aes16:
	MOVOU	(AX), X1
	JMP	final1

aes17to32:
	// make second starting seed
	PXOR	runtime·aeskeysched+16(SB), X1
	AESENC	X1, X1

	// load data to be hashed
	MOVOU	(AX), X2
	MOVOU	-16(AX)(BX*1), X3

	// scramble 3 times
	AESENC	X0, X2
	AESENC	X1, X3
	AESENC	X2, X2
	AESENC	X3, X3
	AESENC	X2, X2
	AESENC	X3, X3

	// combine results
	PXOR	X3, X2
	MOVL	X2, (DX)
	RET

aes33to64:
	// make 3 more starting seeds
	MOVO	X1, X2
	MOVO	X1, X3
	PXOR	runtime·aeskeysched+16(SB), X1
	PXOR	runtime·aeskeysched+32(SB), X2
	PXOR	runtime·aeskeysched+48(SB), X3
	AESENC	X1, X1
	AESENC	X2, X2
	AESENC	X3, X3

	MOVOU	(AX), X4
	MOVOU	16(AX), X5
	MOVOU	-32(AX)(BX*1), X6
	MOVOU	-16(AX)(BX*1), X7

	AESENC	X0, X4
	AESENC	X1, X5
	AESENC	X2, X6
	AESENC	X3, X7

	AESENC	X4, X4
	AESENC	X5, X5
	AESENC	X6, X6
	AESENC	X7, X7

	AESENC	X4, X4
	AESENC	X5, X5
	AESENC	X6, X6
	AESENC	X7, X7

	PXOR	X6, X4
	PXOR	X7, X5
	PXOR	X5, X4
	MOVL	X4, (DX)
	RET

aes65plus:
	// make 3 more starting seeds
	MOVO	X1, X2
	MOVO	X1, X3
	PXOR	runtime·aeskeysched+16(SB), X1
	PXOR	runtime·aeskeysched+32(SB), X2
	PXOR	runtime·aeskeysched+48(SB), X3
	AESENC	X1, X1
	AESENC	X2, X2
	AESENC	X3, X3

	// start with last (possibly overlapping) block
	MOVOU	-64(AX)(BX*1), X4
	MOVOU	-48(AX)(BX*1), X5
	MOVOU	-32(AX)(BX*1), X6
	MOVOU	-16(AX)(BX*1), X7

	// scramble state once
	AESENC	X0, X4
	AESENC	X1, X5
	AESENC	X2, X6
	AESENC	X3, X7

	// compute number of remaining 64-byte blocks
	DECL	BX
	SHRL	$6, BX

aesloop:
	// scramble state, xor in a block
	MOVOU	(AX), X0
	MOVOU	16(AX), X1
	MOVOU	32(AX), X2
	MOVOU	48(AX), X3
	AESENC	X0, X4
	AESENC	X1, X5
	AESENC	X2, X6
	AESENC	X3, X7

	// scramble state
	AESENC	X4, X4
	AESENC	X5, X5
	AESENC	X6, X6
	AESENC	X7, X7

	ADDL	$64, AX
	DECL	BX
	JNE	aesloop

	// 2 more scrambles to finish
	AESENC	X4, X4
	AESENC	X5, X5
	AESENC	X6, X6
	AESENC	X7, X7

	AESENC	X4, X4
	AESENC	X5, X5
	AESENC	X6, X6
	AESENC	X7, X7

	PXOR	X6, X4
	PXOR	X7, X5
	PXOR	X5, X4
	MOVL	X4, (DX)
	RET

TEXT runtime·aeshash32(SB),NOSPLIT,$0-12
	MOVL	p+0(FP), AX	// ptr to data
	MOVL	h+4(FP), X0	// seed
	PINSRD	$1, (AX), X0	// data
	AESENC	runtime·aeskeysched+0(SB), X0
	AESENC	runtime·aeskeysched+16(SB), X0
	AESENC	runtime·aeskeysched+32(SB), X0
	MOVL	X0, ret+8(FP)
	RET

