/*
* Intel 82557 Fast Ethernet PCI Bus LAN Controller
* as found on the Intel EtherExpress PRO/100B. This chip is full
* of smarts, unfortunately they're not all in the right place.
* To do:
* the PCI scanning code could be made common to other adapters;
* auto-negotiation, full-duplex;
* optionally use memory-mapped registers;
* detach for PCI reset problems (also towards loadable drivers).
*/
#ifdef FS
#include "all.h"
#include "io.h"
#include "mem.h"
#include "../ip/ip.h"
#else
#include "u.h"
#include "../port/lib.h"
#include "mem.h"
#include "dat.h"
#include "fns.h"
#include "io.h"
#include "../port/error.h"
#include "../port/netif.h"
#endif /* FS */
#include "etherif.h"
#include "ethermii.h"
#include "compat.h"
enum {
Nrfd = 64, /* receive frame area */
Ncb = 64, /* maximum control blocks queued */
NullPointer = 0xFFFFFFFF, /* 82557 NULL pointer */
};
enum { /* CSR */
Status = 0x00, /* byte or word (word includes Ack) */
Ack = 0x01, /* byte */
CommandR = 0x02, /* byte or word (word includes Interrupt) */
Interrupt = 0x03, /* byte */
General = 0x04, /* dword */
Port = 0x08, /* dword */
Fcr = 0x0C, /* Flash control register */
Ecr = 0x0E, /* EEPROM control register */
Mcr = 0x10, /* MDI control register */
Gstatus = 0x1D, /* General status register */
};
enum { /* Status */
RUidle = 0x0000,
RUsuspended = 0x0004,
RUnoresources = 0x0008,
RUready = 0x0010,
RUrbd = 0x0020, /* bit */
RUstatus = 0x003F, /* mask */
CUidle = 0x0000,
CUsuspended = 0x0040,
CUactive = 0x0080,
CUstatus = 0x00C0, /* mask */
StatSWI = 0x0400, /* SoftWare generated Interrupt */
StatMDI = 0x0800, /* MDI r/w done */
StatRNR = 0x1000, /* Receive unit Not Ready */
StatCNA = 0x2000, /* Command unit Not Active (Active->Idle) */
StatFR = 0x4000, /* Finished Receiving */
StatCX = 0x8000, /* Command eXecuted */
StatTNO = 0x8000, /* Transmit NOT OK */
};
enum { /* Command (byte) */
CUnop = 0x00,
CUstart = 0x10,
CUresume = 0x20,
LoadDCA = 0x40, /* Load Dump Counters Address */
DumpSC = 0x50, /* Dump Statistical Counters */
LoadCUB = 0x60, /* Load CU Base */
ResetSA = 0x70, /* Dump and Reset Statistical Counters */
RUstart = 0x01,
RUresume = 0x02,
RUabort = 0x04,
LoadHDS = 0x05, /* Load Header Data Size */
LoadRUB = 0x06, /* Load RU Base */
RBDresume = 0x07, /* Resume frame reception */
};
enum { /* Interrupt (byte) */
InterruptM = 0x01, /* interrupt Mask */
InterruptSI = 0x02, /* Software generated Interrupt */
};
enum { /* Ecr */
EEsk = 0x01, /* serial clock */
EEcs = 0x02, /* chip select */
EEdi = 0x04, /* serial data in */
EEdo = 0x08, /* serial data out */
EEstart = 0x04, /* start bit */
EEread = 0x02, /* read opcode */
};
enum { /* Mcr */
MDIread = 0x08000000, /* read opcode */
MDIwrite = 0x04000000, /* write opcode */
MDIready = 0x10000000, /* ready bit */
MDIie = 0x20000000, /* interrupt enable */
};
typedef struct Rfd {
int field;
ulong link;
ulong rbd;
ushort count;
ushort size;
uchar data[1700];
} Rfd;
enum { /* field */
RfdCollision = 0x00000001,
RfdIA = 0x00000002, /* IA match */
RfdRxerr = 0x00000010, /* PHY character error */
RfdType = 0x00000020, /* Type frame */
RfdRunt = 0x00000080,
RfdOverrun = 0x00000100,
RfdBuffer = 0x00000200,
RfdAlignment = 0x00000400,
RfdCRC = 0x00000800,
RfdOK = 0x00002000, /* frame received OK */
RfdC = 0x00008000, /* reception Complete */
RfdSF = 0x00080000, /* Simplified or Flexible (1) Rfd */
RfdH = 0x00100000, /* Header RFD */
RfdI = 0x20000000, /* Interrupt after completion */
RfdS = 0x40000000, /* Suspend after completion */
RfdEL = 0x80000000, /* End of List */
};
enum { /* count */
RfdF = 0x4000,
RfdEOF = 0x8000,
};
typedef struct Cb Cb;
typedef struct Cb {
ushort status;
ushort command;
ulong link;
union {
uchar data[24]; /* CbIAS + CbConfigure */
struct {
ulong tbd;
ushort count;
uchar threshold;
