Plan 9 from Bell Labs’s /usr/web/sources/contrib/stallion/root/386/go/test/map.go

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


// run

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Test maps, almost exhaustively.
// Complexity (linearity) test is in maplinear.go.

package main

import (
	"fmt"
	"math"
	"strconv"
)

const count = 100

func P(a []string) string {
	s := "{"
	for i := 0; i < len(a); i++ {
		if i > 0 {
			s += ","
		}
		s += `"` + a[i] + `"`
	}
	s += "}"
	return s
}

func main() {
	testbasic()
	testfloat()
	testnan()
}

func testbasic() {
	// Test a map literal.
	mlit := map[string]int{"0": 0, "1": 1, "2": 2, "3": 3, "4": 4}
	for i := 0; i < len(mlit); i++ {
		s := string([]byte{byte(i) + '0'})
		if mlit[s] != i {
			panic(fmt.Sprintf("mlit[%s] = %d\n", s, mlit[s]))
		}
	}

	mib := make(map[int]bool)
	mii := make(map[int]int)
	mfi := make(map[float32]int)
	mif := make(map[int]float32)
	msi := make(map[string]int)
	mis := make(map[int]string)
	mss := make(map[string]string)
	mspa := make(map[string][]string)
	// BUG need an interface map both ways too

	type T struct {
		i int64 // can't use string here; struct values are only compared at the top level
		f float32
	}
	mipT := make(map[int]*T)
	mpTi := make(map[*T]int)
	mit := make(map[int]T)
	//	mti := make(map[T] int)

	type M map[int]int
	mipM := make(map[int]M)

	var apT [2 * count]*T

	for i := 0; i < count; i++ {
		s := strconv.Itoa(i)
		s10 := strconv.Itoa(i * 10)
		f := float32(i)
		t := T{int64(i), f}
		apT[i] = new(T)
		apT[i].i = int64(i)
		apT[i].f = f
		apT[2*i] = new(T) // need twice as many entries as we use, for the nonexistence check
		apT[2*i].i = int64(i)
		apT[2*i].f = f
		m := M{i: i + 1}
		mib[i] = (i != 0)
		mii[i] = 10 * i
		mfi[float32(i)] = 10 * i
		mif[i] = 10.0 * f
		mis[i] = s
		msi[s] = i
		mss[s] = s10
		mss[s] = s10
		as := make([]string, 2)
		as[0] = s10
		as[1] = s10
		mspa[s] = as
		mipT[i] = apT[i]
		mpTi[apT[i]] = i
		mipM[i] = m
		mit[i] = t
		//	mti[t] = i
	}

	// test len
	if len(mib) != count {
		panic(fmt.Sprintf("len(mib) = %d\n", len(mib)))
	}
	if len(mii) != count {
		panic(fmt.Sprintf("len(mii) = %d\n", len(mii)))
	}
	if len(mfi) != count {
		panic(fmt.Sprintf("len(mfi) = %d\n", len(mfi)))
	}
	if len(mif) != count {
		panic(fmt.Sprintf("len(mif) = %d\n", len(mif)))
	}
	if len(msi) != count {
		panic(fmt.Sprintf("len(msi) = %d\n", len(msi)))
	}
	if len(mis) != count {
		panic(fmt.Sprintf("len(mis) = %d\n", len(mis)))
	}
	if len(mss) != count {
		panic(fmt.Sprintf("len(mss) = %d\n", len(mss)))
	}
	if len(mspa) != count {
		panic(fmt.Sprintf("len(mspa) = %d\n", len(mspa)))
	}
	if len(mipT) != count {
		panic(fmt.Sprintf("len(mipT) = %d\n", len(mipT)))
	}
	if len(mpTi) != count {
		panic(fmt.Sprintf("len(mpTi) = %d\n", len(mpTi)))
	}
	//	if len(mti) != count {
	//              panic(fmt.Sprintf("len(mti) = %d\n", len(mti)))
	//	}
	if len(mipM) != count {
		panic(fmt.Sprintf("len(mipM) = %d\n", len(mipM)))
	}
	//	if len(mti) != count {
	//		panic(fmt.Sprintf("len(mti) = %d\n", len(mti)))
	//	}
	if len(mit) != count {
		panic(fmt.Sprintf("len(mit) = %d\n", len(mit)))
	}