TEXT runtime·aeshash64(SB),NOSPLIT,$0-12
	MOVL	p+0(FP), AX	// ptr to data
	MOVQ	(AX), X0	// data
	PINSRD	$2, h+4(FP), X0	// seed
	AESENC	runtime·aeskeysched+0(SB), X0
	AESENC	runtime·aeskeysched+16(SB), X0
	AESENC	runtime·aeskeysched+32(SB), X0
	MOVL	X0, ret+8(FP)
	RET

// simple mask to get rid of data in the high part of the register.
DATA masks<>+0x00(SB)/4, $0x00000000
DATA masks<>+0x04(SB)/4, $0x00000000
DATA masks<>+0x08(SB)/4, $0x00000000
DATA masks<>+0x0c(SB)/4, $0x00000000

DATA masks<>+0x10(SB)/4, $0x000000ff
DATA masks<>+0x14(SB)/4, $0x00000000
DATA masks<>+0x18(SB)/4, $0x00000000
DATA masks<>+0x1c(SB)/4, $0x00000000

DATA masks<>+0x20(SB)/4, $0x0000ffff
DATA masks<>+0x24(SB)/4, $0x00000000
DATA masks<>+0x28(SB)/4, $0x00000000
DATA masks<>+0x2c(SB)/4, $0x00000000

DATA masks<>+0x30(SB)/4, $0x00ffffff
DATA masks<>+0x34(SB)/4, $0x00000000
DATA masks<>+0x38(SB)/4, $0x00000000
DATA masks<>+0x3c(SB)/4, $0x00000000

DATA masks<>+0x40(SB)/4, $0xffffffff
DATA masks<>+0x44(SB)/4, $0x00000000
DATA masks<>+0x48(SB)/4, $0x00000000
DATA masks<>+0x4c(SB)/4, $0x00000000

DATA masks<>+0x50(SB)/4, $0xffffffff
DATA masks<>+0x54(SB)/4, $0x000000ff
DATA masks<>+0x58(SB)/4, $0x00000000
DATA masks<>+0x5c(SB)/4, $0x00000000

DATA masks<>+0x60(SB)/4, $0xffffffff
DATA masks<>+0x64(SB)/4, $0x0000ffff
DATA masks<>+0x68(SB)/4, $0x00000000
DATA masks<>+0x6c(SB)/4, $0x00000000

DATA masks<>+0x70(SB)/4, $0xffffffff
DATA masks<>+0x74(SB)/4, $0x00ffffff
DATA masks<>+0x78(SB)/4, $0x00000000
DATA masks<>+0x7c(SB)/4, $0x00000000

DATA masks<>+0x80(SB)/4, $0xffffffff
DATA masks<>+0x84(SB)/4, $0xffffffff
DATA masks<>+0x88(SB)/4, $0x00000000
DATA masks<>+0x8c(SB)/4, $0x00000000

DATA masks<>+0x90(SB)/4, $0xffffffff
DATA masks<>+0x94(SB)/4, $0xffffffff
DATA masks<>+0x98(SB)/4, $0x000000ff
DATA masks<>+0x9c(SB)/4, $0x00000000

DATA masks<>+0xa0(SB)/4, $0xffffffff
DATA masks<>+0xa4(SB)/4, $0xffffffff
DATA masks<>+0xa8(SB)/4, $0x0000ffff
DATA masks<>+0xac(SB)/4, $0x00000000

DATA masks<>+0xb0(SB)/4, $0xffffffff
DATA masks<>+0xb4(SB)/4, $0xffffffff
DATA masks<>+0xb8(SB)/4, $0x00ffffff
DATA masks<>+0xbc(SB)/4, $0x00000000