uchar number;
ulong tba;
ushort tbasz;
ushort pad;
};
};
Block* bp;
Cb* next;
} Cb;
enum { /* action command */
CbU = 0x1000, /* transmit underrun */
CbOK = 0x2000, /* DMA completed OK */
CbC = 0x8000, /* execution Complete */
CbNOP = 0x0000,
CbIAS = 0x0001, /* Individual Address Setup */
CbConfigure = 0x0002,
CbMAS = 0x0003, /* Multicast Address Setup */
CbTransmit = 0x0004,
CbDump = 0x0006,
CbDiagnose = 0x0007,
CbCommand = 0x0007, /* mask */
CbSF = 0x0008, /* Flexible-mode CbTransmit */
CbI = 0x2000, /* Interrupt after completion */
CbS = 0x4000, /* Suspend after completion */
CbEL = 0x8000, /* End of List */
};
enum { /* CbTransmit count */
CbEOF = 0x8000,
};
typedef struct Ctlr Ctlr;
typedef struct Ctlr {
Lock slock; /* attach */
int state;
int port;
Pcidev* pcidev;
Ctlr* next;
int active;
int eepromsz; /* address size in bits */
ushort* eeprom;
Lock miilock;
int tick;
Lock rlock; /* registers */
int command; /* last command issued */
Block* rfdhead; /* receive side */
Block* rfdtail;
int nrfd;
Lock cblock; /* transmit side */
int action;
int nop;
uchar configdata[24];
int threshold;
int ncb;
Cb* cbr;
Cb* cbhead;
Cb* cbtail;
int cbq;
int cbqmax;
int cbqmaxhw;
Rendez timer; /* for watchdog */
Lock dlock; /* dump statistical counters */
ulong dump[17];
} Ctlr;
static Ctlr* ctlrhead;
static Ctlr* ctlrtail;
static uchar configdata[24] = {
0x16, /* byte count */
0x08, /* Rx/Tx FIFO limit */
0x00, /* adaptive IFS */
0x00,
0x00, /* Rx DMA maximum byte count */
// 0x80, /* Tx DMA maximum byte count */
0x00, /* Tx DMA maximum byte count */
0x32, /* !late SCB, CNA interrupts */
0x03, /* discard short Rx frames */
0x00, /* 503/MII */
0x00,
0x2E, /* normal operation, NSAI */
0x00, /* linear priority */
0x60, /* inter-frame spacing */
0x00,
0xF2,
0xC8, /* 503, promiscuous mode off */
0x00,
0x40,
0xF3, /* transmit padding enable */
0x80, /* full duplex pin enable */
0x3F, /* no Multi IA */
0x05, /* no Multi Cast ALL */
};
#define csr8r(c, r) (inb((c)->port+(r)))
#define csr16r(c, r) (ins((c)->port+(r)))
#define csr32r(c, r) (inl((c)->port+(r)))
#define csr8w(c, r, b) (outb((c)->port+(r), (int)(b)))
#define csr16w(c, r, w) (outs((c)->port+(r), (ushort)(w)))
#define csr32w(c, r, l) (outl((c)->port+(r), (ulong)(l)))
static void
command(Ctlr* ctlr, int c, int v)
{
int timeo;
ilock(&ctlr->rlock);
/*
* Only back-to-back CUresume can be done
* without waiting for any previous command to complete.
* This should be the common case.
* Unfortunately there's a chip errata where back-to-back
* CUresumes can be lost, the fix is to always wait.
if(c == CUresume && ctlr->command == CUresume){
csr8w(ctlr, CommandR, c);
iunlock(&ctlr->rlock);
return;
}
*/
for(timeo = 0; timeo < 100; timeo++){
if(!csr8r(ctlr, CommandR))
break;
microdelay(1);
}
if(timeo >= 100){
ctlr->command = -1;
iunlock(&ctlr->rlock);
iprint("i82557: command %#ux %#ux timeout\n", c, v);
return;
}
switch(c){
case CUstart:
case LoadDCA:
case LoadCUB:
case RUstart:
case LoadHDS:
case LoadRUB:
csr32w(ctlr, General, v);
break;
/*
case CUnop:
case CUresume:
case DumpSC:
case ResetSA:
case RUresume:
case RUabort:
*/
default:
break;
}
csr8w(ctlr, CommandR, c);
ctlr->command = c;
iunlock(&ctlr->rlock);
}
static Block*
rfdalloc(ulong link)
{
Block *bp;
Rfd *rfd;
if(bp = iallocb(sizeof(Rfd))){
rfd = (Rfd*)bp->rp;
rfd->field = 0;
rfd->link = link;
rfd->rbd = NullPointer;
rfd->count = 0;
rfd->size = sizeof(Etherpkt);
}
return bp;
}
#ifdef FS
static int
return0(void*)
{
return 0;
}
#endif
static void
watchdog(PROCARG(void* arg))
{
Ether *ether;
Ctlr *ctlr;
static void txstart(Ether*);
static Rendez timer; /* for FS */
ether = GETARG(arg);
for(;;){
tsleep(&timer, return0, 0, 4000);
/*
* Hmmm. This doesn't seem right. Currently
* the device can't be disabled but it may be in
* the future.