	// test construction directly
	for i := 0; i < count; i++ {
		s := strconv.Itoa(i)
		s10 := strconv.Itoa(i * 10)
		f := float32(i)
		// BUG m := M(i, i+1)
		if mib[i] != (i != 0) {
			panic(fmt.Sprintf("mib[%d] = %t\n", i, mib[i]))
		}
		if mii[i] != 10*i {
			panic(fmt.Sprintf("mii[%d] = %d\n", i, mii[i]))
		}
		if mfi[f] != 10*i {
			panic(fmt.Sprintf("mfi[%d] = %d\n", i, mfi[f]))
		}
		if mif[i] != 10.0*f {
			panic(fmt.Sprintf("mif[%d] = %g\n", i, mif[i]))
		}
		if mis[i] != s {
			panic(fmt.Sprintf("mis[%d] = %s\n", i, mis[i]))
		}
		if msi[s] != i {
			panic(fmt.Sprintf("msi[%s] = %d\n", s, msi[s]))
		}
		if mss[s] != s10 {
			panic(fmt.Sprintf("mss[%s] = %g\n", s, mss[s]))
		}
		for j := 0; j < len(mspa[s]); j++ {
			if mspa[s][j] != s10 {
				panic(fmt.Sprintf("mspa[%s][%d] = %s\n", s, j, mspa[s][j]))
			}
		}
		if mipT[i].i != int64(i) || mipT[i].f != f {
			panic(fmt.Sprintf("mipT[%d] = %v\n", i, mipT[i]))
		}
		if mpTi[apT[i]] != i {
			panic(fmt.Sprintf("mpTi[apT[%d]] = %d\n", i, mpTi[apT[i]]))
		}
		//	if(mti[t] != i) {
		//		panic(fmt.Sprintf("mti[%s] = %s\n", s, mti[t]))
		//	}
		if mipM[i][i] != i+1 {
			panic(fmt.Sprintf("mipM[%d][%d] = %d\n", i, i, mipM[i][i]))
		}
		//	if(mti[t] != i) {
		//		panic(fmt.Sprintf("mti[%v] = %d\n", t, mti[t]))
		//	}
		if mit[i].i != int64(i) || mit[i].f != f {
			panic(fmt.Sprintf("mit[%d] = {%d %g}\n", i, mit[i].i, mit[i].f))
		}
	}

	// test existence with tuple check
	// failed lookups yield a false value for the boolean.
	for i := 0; i < count; i++ {
		s := strconv.Itoa(i)
		f := float32(i)
		{
			_, b := mib[i]
			if !b {
				panic(fmt.Sprintf("tuple existence decl: mib[%d]\n", i))
			}
			_, b = mib[i]
			if !b {
				panic(fmt.Sprintf("tuple existence assign: mib[%d]\n", i))
			}
		}
		{
			_, b := mii[i]
			if !b {
				panic(fmt.Sprintf("tuple existence decl: mii[%d]\n", i))
			}
			_, b = mii[i]
			if !b {
				panic(fmt.Sprintf("tuple existence assign: mii[%d]\n", i))
			}
		}
		{
			_, b := mfi[f]
			if !b {
				panic(fmt.Sprintf("tuple existence decl: mfi[%d]\n", i))
			}
			_, b = mfi[f]
			if !b {
				panic(fmt.Sprintf("tuple existence assign: mfi[%d]\n", i))
			}
		}
		{
			_, b := mif[i]
			if !b {
				panic(fmt.Sprintf("tuple existence decl: mif[%d]\n", i))
			}
			_, b = mif[i]
			if !b {
				panic(fmt.Sprintf("tuple existence assign: mif[%d]\n", i))
			}
		}
		{
			_, b := mis[i]
			if !b {
				panic(fmt.Sprintf("tuple existence decl: mis[%d]\n", i))
			}
			_, b = mis[i]
			if !b {
				panic(fmt.Sprintf("tuple existence assign: mis[%d]\n", i))
			}
		}
		{
			_, b := msi[s]
			if !b {
				panic(fmt.Sprintf("tuple existence decl: msi[%d]\n", i))
			}
			_, b = msi[s]
			if !b {
				panic(fmt.Sprintf("tuple existence assign: msi[%d]\n", i))
			}
		}
		{
			_, b := mss[s]
			if !b {
				panic(fmt.Sprintf("tuple existence decl: mss[%d]\n", i))
			}
			_, b = mss[s]
			if !b {
				panic(fmt.Sprintf("tuple existence assign: mss[%d]\n", i))
			}
		}
		{
			_, b := mspa[s]
			if !b {
				panic(fmt.Sprintf("tuple existence decl: mspa[%d]\n", i))
			}
			_, b = mspa[s]
			if !b {
				panic(fmt.Sprintf("tuple existence assign: mspa[%d]\n", i))
			}
		}
		{
			_, b := mipT[i]
			if !b {
				panic(fmt.Sprintf("tuple existence decl: mipT[%d]\n", i))
			}
			_, b = mipT[i]
			if !b {
				panic(fmt.Sprintf("tuple existence assign: mipT[%d]\n", i))
			}
		}
		{
			_, b := mpTi[apT[i]]
			if !b {
				panic(fmt.Sprintf("tuple existence decl: mpTi[apT[%d]]\n", i))
			}
			_, b = mpTi[apT[i]]
			if !b {
				panic(fmt.Sprintf("tuple existence assign: mpTi[apT[%d]]\n", i))
			}
		}
		{
			_, b := mipM[i]
			if !b {
				panic(fmt.Sprintf("tuple existence decl: mipM[%d]\n", i))
			}
			_, b = mipM[i]
			if !b {
				panic(fmt.Sprintf("tuple existence assign: mipM[%d]\n", i))
			}
		}
		{
			_, b := mit[i]
			if !b {
				panic(fmt.Sprintf("tuple existence decl: mit[%d]\n", i))
			}
			_, b = mit[i]
			if !b {
				panic(fmt.Sprintf("tuple existence assign: mit[%d]\n", i))
			}
		}
		//		{
		//			_, b := mti[t]
		//			if !b {
		//				panic(fmt.Sprintf("tuple existence decl: mti[%d]\n", i))
		//			}
		//			_, b = mti[t]
		//			if !b {
		//				panic(fmt.Sprintf("tuple existence assign: mti[%d]\n", i))
		//			}
		//		}
	}