DATA masks<>+0xc0(SB)/4, $0xffffffff
DATA masks<>+0xc4(SB)/4, $0xffffffff
DATA masks<>+0xc8(SB)/4, $0xffffffff
DATA masks<>+0xcc(SB)/4, $0x00000000

DATA masks<>+0xd0(SB)/4, $0xffffffff
DATA masks<>+0xd4(SB)/4, $0xffffffff
DATA masks<>+0xd8(SB)/4, $0xffffffff
DATA masks<>+0xdc(SB)/4, $0x000000ff

DATA masks<>+0xe0(SB)/4, $0xffffffff
DATA masks<>+0xe4(SB)/4, $0xffffffff
DATA masks<>+0xe8(SB)/4, $0xffffffff
DATA masks<>+0xec(SB)/4, $0x0000ffff

DATA masks<>+0xf0(SB)/4, $0xffffffff
DATA masks<>+0xf4(SB)/4, $0xffffffff
DATA masks<>+0xf8(SB)/4, $0xffffffff
DATA masks<>+0xfc(SB)/4, $0x00ffffff

GLOBL masks<>(SB),RODATA,$256

// these are arguments to pshufb. They move data down from
// the high bytes of the register to the low bytes of the register.
// index is how many bytes to move.
DATA shifts<>+0x00(SB)/4, $0x00000000
DATA shifts<>+0x04(SB)/4, $0x00000000
DATA shifts<>+0x08(SB)/4, $0x00000000
DATA shifts<>+0x0c(SB)/4, $0x00000000

DATA shifts<>+0x10(SB)/4, $0xffffff0f
DATA shifts<>+0x14(SB)/4, $0xffffffff
DATA shifts<>+0x18(SB)/4, $0xffffffff
DATA shifts<>+0x1c(SB)/4, $0xffffffff

DATA shifts<>+0x20(SB)/4, $0xffff0f0e
DATA shifts<>+0x24(SB)/4, $0xffffffff
DATA shifts<>+0x28(SB)/4, $0xffffffff
DATA shifts<>+0x2c(SB)/4, $0xffffffff

DATA shifts<>+0x30(SB)/4, $0xff0f0e0d
DATA shifts<>+0x34(SB)/4, $0xffffffff
DATA shifts<>+0x38(SB)/4, $0xffffffff
DATA shifts<>+0x3c(SB)/4, $0xffffffff

DATA shifts<>+0x40(SB)/4, $0x0f0e0d0c
DATA shifts<>+0x44(SB)/4, $0xffffffff
DATA shifts<>+0x48(SB)/4, $0xffffffff
DATA shifts<>+0x4c(SB)/4, $0xffffffff

DATA shifts<>+0x50(SB)/4, $0x0e0d0c0b
DATA shifts<>+0x54(SB)/4, $0xffffff0f
DATA shifts<>+0x58(SB)/4, $0xffffffff
DATA shifts<>+0x5c(SB)/4, $0xffffffff

DATA shifts<>+0x60(SB)/4, $0x0d0c0b0a
DATA shifts<>+0x64(SB)/4, $0xffff0f0e
DATA shifts<>+0x68(SB)/4, $0xffffffff
DATA shifts<>+0x6c(SB)/4, $0xffffffff

DATA shifts<>+0x70(SB)/4, $0x0c0b0a09
DATA shifts<>+0x74(SB)/4, $0xff0f0e0d
DATA shifts<>+0x78(SB)/4, $0xffffffff
DATA shifts<>+0x7c(SB)/4, $0xffffffff

DATA shifts<>+0x80(SB)/4, $0x0b0a0908
DATA shifts<>+0x84(SB)/4, $0x0f0e0d0c
DATA shifts<>+0x88(SB)/4, $0xffffffff
DATA shifts<>+0x8c(SB)/4, $0xffffffff

DATA shifts<>+0x90(SB)/4, $0x0a090807
DATA shifts<>+0x94(SB)/4, $0x0e0d0c0b
DATA shifts<>+0x98(SB)/4, $0xffffff0f
DATA shifts<>+0x9c(SB)/4, $0xffffffff