*/
ctlr = ether->ctlr;
if(ctlr == nil || ctlr->state == 0){
#ifdef FS
print("i82557: watchdog: exiting\n");
for (;;)
tsleep(&timer, return0, 0, 10000);
#else
print("%s: exiting\n", up->text);
pexit("disabled", 0);
#endif
}
ilock(&ctlr->cblock);
if(ctlr->tick++){
ctlr->action = CbMAS;
txstart(ether);
}
iunlock(&ctlr->cblock);
}
}
static void
attach(Ether* ether)
{
Ctlr *ctlr;
char name[KNAMELEN];
ctlr = ether->ctlr;
lock(&ctlr->slock);
if(ctlr->state == 0){
ilock(&ctlr->rlock);
csr8w(ctlr, Interrupt, 0);
iunlock(&ctlr->rlock);
command(ctlr, RUstart, PADDR(ctlr->rfdhead->rp));
ctlr->state = 1;
/*
* Start the watchdog timer for the receive lockup errata
* unless the EEPROM compatibility word indicates it may be
* omitted.
*/
if((ctlr->eeprom[0x03] & 0x0003) != 0x0003){
snprint(name, KNAMELEN, "#l%dwatchdog", ether->ctlrno);
kproc(name, watchdog, ether);
}
}
unlock(&ctlr->slock);
}
#ifndef FS
static long
ifstat(Ether* ether, void* a, long n, ulong offset)
{
char *p;
int i, len, phyaddr;
Ctlr *ctlr;
ulong dump[17];
ctlr = ether->ctlr;
lock(&ctlr->dlock);
/*
* Start the command then
* wait for completion status,
* should be 0xA005.
*/
ctlr->dump[16] = 0;
command(ctlr, DumpSC, 0);
while(ctlr->dump[16] == 0)
;
ether->oerrs = ctlr->dump[1]+ctlr->dump[2]+ctlr->dump[3];
ether->crcs = ctlr->dump[10];
ether->frames = ctlr->dump[11];
ether->buffs = ctlr->dump[12]+ctlr->dump[15];
ether->overflows = ctlr->dump[13];
if(n == 0){
unlock(&ctlr->dlock);
return 0;
}
memmove(dump, ctlr->dump, sizeof(dump));
unlock(&ctlr->dlock);
p = malloc(READSTR);
len = snprint(p, READSTR, "transmit good frames: %lud\n", dump[0]);
len += snprint(p+len, READSTR-len, "transmit maximum collisions errors: %lud\n", dump[1]);
len += snprint(p+len, READSTR-len, "transmit late collisions errors: %lud\n", dump[2]);
len += snprint(p+len, READSTR-len, "transmit underrun errors: %lud\n", dump[3]);
len += snprint(p+len, READSTR-len, "transmit lost carrier sense: %lud\n", dump[4]);
len += snprint(p+len, READSTR-len, "transmit deferred: %lud\n", dump[5]);
len += snprint(p+len, READSTR-len, "transmit single collisions: %lud\n", dump[6]);
len += snprint(p+len, READSTR-len, "transmit multiple collisions: %lud\n", dump[7]);
len += snprint(p+len, READSTR-len, "transmit total collisions: %lud\n", dump[8]);
len += snprint(p+len, READSTR-len, "receive good frames: %lud\n", dump[9]);
len += snprint(p+len, READSTR-len, "receive CRC errors: %lud\n", dump[10]);
len += snprint(p+len, READSTR-len, "receive alignment errors: %lud\n", dump[11]);
len += snprint(p+len, READSTR-len, "receive resource errors: %lud\n", dump[12]);
len += snprint(p+len, READSTR-len, "receive overrun errors: %lud\n", dump[13]);
len += snprint(p+len, READSTR-len, "receive collision detect errors: %lud\n", dump[14]);
len += snprint(p+len, READSTR-len, "receive short frame errors: %lud\n", dump[15]);
len += snprint(p+len, READSTR-len, "nop: %d\n", ctlr->nop);
if(ctlr->cbqmax > ctlr->cbqmaxhw)
ctlr->cbqmaxhw = ctlr->cbqmax;
len += snprint(p+len, READSTR-len, "cbqmax: %d\n", ctlr->cbqmax);
ctlr->cbqmax = 0;
len += snprint(p+len, READSTR-len, "threshold: %d\n", ctlr->threshold);
len += snprint(p+len, READSTR-len, "eeprom:");
for(i = 0; i < (1<<ctlr->eepromsz); i++){
if(i && ((i & 0x07) == 0))
len += snprint(p+len, READSTR-len, "\n ");
len += snprint(p+len, READSTR-len, " %4.4ux", ctlr->eeprom[i]);
}
if((ctlr->eeprom[6] & 0x1F00) && !(ctlr->eeprom[6] & 0x8000)){
phyaddr = ctlr->eeprom[6] & 0x00FF;
len += snprint(p+len, READSTR-len, "\nphy %2d:", phyaddr);
for(i = 0; i < 6; i++){
static int miir(Ctlr*, int, int);
len += snprint(p+len, READSTR-len, " %4.4ux",
miir(ctlr, phyaddr, i));
}
}
snprint(p+len, READSTR-len, "\n");