	// test nonexistence with tuple check
	// failed lookups yield a false value for the boolean.
	for i := count; i < 2*count; i++ {
		s := strconv.Itoa(i)
		f := float32(i)
		{
			_, b := mib[i]
			if b {
				panic(fmt.Sprintf("tuple nonexistence decl: mib[%d]", i))
			}
			_, b = mib[i]
			if b {
				panic(fmt.Sprintf("tuple nonexistence assign: mib[%d]", i))
			}
		}
		{
			_, b := mii[i]
			if b {
				panic(fmt.Sprintf("tuple nonexistence decl: mii[%d]", i))
			}
			_, b = mii[i]
			if b {
				panic(fmt.Sprintf("tuple nonexistence assign: mii[%d]", i))
			}
		}
		{
			_, b := mfi[f]
			if b {
				panic(fmt.Sprintf("tuple nonexistence decl: mfi[%d]", i))
			}
			_, b = mfi[f]
			if b {
				panic(fmt.Sprintf("tuple nonexistence assign: mfi[%d]", i))
			}
		}
		{
			_, b := mif[i]
			if b {
				panic(fmt.Sprintf("tuple nonexistence decl: mif[%d]", i))
			}
			_, b = mif[i]
			if b {
				panic(fmt.Sprintf("tuple nonexistence assign: mif[%d]", i))
			}
		}
		{
			_, b := mis[i]
			if b {
				panic(fmt.Sprintf("tuple nonexistence decl: mis[%d]", i))
			}
			_, b = mis[i]
			if b {
				panic(fmt.Sprintf("tuple nonexistence assign: mis[%d]", i))
			}
		}
		{
			_, b := msi[s]
			if b {
				panic(fmt.Sprintf("tuple nonexistence decl: msi[%d]", i))
			}
			_, b = msi[s]
			if b {
				panic(fmt.Sprintf("tuple nonexistence assign: msi[%d]", i))
			}
		}
		{
			_, b := mss[s]
			if b {
				panic(fmt.Sprintf("tuple nonexistence decl: mss[%d]", i))
			}
			_, b = mss[s]
			if b {
				panic(fmt.Sprintf("tuple nonexistence assign: mss[%d]", i))
			}
		}
		{
			_, b := mspa[s]
			if b {
				panic(fmt.Sprintf("tuple nonexistence decl: mspa[%d]", i))
			}
			_, b = mspa[s]
			if b {
				panic(fmt.Sprintf("tuple nonexistence assign: mspa[%d]", i))
			}
		}
		{
			_, b := mipT[i]
			if b {
				panic(fmt.Sprintf("tuple nonexistence decl: mipT[%d]", i))
			}
			_, b = mipT[i]
			if b {
				panic(fmt.Sprintf("tuple nonexistence assign: mipT[%d]", i))
			}
		}
		{
			_, b := mpTi[apT[i]]
			if b {
				panic(fmt.Sprintf("tuple nonexistence decl: mpTi[apt[%d]]", i))
			}
			_, b = mpTi[apT[i]]
			if b {
				panic(fmt.Sprintf("tuple nonexistence assign: mpTi[apT[%d]]", i))
			}
		}
		{
			_, b := mipM[i]
			if b {
				panic(fmt.Sprintf("tuple nonexistence decl: mipM[%d]", i))
			}
			_, b = mipM[i]
			if b {
				panic(fmt.Sprintf("tuple nonexistence assign: mipM[%d]", i))
			}
		}
		//		{
		//			_, b := mti[t]
		//			if b {
		//				panic(fmt.Sprintf("tuple nonexistence decl: mti[%d]", i))
		//			}
		//			_, b = mti[t]
		//			if b {
		//				panic(fmt.Sprintf("tuple nonexistence assign: mti[%d]", i))
		//			}
		//		}
		{
			_, b := mit[i]
			if b {
				panic(fmt.Sprintf("tuple nonexistence decl: mit[%d]", i))
			}
			_, b = mit[i]
			if b {
				panic(fmt.Sprintf("tuple nonexistence assign: mit[%d]", i))
			}
		}
	}