DATA shifts<>+0xa0(SB)/4, $0x09080706
DATA shifts<>+0xa4(SB)/4, $0x0d0c0b0a
DATA shifts<>+0xa8(SB)/4, $0xffff0f0e
DATA shifts<>+0xac(SB)/4, $0xffffffff

DATA shifts<>+0xb0(SB)/4, $0x08070605
DATA shifts<>+0xb4(SB)/4, $0x0c0b0a09
DATA shifts<>+0xb8(SB)/4, $0xff0f0e0d
DATA shifts<>+0xbc(SB)/4, $0xffffffff

DATA shifts<>+0xc0(SB)/4, $0x07060504
DATA shifts<>+0xc4(SB)/4, $0x0b0a0908
DATA shifts<>+0xc8(SB)/4, $0x0f0e0d0c
DATA shifts<>+0xcc(SB)/4, $0xffffffff

DATA shifts<>+0xd0(SB)/4, $0x06050403
DATA shifts<>+0xd4(SB)/4, $0x0a090807
DATA shifts<>+0xd8(SB)/4, $0x0e0d0c0b
DATA shifts<>+0xdc(SB)/4, $0xffffff0f

DATA shifts<>+0xe0(SB)/4, $0x05040302
DATA shifts<>+0xe4(SB)/4, $0x09080706
DATA shifts<>+0xe8(SB)/4, $0x0d0c0b0a
DATA shifts<>+0xec(SB)/4, $0xffff0f0e

DATA shifts<>+0xf0(SB)/4, $0x04030201
DATA shifts<>+0xf4(SB)/4, $0x08070605
DATA shifts<>+0xf8(SB)/4, $0x0c0b0a09
DATA shifts<>+0xfc(SB)/4, $0xff0f0e0d

GLOBL shifts<>(SB),RODATA,$256

TEXT ·checkASM(SB),NOSPLIT,$0-1
	// check that masks<>(SB) and shifts<>(SB) are aligned to 16-byte
	MOVL	$masks<>(SB), AX
	MOVL	$shifts<>(SB), BX
	ORL	BX, AX
	TESTL	$15, AX
	SETEQ	ret+0(FP)
	RET

TEXT runtime·return0(SB), NOSPLIT, $0
	MOVL	$0, AX
	RET

// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
// Must obey the gcc calling convention.
TEXT _cgo_topofstack(SB),NOSPLIT,$0
	get_tls(CX)
	MOVL	g(CX), AX
	MOVL	g_m(AX), AX
	MOVL	m_curg(AX), AX
	MOVL	(g_stack+stack_hi)(AX), AX
	RET

// The top-most function running on a goroutine
// returns to goexit+PCQuantum.
TEXT runtime·goexit(SB),NOSPLIT,$0-0
	BYTE	$0x90	// NOP
	CALL	runtime·goexit1(SB)	// does not return
	// traceback from goexit1 must hit code range of goexit
	BYTE	$0x90	// NOP

// Add a module's moduledata to the linked list of moduledata objects. This
// is called from .init_array by a function generated in the linker and so
// follows the platform ABI wrt register preservation -- it only touches AX,
// CX (implicitly) and DX, but it does not follow the ABI wrt arguments:
// instead the pointer to the moduledata is passed in AX.
TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
	MOVL	runtime·lastmoduledatap(SB), DX
	MOVL	AX, moduledata_next(DX)
	MOVL	AX, runtime·lastmoduledatap(SB)
	RET

TEXT runtime·uint32tofloat64(SB),NOSPLIT,$8-12
	MOVL	a+0(FP), AX
	MOVL	AX, 0(SP)
	MOVL	$0, 4(SP)
	FMOVV	0(SP), F0
	FMOVDP	F0, ret+4(FP)
	RET