n = readstr(offset, a, n, p);
free(p);
return n;
}
#endif
static void
txstart(Ether* ether)
{
Ctlr *ctlr;
Block *bp;
Cb *cb;
ctlr = ether->ctlr;
while(ctlr->cbq < (ctlr->ncb-1)){
cb = ctlr->cbhead->next;
if(ctlr->action == 0){
bp = etheroq(ether);
if(bp == nil)
break;
cb->command = CbS|CbSF|CbTransmit;
cb->tbd = PADDR(&cb->tba);
cb->count = 0;
cb->threshold = ctlr->threshold;
cb->number = 1;
cb->tba = PADDR(bp->rp);
cb->bp = bp;
cb->tbasz = BLEN(bp);
}
else if(ctlr->action == CbConfigure){
cb->command = CbS|CbConfigure;
memmove(cb->data, ctlr->configdata, sizeof(ctlr->configdata));
ctlr->action = 0;
}
else if(ctlr->action == CbIAS){
cb->command = CbS|CbIAS;
memmove(cb->data, ether->ea, Eaddrlen);
ctlr->action = 0;
}
else if(ctlr->action == CbMAS){
cb->command = CbS|CbMAS;
memset(cb->data, 0, sizeof(cb->data));
ctlr->action = 0;
}
else{
print("#l%d: action %#ux\n", ether->ctlrno, ctlr->action);
ctlr->action = 0;
break;
}
cb->status = 0;
coherence();
ctlr->cbhead->command &= ~CbS;
ctlr->cbhead = cb;
ctlr->cbq++;
}
/*
* Workaround for some broken HUB chips
* when connected at 10Mb/s half-duplex.
*/
if(ctlr->nop){
command(ctlr, CUnop, 0);
microdelay(1);
}
command(ctlr, CUresume, 0);
if(ctlr->cbq > ctlr->cbqmax)
ctlr->cbqmax = ctlr->cbq;
}
static void
configure(Ether* ether, int promiscuous)
{
Ctlr *ctlr;
ctlr = ether->ctlr;
ilock(&ctlr->cblock);
if(promiscuous){
ctlr->configdata[6] |= 0x80; /* Save Bad Frames */
//ctlr->configdata[6] &= ~0x40; /* !Discard Overrun Rx Frames */
ctlr->configdata[7] &= ~0x01; /* !Discard Short Rx Frames */
ctlr->configdata[15] |= 0x01; /* Promiscuous mode */
ctlr->configdata[18] &= ~0x01; /* (!Padding enable?), !stripping enable */
ctlr->configdata[21] |= 0x08; /* Multi Cast ALL */
}
else{
ctlr->configdata[6] &= ~0x80;
//ctlr->configdata[6] |= 0x40;
ctlr->configdata[7] |= 0x01;
ctlr->configdata[15] &= ~0x01;
ctlr->configdata[18] |= 0x01; /* 0x03? */
ctlr->configdata[21] &= ~0x08;
}
ctlr->action = CbConfigure;
txstart(ether);
iunlock(&ctlr->cblock);
}
static void
promiscuous(void* arg, int on)
{
configure(arg, on);
}
static void
multicast(void* arg, uchar *addr, int on)
{
USED(addr, on);
configure(arg, 1);
}
static void
transmit(Ether* ether)
{
Ctlr *ctlr;
ctlr = ether->ctlr;
ilock(&ctlr->cblock);
txstart(ether);
iunlock(&ctlr->cblock);
}
static void
receive(Ether* ether)
{
Rfd *rfd;
Ctlr *ctlr;
int count;
Block *bp, *pbp, *xbp;
ctlr = ether->ctlr;
bp = ctlr->rfdhead;
for(rfd = (Rfd*)bp->rp; rfd->field & RfdC; rfd = (Rfd*)bp->rp){
/*
* If it's an OK receive frame
* 1) save the count
* 2) if it's small, try to allocate a block and copy
* the data, then adjust the necessary fields for reuse;
* 3) if it's big, try to allocate a new Rfd and if
* successful
* adjust the received buffer pointers for the
* actual data received;
* initialise the replacement buffer to point to
* the next in the ring;
* initialise bp to point to the replacement;
* 4) if there's a good packet, pass it on for disposal.
*/
if(rfd->field & RfdOK){
pbp = nil;
count = rfd->count & 0x3FFF;
if((count < ETHERMAXTU/4) && (pbp = iallocb(count))){
memmove(pbp->rp, bp->rp+offsetof(Rfd, data[0]), count);
SETWPCNT(pbp, count);
rfd->count = 0;
rfd->field = 0;
}
else if(xbp = rfdalloc(rfd->link)){
bp->rp += offsetof(Rfd, data[0]);
SETWPCNT(bp, count);
xbp->next = bp->next;
bp->next = 0;
pbp = bp;
bp = xbp;
}
if(pbp != nil)
ETHERIQ(ether, pbp, 1);
}
else{
rfd->count = 0;
rfd->field = 0;
}
/*
* The ring tail pointer follows the head with with one
* unused buffer in between to defeat hardware prefetch;
* once the tail pointer has been bumped on to the next
* and the new tail has the Suspend bit set, it can be
* removed from the old tail buffer.
