
Key Lengths
Contribution to The Handbook of Information Security

Arjen K. Lenstra

Lucent Technologies and Technische Universiteit Eindhoven

1 North Gate Road, Mendham, NJ 07945-3104, U.S.A.

June 30, 2004

Abstract

The key length used for a cryptographic protocol determines the high-

est security it can offer. If the key is found or ‘broken’, the security is

undermined. Thus, key lengths must be chosen in accordance with the

desired security. In practice, key lengths are mostly determined by stan-

dards, legacy system compatibility issues, and vendors. From a theoretical

point of view selecting key lengths is more involved. Understanding the

relation between security and key lengths and the impact of anticipated

and unexpected cryptanalytic progress, requires insight into the design of

the cryptographic methods and the mathematics involved in the attempts

at breaking them. In this chapter practical and theoretical aspects of key

size selection are discussed.

Keywords:cryptographic keys, symmetric cryptosystem, asymmetric cryp-

tosystem, cryptographic hash function, RSA modulus, discrete logarithm.

1

Contents

1 Introduction 4

Symmetric encryption and cryptographic hashing 4
Asymmetric cryptosystems . 4
Security in practice . 5
Overview . 5

2 Security Level 5

Generic attacks . 5
Security level . 6
The cost of an attack effort . 6
Relation between security level and security 6
Modelling the relation . 7
Defining adequate protection . 7
The cost of breaking the DES . 7
Modelling the effect of changes in the computational environment . . . 8
Moore’s law . 8
The cost of adequate protection . 8
The effect of Moore’s law . 9
The effect of the constant of proportionality 9
Alternative definitions of adequate protection 10
Modelling the effect of changes in cryptanalytic capabilities 10

3 Symmetric cryptosystems 11

Block ciphers . 11
Table 1. Common block ciphers . 12
Performance considerations . 12
Other considerations . 13
Symmetric key lengths that offer adequate protection 13

4 Cryptographic hash functions 14

Cryptographic hash functions . 15
Table 2. Common cryptographic hash functions 15
Cryptanalytic developments . 15
Performance considerations . 16
Cryptographic hash lengths that offer adequate protection 16

5 Asymmetric methods 16

Private key and public key . 16
Performance deterioration . 16
The design of asymmetric cryptosystems 17
Factoring and discrete logarithms . 17
Integer factorization . 17
Discrete logarithm . 18
Other asymmetric cryptosystems . 18

2

6 Factoring based cryptosystems 19

Main variants . 19
Trial division . 19
Exponential-time factoring algorithms 20
Polynomial-time factoring algorithms 20
Subexponential-time factoring algorithms 21
Number field sieve . 22
The cost of the NFS . 22
NFS results . 22
Software implementation . 23
Special purpose hardware design proposal 23
Extrapolation to other modulus lengths 23
Cryptanalytic developments . 24
Double Moore factoring law . 25
Small factors . 25
RSA modulus lengths that offer adequate protection 25
Table 3. Minimal RSA modulus bit-lengths for adequate protection

until a given year . 26
Table 4. Years until which common RSA modulus bit-lengths offer

adequate protection . 26

7 Discrete logarithm based cryptosystems 26

Unsuitable groups . 27
The discrete logarithm problem in G = (Fp`)∗ 27
Reduction to prime order subgroup . 28
The discrete logarithm problem in a subgroup of G = (Fp`)∗ 28
Justification of choice of subgroup of (Fp`)∗ 28
Size requirements . 29
Cryptanalytic developments . 29
Choices of # 〈g〉 and p` that offer adequate protection 29

8 Conclusion 30

Acknowledgment 31

Glossary 31

References 33

3

1 Introduction

In cryptographic context, 40, 56, 64, 80, 90, 112, 128, 155, 160, 192, 256, 384,
512, 768, 1024, 1536, 2048, and 4096 are examples of key lengths. What they
mean and how they are and should be selected is the subject of this chapter.

Key lengths indicate the number of bits contained in a certain cryptographic
key or related arithmetic structure. They are a measure for the security that
may be attained. To the uninitiated, however, the relation between key lengths
and security is confusing. To illustrate, key lengths 80, 160, and 1024, though
quite different, may imply comparable security when 80 is the key length for
a symmetric encryption method, 160 a hash length, and 1024 the bit length
of an RSA modulus. Part of this correspondence follows immediately from
the well known ‘fact’ that symmetric encryption with B-bit keys and 2B-bit
cryptographic hashes offer the ‘same’ security. But the correspondence with
1024-bit RSA is quite a different story that allows many variations. In the
sequel an attempt is made to view this and other key length issues from all
reasonable perspectives.