	// tests for structured map element updates
	for i := 0; i < count; i++ {
		s := strconv.Itoa(i)
		mspa[s][i%2] = "deleted"
		if mspa[s][i%2] != "deleted" {
			panic(fmt.Sprintf("update mspa[%s][%d] = %s\n", s, i%2, mspa[s][i%2]))

		}

		mipT[i].i += 1
		if mipT[i].i != int64(i)+1 {
			panic(fmt.Sprintf("update mipT[%d].i = %d\n", i, mipT[i].i))

		}
		mipT[i].f = float32(i + 1)
		if mipT[i].f != float32(i+1) {
			panic(fmt.Sprintf("update mipT[%d].f = %g\n", i, mipT[i].f))

		}

		mipM[i][i]++
		if mipM[i][i] != (i+1)+1 {
			panic(fmt.Sprintf("update mipM[%d][%d] = %d\n", i, i, mipM[i][i]))

		}
	}

	// test range on nil map
	var mnil map[string]int
	for _, _ = range mnil {
		panic("range mnil")
	}
}

func testfloat() {
	// Test floating point numbers in maps.
	// Two map keys refer to the same entry if the keys are ==.
	// The special cases, then, are that +0 == -0 and that NaN != NaN.

	{
		var (
			pz   = float32(0)
			nz   = math.Float32frombits(1 << 31)
			nana = float32(math.NaN())
			nanb = math.Float32frombits(math.Float32bits(nana) ^ 2)
		)

		m := map[float32]string{
			pz:   "+0",
			nana: "NaN",
			nanb: "NaN",
		}
		if m[pz] != "+0" {
			panic(fmt.Sprintln("float32 map cannot read back m[+0]:", m[pz]))
		}
		if m[nz] != "+0" {
			fmt.Sprintln("float32 map does not treat", pz, "and", nz, "as equal for read")
			panic(fmt.Sprintln("float32 map does not treat -0 and +0 as equal for read"))
		}
		m[nz] = "-0"
		if m[pz] != "-0" {
			panic(fmt.Sprintln("float32 map does not treat -0 and +0 as equal for write"))
		}
		if _, ok := m[nana]; ok {
			panic(fmt.Sprintln("float32 map allows NaN lookup (a)"))
		}
		if _, ok := m[nanb]; ok {
			panic(fmt.Sprintln("float32 map allows NaN lookup (b)"))
		}
		if len(m) != 3 {
			panic(fmt.Sprintln("float32 map should have 3 entries:", m))
		}
		m[nana] = "NaN"
		m[nanb] = "NaN"
		if len(m) != 5 {
			panic(fmt.Sprintln("float32 map should have 5 entries:", m))
		}
	}