* As a replacement for the current head buffer may have
* been allocated above, ensure that the new tail points
* to it (next and link).
*/
rfd = (Rfd*)ctlr->rfdtail->rp;
ctlr->rfdtail = ctlr->rfdtail->next;
ctlr->rfdtail->next = bp;
((Rfd*)ctlr->rfdtail->rp)->link = PADDR(bp->rp);
((Rfd*)ctlr->rfdtail->rp)->field |= RfdS;
coherence();
rfd->field &= ~RfdS;
/*
* Finally done with the current (possibly replaced)
* head, move on to the next and maintain the sentinel
* between tail and head.
*/
ctlr->rfdhead = bp->next;
bp = ctlr->rfdhead;
}
}
static void
interrupt(Ureg*, void* arg)
{
Cb* cb;
Ctlr *ctlr;
Ether *ether;
int status;
ether = arg;
ctlr = ether->ctlr;
for(;;){
ilock(&ctlr->rlock);
status = csr16r(ctlr, Status);
csr8w(ctlr, Ack, (status>>8) & 0xFF);
iunlock(&ctlr->rlock);
if(!(status & (StatCX|StatFR|StatCNA|StatRNR|StatMDI|StatSWI)))
break;
/*
* If the watchdog timer for the receiver lockup errata is running,
* let it know the receiver is active.
*/
if(status & (StatFR|StatRNR)){
ilock(&ctlr->cblock);
ctlr->tick = 0;
iunlock(&ctlr->cblock);
}
if(status & StatFR){
receive(ether);
status &= ~StatFR;
}
if(status & StatRNR){
command(ctlr, RUresume, 0);
status &= ~StatRNR;
}
if(status & StatCNA){
ilock(&ctlr->cblock);
cb = ctlr->cbtail;
while(ctlr->cbq){
if(!(cb->status & CbC))
break;
if(cb->bp){
freeb(cb->bp);
cb->bp = nil;
}
if((cb->status & CbU) && ctlr->threshold < 0xE0)
ctlr->threshold++;
ctlr->cbq--;
cb = cb->next;
}
ctlr->cbtail = cb;
txstart(ether);
iunlock(&ctlr->cblock);
status &= ~StatCNA;
}
if(status & (StatCX|StatFR|StatCNA|StatRNR|StatMDI|StatSWI))
panic("#l%d: status %#ux\n", ether->ctlrno, status);
}
}
static void
ctlrinit(Ctlr* ctlr)
{
int i;
Block *bp;
Rfd *rfd;
ulong link;
/*
* Create the Receive Frame Area (RFA) as a ring of allocated
* buffers.
* A sentinel buffer is maintained between the last buffer in
* the ring (marked with RfdS) and the head buffer to defeat the
* hardware prefetch of the next RFD and allow dynamic buffer
* allocation.
*/
link = NullPointer;
for(i = 0; i < Nrfd; i++){
bp = rfdalloc(link);
if(ctlr->rfdhead == nil)
ctlr->rfdtail = bp;
bp->next = ctlr->rfdhead;
ctlr->rfdhead = bp;
link = PADDR(bp->rp);
}
ctlr->rfdtail->next = ctlr->rfdhead;
rfd = (Rfd*)ctlr->rfdtail->rp;
rfd->link = PADDR(ctlr->rfdhead->rp);
rfd->field |= RfdS;
ctlr->rfdhead = ctlr->rfdhead->next;
/*
* Create a ring of control blocks for the
* transmit side.
*/
ilock(&ctlr->cblock);
ctlr->cbr = malloc(ctlr->ncb*sizeof(Cb));
for(i = 0; i < ctlr->ncb; i++){
ctlr->cbr[i].status = CbC|CbOK;
ctlr->cbr[i].command = CbS|CbNOP;
ctlr->cbr[i].link = PADDR(&ctlr->cbr[NEXT(i, ctlr->ncb)].status);
ctlr->cbr[i].next = &ctlr->cbr[NEXT(i, ctlr->ncb)];
}
ctlr->cbhead = ctlr->cbr;
ctlr->cbtail = ctlr->cbr;
ctlr->cbq = 0;
memmove(ctlr->configdata, configdata, sizeof(configdata));
ctlr->threshold = 80;
ctlr->tick = 0;
iunlock(&ctlr->cblock);
}
static int
miir(Ctlr* ctlr, int phyadd, int regadd)
{
int mcr, timo;
lock(&ctlr->miilock);
csr32w(ctlr, Mcr, MDIread|(phyadd<<21)|(regadd<<16));
mcr = 0;
for(timo = 64; timo; timo--){
mcr = csr32r(ctlr, Mcr);
if(mcr & MDIready)
break;
microdelay(1);
}
unlock(&ctlr->miilock);
if(mcr & MDIready)
return mcr & 0xFFFF;
return -1;
}
static int
miiw(Ctlr* ctlr, int phyadd, int regadd, int data)
{
int mcr, timo;
lock(&ctlr->miilock);
csr32w(ctlr, Mcr, MDIwrite|(phyadd<<21)|(regadd<<16)|(data & 0xFFFF));
mcr = 0;
for(timo = 64; timo; timo--){
mcr = csr32r(ctlr, Mcr);
if(mcr & MDIready)
break;
microdelay(1);
}
unlock(&ctlr->miilock);
if(mcr & MDIready)
return 0;
return -1;
}
static int
hy93c46r(Ctlr* ctlr, int r)
{
int data, i, op, size;
/*
* Hyundai HY93C46 or equivalent serial EEPROM.