TEXT runtime·float64touint32(SB),NOSPLIT,$12-12
	FMOVD	a+0(FP), F0
	FSTCW	0(SP)
	FLDCW	runtime·controlWord64trunc(SB)
	FMOVVP	F0, 4(SP)
	FLDCW	0(SP)
	MOVL	4(SP), AX
	MOVL	AX, ret+8(FP)
	RET

// gcWriteBarrier performs a heap pointer write and informs the GC.
//
// gcWriteBarrier does NOT follow the Go ABI. It takes two arguments:
// - DI is the destination of the write
// - AX is the value being written at DI
// It clobbers FLAGS. It does not clobber any general-purpose registers,
// but may clobber others (e.g., SSE registers).
TEXT runtime·gcWriteBarrier(SB),NOSPLIT,$28
	// Save the registers clobbered by the fast path. This is slightly
	// faster than having the caller spill these.
	MOVL	CX, 20(SP)
	MOVL	BX, 24(SP)
	// TODO: Consider passing g.m.p in as an argument so they can be shared
	// across a sequence of write barriers.
	get_tls(BX)
	MOVL	g(BX), BX
	MOVL	g_m(BX), BX
	MOVL	m_p(BX), BX
	MOVL	(p_wbBuf+wbBuf_next)(BX), CX
	// Increment wbBuf.next position.
	LEAL	8(CX), CX
	MOVL	CX, (p_wbBuf+wbBuf_next)(BX)
	CMPL	CX, (p_wbBuf+wbBuf_end)(BX)
	// Record the write.
	MOVL	AX, -8(CX)	// Record value
	MOVL	(DI), BX	// TODO: This turns bad writes into bad reads.
	MOVL	BX, -4(CX)	// Record *slot
	// Is the buffer full? (flags set in CMPL above)
	JEQ	flush
ret:
	MOVL	20(SP), CX
	MOVL	24(SP), BX
	// Do the write.
	MOVL	AX, (DI)
	RET

flush:
	// Save all general purpose registers since these could be
	// clobbered by wbBufFlush and were not saved by the caller.
	MOVL	DI, 0(SP)	// Also first argument to wbBufFlush
	MOVL	AX, 4(SP)	// Also second argument to wbBufFlush
	// BX already saved
	// CX already saved
	MOVL	DX, 8(SP)
	MOVL	BP, 12(SP)
	MOVL	SI, 16(SP)
	// DI already saved

	// This takes arguments DI and AX
	CALL	runtime·wbBufFlush(SB)