	{
		var (
			pz   = float64(0)
			nz   = math.Float64frombits(1 << 63)
			nana = float64(math.NaN())
			nanb = math.Float64frombits(math.Float64bits(nana) ^ 2)
		)

		m := map[float64]string{
			pz:   "+0",
			nana: "NaN",
			nanb: "NaN",
		}
		if m[nz] != "+0" {
			panic(fmt.Sprintln("float64 map does not treat -0 and +0 as equal for read"))
		}
		m[nz] = "-0"
		if m[pz] != "-0" {
			panic(fmt.Sprintln("float64 map does not treat -0 and +0 as equal for write"))
		}
		if _, ok := m[nana]; ok {
			panic(fmt.Sprintln("float64 map allows NaN lookup (a)"))
		}
		if _, ok := m[nanb]; ok {
			panic(fmt.Sprintln("float64 map allows NaN lookup (b)"))
		}
		if len(m) != 3 {
			panic(fmt.Sprintln("float64 map should have 3 entries:", m))
		}
		m[nana] = "NaN"
		m[nanb] = "NaN"
		if len(m) != 5 {
			panic(fmt.Sprintln("float64 map should have 5 entries:", m))
		}
	}

	{
		var (
			pz   = complex64(0)
			nz   = complex(0, math.Float32frombits(1<<31))
			nana = complex(5, float32(math.NaN()))
			nanb = complex(5, math.Float32frombits(math.Float32bits(float32(math.NaN()))^2))
		)

		m := map[complex64]string{
			pz:   "+0",
			nana: "NaN",
			nanb: "NaN",
		}
		if m[nz] != "+0" {
			panic(fmt.Sprintln("complex64 map does not treat -0 and +0 as equal for read"))
		}
		m[nz] = "-0"
		if m[pz] != "-0" {
			panic(fmt.Sprintln("complex64 map does not treat -0 and +0 as equal for write"))
		}
		if _, ok := m[nana]; ok {
			panic(fmt.Sprintln("complex64 map allows NaN lookup (a)"))
		}
		if _, ok := m[nanb]; ok {
			panic(fmt.Sprintln("complex64 map allows NaN lookup (b)"))
		}
		if len(m) != 3 {
			panic(fmt.Sprintln("complex64 map should have 3 entries:", m))
		}
		m[nana] = "NaN"
		m[nanb] = "NaN"
		if len(m) != 5 {
			panic(fmt.Sprintln("complex64 map should have 5 entries:", m))
		}
	}

	{
		var (
			pz   = complex128(0)
			nz   = complex(0, math.Float64frombits(1<<63))
			nana = complex(5, float64(math.NaN()))
			nanb = complex(5, math.Float64frombits(math.Float64bits(float64(math.NaN()))^2))
		)

		m := map[complex128]string{
			pz:   "+0",
			nana: "NaN",
			nanb: "NaN",
		}
		if m[nz] != "+0" {
			panic(fmt.Sprintln("complex128 map does not treat -0 and +0 as equal for read"))
		}
		m[nz] = "-0"
		if m[pz] != "-0" {
			panic(fmt.Sprintln("complex128 map does not treat -0 and +0 as equal for write"))
		}
		if _, ok := m[nana]; ok {
			panic(fmt.Sprintln("complex128 map allows NaN lookup (a)"))
		}
		if _, ok := m[nanb]; ok {
			panic(fmt.Sprintln("complex128 map allows NaN lookup (b)"))
		}
		if len(m) != 3 {
			panic(fmt.Sprintln("complex128 map should have 3 entries:", m))
		}
		m[nana] = "NaN"
		m[nanb] = "NaN"
		if len(m) != 5 {
			panic(fmt.Sprintln("complex128 map should have 5 entries:", m))
		}
	}
}

func testnan() {
	n := 500
	m := map[float64]int{}
	nan := math.NaN()
	for i := 0; i < n; i++ {
		m[nan] = 1
	}
	if len(m) != n {
		panic("wrong size map after nan insertion")
	}
	iters := 0
	for k, v := range m {
		iters++
		if !math.IsNaN(k) {
			panic("not NaN")
		}
		if v != 1 {
			panic("wrong value")
		}
	}
	if iters != n {
		panic("wrong number of nan range iters")
	}
}

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.