* This sequence for reading a 16-bit register 'r'
* in the EEPROM is taken straight from Section
* 3.3.4.2 of the Intel 82557 User's Guide.
*/
reread:
csr16w(ctlr, Ecr, EEcs);
op = EEstart|EEread;
for(i = 2; i >= 0; i--){
data = (((op>>i) & 0x01)<<2)|EEcs;
csr16w(ctlr, Ecr, data);
csr16w(ctlr, Ecr, data|EEsk);
microdelay(1);
csr16w(ctlr, Ecr, data);
microdelay(1);
}
/*
* First time through must work out the EEPROM size.
*/
if((size = ctlr->eepromsz) == 0)
size = 8;
for(size = size-1; size >= 0; size--){
data = (((r>>size) & 0x01)<<2)|EEcs;
csr16w(ctlr, Ecr, data);
csr16w(ctlr, Ecr, data|EEsk);
delay(1);
csr16w(ctlr, Ecr, data);
microdelay(1);
if(!(csr16r(ctlr, Ecr) & EEdo))
break;
}
data = 0;
for(i = 15; i >= 0; i--){
csr16w(ctlr, Ecr, EEcs|EEsk);
microdelay(1);
if(csr16r(ctlr, Ecr) & EEdo)
data |= (1<<i);
csr16w(ctlr, Ecr, EEcs);
microdelay(1);
}
csr16w(ctlr, Ecr, 0);
if(ctlr->eepromsz == 0){
ctlr->eepromsz = 8-size;
ctlr->eeprom = malloc((1<<ctlr->eepromsz)*sizeof(ushort));
goto reread;
}
return data;
}
static void
i82557pci(void)
{
Pcidev *p;
Ctlr *ctlr;
int nop, port;
p = nil;
nop = 0;
while(p = pcimatch(p, 0x8086, 0)){
switch(p->did){
default:
continue;
case 0x1031: /* Intel 82562EM */
case 0x1050: /* Intel 82562EZ */
case 0x1039: /* Intel 82801BD PRO/100 VE */
case 0x103A: /* Intel 82562 PRO/100 VE */
case 0x103D: /* Intel 82562 PRO/100 VE */
case 0x1064: /* Intel 82562 PRO/100 VE */
case 0x2449: /* Intel 82562ET */
nop = 1;
/*FALLTHROUGH*/
case 0x1209: /* Intel 82559ER */
case 0x1229: /* Intel 8255[789] */
case 0x1030: /* Intel 82559 InBusiness 10/100 */
break;
}
#ifndef FS
if(pcigetpms(p) > 0){
int i;
pcisetpms(p, 0);
for(i = 0; i < 6; i++)
pcicfgw32(p, PciBAR0+i*4, p->mem[i].bar);
pcicfgw8(p, PciINTL, p->intl);
pcicfgw8(p, PciLTR, p->ltr);
pcicfgw8(p, PciCLS, p->cls);
pcicfgw16(p, PciPCR, p->pcr);
}
#endif
/*
* bar[0] is the memory-mapped register address (4KB),
* bar[1] is the I/O port register address (32 bytes) and
* bar[2] is for the flash ROM (1MB).