	MOVL	0(SP), DI
	MOVL	4(SP), AX
	MOVL	8(SP), DX
	MOVL	12(SP), BP
	MOVL	16(SP), SI
	JMP	ret

// Note: these functions use a special calling convention to save generated code space.
// Arguments are passed in registers, but the space for those arguments are allocated
// in the caller's stack frame. These stubs write the args into that stack space and
// then tail call to the corresponding runtime handler.
// The tail call makes these stubs disappear in backtraces.
TEXT runtime·panicIndex(SB),NOSPLIT,$0-8
	MOVL	AX, x+0(FP)
	MOVL	CX, y+4(FP)
	JMP	runtime·goPanicIndex(SB)
TEXT runtime·panicIndexU(SB),NOSPLIT,$0-8
	MOVL	AX, x+0(FP)
	MOVL	CX, y+4(FP)
	JMP	runtime·goPanicIndexU(SB)
TEXT runtime·panicSliceAlen(SB),NOSPLIT,$0-8
	MOVL	CX, x+0(FP)
	MOVL	DX, y+4(FP)
	JMP	runtime·goPanicSliceAlen(SB)
TEXT runtime·panicSliceAlenU(SB),NOSPLIT,$0-8
	MOVL	CX, x+0(FP)
	MOVL	DX, y+4(FP)
	JMP	runtime·goPanicSliceAlenU(SB)
TEXT runtime·panicSliceAcap(SB),NOSPLIT,$0-8
	MOVL	CX, x+0(FP)
	MOVL	DX, y+4(FP)
	JMP	runtime·goPanicSliceAcap(SB)
TEXT runtime·panicSliceAcapU(SB),NOSPLIT,$0-8
	MOVL	CX, x+0(FP)
	MOVL	DX, y+4(FP)
	JMP	runtime·goPanicSliceAcapU(SB)
TEXT runtime·panicSliceB(SB),NOSPLIT,$0-8
	MOVL	AX, x+0(FP)
	MOVL	CX, y+4(FP)
	JMP	runtime·goPanicSliceB(SB)
TEXT runtime·panicSliceBU(SB),NOSPLIT,$0-8
	MOVL	AX, x+0(FP)
	MOVL	CX, y+4(FP)
	JMP	runtime·goPanicSliceBU(SB)
TEXT runtime·panicSlice3Alen(SB),NOSPLIT,$0-8
	MOVL	DX, x+0(FP)
	MOVL	BX, y+4(FP)
	JMP	runtime·goPanicSlice3Alen(SB)
TEXT runtime·panicSlice3AlenU(SB),NOSPLIT,$0-8
	MOVL	DX, x+0(FP)
	MOVL	BX, y+4(FP)
	JMP	runtime·goPanicSlice3AlenU(SB)
TEXT runtime·panicSlice3Acap(SB),NOSPLIT,$0-8
	MOVL	DX, x+0(FP)
	MOVL	BX, y+4(FP)
	JMP	runtime·goPanicSlice3Acap(SB)
TEXT runtime·panicSlice3AcapU(SB),NOSPLIT,$0-8
	MOVL	DX, x+0(FP)
	MOVL	BX, y+4(FP)
	JMP	runtime·goPanicSlice3AcapU(SB)
TEXT runtime·panicSlice3B(SB),NOSPLIT,$0-8
	MOVL	CX, x+0(FP)
	MOVL	DX, y+4(FP)
	JMP	runtime·goPanicSlice3B(SB)
TEXT runtime·panicSlice3BU(SB),NOSPLIT,$0-8
	MOVL	CX, x+0(FP)
	MOVL	DX, y+4(FP)
	JMP	runtime·goPanicSlice3BU(SB)
TEXT runtime·panicSlice3C(SB),NOSPLIT,$0-8
	MOVL	AX, x+0(FP)
	MOVL	CX, y+4(FP)
	JMP	runtime·goPanicSlice3C(SB)
TEXT runtime·panicSlice3CU(SB),NOSPLIT,$0-8
	MOVL	AX, x+0(FP)
	MOVL	CX, y+4(FP)
	JMP	runtime·goPanicSlice3CU(SB)