*/
port = p->mem[1].bar & ~0x01;
if(ioalloc(port, p->mem[1].size, 0, "i82557") < 0){
print("i82557: port %#ux in use\n", port);
continue;
}
ctlr = malloc(sizeof(Ctlr));
ctlr->port = port;
ctlr->pcidev = p;
ctlr->nop = nop;
if(ctlrhead != nil)
ctlrtail->next = ctlr;
else
ctlrhead = ctlr;
ctlrtail = ctlr;
pcisetbme(p);
}
}
static char* mediatable[9] = {
"10BASE-T", /* TP */
"10BASE-2", /* BNC */
"10BASE-5", /* AUI */
"100BASE-TX",
"10BASE-TFD",
"100BASE-TXFD",
"100BASE-T4",
"100BASE-FX",
"100BASE-FXFD",
};
static int
scanphy(Ctlr* ctlr)
{
int i, oui, x;
for(i = 0; i < 32; i++){
if((oui = miir(ctlr, i, 2)) == -1 || oui == 0 || oui == 0xFFFF)
continue;
oui <<= 6;
x = miir(ctlr, i, 3);
oui |= x>>10;
//print("phy%d: oui %#ux reg1 %#ux\n", i, oui, miir(ctlr, i, 1));
ctlr->eeprom[6] = i;
if(oui == 0xAA00)
ctlr->eeprom[6] |= 0x07<<8;
else if(oui == 0x80017){
if(x & 0x01)
ctlr->eeprom[6] |= 0x0A<<8;
else
ctlr->eeprom[6] |= 0x04<<8;
}
return i;
}
return -1;
}
static void
shutdown(Ether* ether)
{
Ctlr *ctlr = ether->ctlr;
print("ether82557 shutting down\n");
csr32w(ctlr, Port, 0);
delay(1);
csr8w(ctlr, Interrupt, InterruptM);
}
int
etheri82557reset(Ether* ether)
{
int anar, anlpar, bmcr, bmsr, i, k, medium, phyaddr, x;
unsigned short sum;
uchar ea[Eaddrlen];
Ctlr *ctlr;
if(ctlrhead == nil)
i82557pci();
/*
* Any adapter matches if no ether->port is supplied,
* otherwise the ports must match.
*/
for(ctlr = ctlrhead; ctlr != nil; ctlr = ctlr->next){
if(ctlr->active)
continue;
if(ether->port == 0 || ether->port == ctlr->port){
ctlr->active = 1;
break;
}
}
if(ctlr == nil)
return -1;
/*
* Initialise the Ctlr structure.
* Perform a software reset after which should ensure busmastering
* is still enabled. The EtherExpress PRO/100B appears to leave
* the PCI configuration alone (see the 'To do' list above) so punt
* for now.
* Load the RUB and CUB registers for linear addressing (0).
*/
ether->ctlr = ctlr;
ether->port = ctlr->port;
ether->irq = ctlr->pcidev->intl;
ether->tbdf = ctlr->pcidev->tbdf;
ilock(&ctlr->rlock);
csr32w(ctlr, Port, 0);
delay(1);
csr8w(ctlr, Interrupt, InterruptM);
iunlock(&ctlr->rlock);
command(ctlr, LoadRUB, 0);
command(ctlr, LoadCUB, 0);
command(ctlr, LoadDCA, PADDR(ctlr->dump));
/*
* Initialise the receive frame, transmit ring and configuration areas.
*/
ctlr->ncb = Ncb;
ctlrinit(ctlr);
/*
* Read the EEPROM.
* Do a dummy read first to get the size
* and allocate ctlr->eeprom.
*/
hy93c46r(ctlr, 0);
sum = 0;
for(i = 0; i < (1<<ctlr->eepromsz); i++){
x = hy93c46r(ctlr, i);
ctlr->eeprom[i] = x;
sum += x;
}
if(sum != 0xBABA)
print("#l%d: EEPROM checksum - %#4.4ux\n", ether->ctlrno, sum);
/*
* Eeprom[6] indicates whether there is a PHY and whether
* it's not 10Mb-only, in which case use the given PHY address
* to set any PHY specific options and determine the speed.
* Unfortunately, sometimes the EEPROM is blank except for
* the ether address and checksum; in this case look at the
* controller type and if it's am 82558 or 82559 it has an
* embedded PHY so scan for that.
* If no PHY, assume 82503 (serial) operation.
*/
if((ctlr->eeprom[6] & 0x1F00) && !(ctlr->eeprom[6] & 0x8000))
phyaddr = ctlr->eeprom[6] & 0x00FF;
else
switch(ctlr->pcidev->rid){
case 0x01: /* 82557 A-step */
case 0x02: /* 82557 B-step */
case 0x03: /* 82557 C-step */
default:
phyaddr = -1;
break;
case 0x04: /* 82558 A-step */
case 0x05: /* 82558 B-step */
case 0x06: /* 82559 A-step */
case 0x07: /* 82559 B-step */
case 0x08: /* 82559 C-step */
case 0x09: /* 82559ER A-step */
phyaddr = scanphy(ctlr);
break;
}
if(phyaddr >= 0){
/*
* Resolve the highest common ability of the two
* link partners. In descending order:
* 0x0100 100BASE-TX Full Duplex
* 0x0200 100BASE-T4
* 0x0080 100BASE-TX
* 0x0040 10BASE-T Full Duplex
* 0x0020 10BASE-T
*/
anar = miir(ctlr, phyaddr, 0x04);
anlpar = miir(ctlr, phyaddr, 0x05) & 0x03E0;
anar &= anlpar;
bmcr = 0;
if(anar & 0x380)
bmcr = 0x2000;
if(anar & 0x0140)
bmcr |= 0x0100;
switch((ctlr->eeprom[6]>>8) & 0x001F){
case 0x04: /* DP83840 */
case 0x0A: /* DP83840A */
/*
* The DP83840[A] requires some tweaking for
* reliable operation.
* The manual says bit 10 should be unconditionally
* set although it supposedly only affects full-duplex
* operation (an & 0x0140).
*/
x = miir(ctlr, phyaddr, 0x17) & ~0x0520;
x |= 0x0420;
for(i = 0; i < ether->nopt; i++){
if(cistrcmp(ether->opt[i], "congestioncontrol"))
continue;
x |= 0x0100;
break;
}
miiw(ctlr, phyaddr, 0x17, x);
/*
* If the link partner can't autonegotiate, determine
* the speed from elsewhere.
*/
if(anlpar == 0){
miir(ctlr, phyaddr, 0x01);
bmsr = miir(ctlr, phyaddr, 0x01);
x = miir(ctlr, phyaddr, 0x19);
if((bmsr & 0x0004) && !(x & 0x0040))
bmcr = 0x2000;
}
break;
case 0x07: /* Intel 82555 */
/*
* Auto-negotiation may fail if the other end is
* a DP83840A and the cable is short.
*/
miir(ctlr, phyaddr, 0x01);
bmsr = miir(ctlr, phyaddr, 0x01);
if((miir(ctlr, phyaddr, 0) & 0x1000) && !(bmsr & 0x0020)){
miiw(ctlr, phyaddr, 0x1A, 0x2010);
x = miir(ctlr, phyaddr, 0);
miiw(ctlr, phyaddr, 0, 0x0200|x);
for(i = 0; i < 3000; i++){
delay(1);
if(miir(ctlr, phyaddr, 0x01) & 0x0020)
break;
}
miiw(ctlr, phyaddr, 0x1A, 0x2000);
anar = miir(ctlr, phyaddr, 0x04);
anlpar = miir(ctlr, phyaddr, 0x05) & 0x03E0;
anar &= anlpar;
bmcr = 0;
if(anar & 0x380)
bmcr = 0x2000;
if(anar & 0x0140)
bmcr |= 0x0100;
}
break;
}
/*
* Force speed and duplex if no auto-negotiation.
*/
if(anlpar == 0){
medium = -1;
for(i = 0; i < ether->nopt; i++){
for(k = 0; k < nelem(mediatable); k++){
if(cistrcmp(mediatable[k], ether->opt[i]))
continue;
medium = k;
break;
}
switch(medium){
default:
break;
case 0x00: /* 10BASE-T */
case 0x01: /* 10BASE-2 */
case 0x02: /* 10BASE-5 */
bmcr &= ~(0x2000|0x0100);
ctlr->configdata[19] &= ~0x40;
break;
case 0x03: /* 100BASE-TX */
case 0x06: /* 100BASE-T4 */
case 0x07: /* 100BASE-FX */
ctlr->configdata[19] &= ~0x40;
bmcr |= 0x2000;
break;
case 0x04: /* 10BASE-TFD */
bmcr = (bmcr & ~0x2000)|0x0100;
ctlr->configdata[19] |= 0x40;
break;
case 0x05: /* 100BASE-TXFD */
case 0x08: /* 100BASE-FXFD */
bmcr |= 0x2000|0x0100;
ctlr->configdata[19] |= 0x40;
break;
}
}
if(medium != -1)
miiw(ctlr, phyaddr, 0x00, bmcr);
}
if(bmcr & 0x2000)
ether->mbps = 100;
ctlr->configdata[8] = 1;
ctlr->configdata[15] &= ~0x80;
}
else{
ctlr->configdata[8] = 0;
ctlr->configdata[15] |= 0x80;
}
/*
* Workaround for some broken HUB chips when connected at 10Mb/s
* half-duplex.
* This is a band-aid, but as there's no dynamic auto-negotiation
* code at the moment, only deactivate the workaround code in txstart
* if the link is 100Mb/s.
*/
if(ether->mbps != 10)
ctlr->nop = 0;
/*
* Load the chip configuration and start it off.
*/
#ifndef FS
if(ether->oq == 0)
ether->oq = qopen(256*1024, Qmsg, 0, 0);
#endif
configure(ether, 0);
command(ctlr, CUstart, PADDR(&ctlr->cbr->status));
/*
* Check if the adapter's station address is to be overridden.
* If not, read it from the EEPROM and set in ether->ea prior to loading
* the station address with the Individual Address Setup command.
*/
memset(ea, 0, Eaddrlen);
if(memcmp(ea, ether->ea, Eaddrlen) == 0){
for(i = 0; i < Eaddrlen/2; i++){
x = ctlr->eeprom[i];
ether->ea[2*i] = x;
ether->ea[2*i+1] = x>>8;
}
}
ilock(&ctlr->cblock);
ctlr->action = CbIAS;
txstart(ether);
iunlock(&ctlr->cblock);
/*
* Linkage to the generic ethernet driver.
*/
ether->attach = attach;
ether->transmit = transmit;
ether->interrupt = interrupt;
#ifndef FS
ether->ifstat = ifstat;
ether->arg = ether;
ether->promiscuous = promiscuous;
ether->shutdown = shutdown;
ether->multicast = multicast;
#endif
return 0;
}
#ifndef FS
void
ether82557bothlink(void)
{
addethercard("i82557", etheri82557reset);
}
#endif
|