// Extended versions for 64-bit indexes.
TEXT runtime·panicExtendIndex(SB),NOSPLIT,$0-12
	MOVL	SI, hi+0(FP)
	MOVL	AX, lo+4(FP)
	MOVL	CX, y+8(FP)
	JMP	runtime·goPanicExtendIndex(SB)
TEXT runtime·panicExtendIndexU(SB),NOSPLIT,$0-12
	MOVL	SI, hi+0(FP)
	MOVL	AX, lo+4(FP)
	MOVL	CX, y+8(FP)
	JMP	runtime·goPanicExtendIndexU(SB)
TEXT runtime·panicExtendSliceAlen(SB),NOSPLIT,$0-12
	MOVL	SI, hi+0(FP)
	MOVL	CX, lo+4(FP)
	MOVL	DX, y+8(FP)
	JMP	runtime·goPanicExtendSliceAlen(SB)
TEXT runtime·panicExtendSliceAlenU(SB),NOSPLIT,$0-12
	MOVL	SI, hi+0(FP)
	MOVL	CX, lo+4(FP)
	MOVL	DX, y+8(FP)
	JMP	runtime·goPanicExtendSliceAlenU(SB)
TEXT runtime·panicExtendSliceAcap(SB),NOSPLIT,$0-12
	MOVL	SI, hi+0(FP)
	MOVL	CX, lo+4(FP)
	MOVL	DX, y+8(FP)
	JMP	runtime·goPanicExtendSliceAcap(SB)
TEXT runtime·panicExtendSliceAcapU(SB),NOSPLIT,$0-12
	MOVL	SI, hi+0(FP)
	MOVL	CX, lo+4(FP)
	MOVL	DX, y+8(FP)
	JMP	runtime·goPanicExtendSliceAcapU(SB)
TEXT runtime·panicExtendSliceB(SB),NOSPLIT,$0-12
	MOVL	SI, hi+0(FP)
	MOVL	AX, lo+4(FP)
	MOVL	CX, y+8(FP)
	JMP	runtime·goPanicExtendSliceB(SB)
TEXT runtime·panicExtendSliceBU(SB),NOSPLIT,$0-12
	MOVL	SI, hi+0(FP)
	MOVL	AX, lo+4(FP)
	MOVL	CX, y+8(FP)
	JMP	runtime·goPanicExtendSliceBU(SB)
TEXT runtime·panicExtendSlice3Alen(SB),NOSPLIT,$0-12
	MOVL	SI, hi+0(FP)
	MOVL	DX, lo+4(FP)
	MOVL	BX, y+8(FP)
	JMP	runtime·goPanicExtendSlice3Alen(SB)
TEXT runtime·panicExtendSlice3AlenU(SB),NOSPLIT,$0-12
	MOVL	SI, hi+0(FP)
	MOVL	DX, lo+4(FP)
	MOVL	BX, y+8(FP)
	JMP	runtime·goPanicExtendSlice3AlenU(SB)
TEXT runtime·panicExtendSlice3Acap(SB),NOSPLIT,$0-12
	MOVL	SI, hi+0(FP)
	MOVL	DX, lo+4(FP)
	MOVL	BX, y+8(FP)
	JMP	runtime·goPanicExtendSlice3Acap(SB)
TEXT runtime·panicExtendSlice3AcapU(SB),NOSPLIT,$0-12
	MOVL	SI, hi+0(FP)
	MOVL	DX, lo+4(FP)
	MOVL	BX, y+8(FP)
	JMP	runtime·goPanicExtendSlice3AcapU(SB)
TEXT runtime·panicExtendSlice3B(SB),NOSPLIT,$0-12
	MOVL	SI, hi+0(FP)
	MOVL	CX, lo+4(FP)
	MOVL	DX, y+8(FP)
	JMP	runtime·goPanicExtendSlice3B(SB)
TEXT runtime·panicExtendSlice3BU(SB),NOSPLIT,$0-12
	MOVL	SI, hi+0(FP)
	MOVL	CX, lo+4(FP)
	MOVL	DX, y+8(FP)
	JMP	runtime·goPanicExtendSlice3BU(SB)
TEXT runtime·panicExtendSlice3C(SB),NOSPLIT,$0-12
	MOVL	SI, hi+0(FP)
	MOVL	AX, lo+4(FP)
	MOVL	CX, y+8(FP)
	JMP	runtime·goPanicExtendSlice3C(SB)
TEXT runtime·panicExtendSlice3CU(SB),NOSPLIT,$0-12
	MOVL	SI, hi+0(FP)
	MOVL	AX, lo+4(FP)
	MOVL	CX, y+8(FP)
	JMP	runtime·goPanicExtendSlice3CU(SB)

#ifdef GOOS_android
// Use the free TLS_SLOT_APP slot #2 on Android Q.
// Earlier androids are set up in gcc_android.c.
DATA runtime·tls_g+0(SB)/4, $8
GLOBL runtime·tls_g+0(SB), NOPTR, $4
#endif

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.