Key lengths are often powers of 2 or small multiples thereof. This is not for
any mathematical or security reason. It is simply because data is usually most
conveniently processed and stored in chunks of 8 bits (bytes), 32 bits (words),
64 bits (blocks), etc.
Symmetric encryption and cryptographic hashing. Ideally, the long

term prospects of the relationship between key length and security should be
well understood when key length decisions are made. In the case of symmetric
encryption and cryptographic hashing methods the decision is facilitated for
most users by the following three facts:

• There is broad consensus which symmetric key lengths and cryptographic
hash sizes are ‘conservative’, i.e., have good prospects to offer very long
term security.

• Nowadays, for symmetric cryptosystems and cryptographic hash functions
most default choices available on the marketplace are conservative.

• The performance of symmetric cryptosystems and cryptographic hash
functions is barely, if at all, affected by the key length choice.

Thus, for symmetric encryption and cryptographic hashing it suffices to make
a reasonably well informed conservative choice.
Asymmetric cryptosystems. As hinted at above, there is much less agree-

ment about conservative choices for asymmetric cryptosystems such as RSA.
Furthermore, for these cryptosystems the performance does deteriorate with in-
creasing key lengths. Even if a consensual conservative choice could be made,
it may not be a choice that is practically feasible. In practice most users of
asymmetric cryptosystems follow the recommendations of the vendor commu-
nity. But there is no guarantee that the vendor community always has sufficient
business incentive to comply with the recommendations of the standards bod-
ies, or that the latter fully understand all relevant issues. The larger context is

4

the overall cost/benefit picture and the fact that in all practical circumstances
there are more pressing areas than key sizes, to which industry is giving a higher
priority when addressing security concerns. Those issues will, however, not be
addressed in this chapter. The main purpose of the present chapter is to offer
unbiased advice to the more prudent users of asymmetric cryptosystems to help
decide which of the available options may be adequate for their purposes.
Security in practice. The security that corresponds to a key length choice

for a cryptographic protocol measures the largest effort that is, in principle,
needed to attack the cryptosystem incorporating that protocol. The key length
itself yields an upper bound for the security, namely the effort required for ex-
haustive key search. Cryptosystems are usually most efficiently attacked by
exploiting other than cryptographic key related weaknesses. Examples are im-
perfections in the underlying protocol, in the implementation, the environment,
or the users. Selecting appropriate key lengths may therefore be regarded as
an academic exercise. It should be kept in mind, however, that inadequate
key length choices do affect the security of a cryptosystem. In the remainder
of this chapter security-affecting issues other than key lengths are not further
discussed.
Overview. This chapter is organized as follows. Section 2 introduces the con-
cept of security level and contains the general background for the remainder of
the chapter. Key lengths for symmetric cryptosystems are discussed in Section 3
and cryptographic hash function sizes in Section 4. An overview of asymmetric
methods is given in Section 5, which leads to the discussion of factoring based
cryptosystems in Section 6 and of discrete logarithm based cryptosystems in
Section 7. The reader who is not familiar with common cryptographic concepts
such as symmetric and asymmetric cryptosystems may look them up in other
chapters of this handbook.

In the sequel, log x denotes the natural logarithm of x and logb x denotes
the base b logarithm of x. As customary, exp(x) = ex.

2 Security Level

Generic attacks. For symmetric cryptosystems generic attacks are defined as
attacks where the key has to be recovered from a known (plaintext, ciphertext)
pair. Plaintext and ciphertext in case of block ciphers may consist of a number
of blocks that is not too large. In the cryptographic literature such attacks
are referred to as known plaintext attacks. It is assumed that the input pair
uniquely determines the key, or that correctness of the key can independently
be verified. Refer to [7] for a discussion of the latter point. For asymmetric
cryptosystems generic attacks are defined as attacks where the private key has
to be found given the public key.

Generic attacks exclude attacks where the attacker has access to any other
data that can be generated only by means of the unknown key, such as in
differential and linear cryptanalysis of block ciphers. In this chapter only generic
attacks are considered because it is generally believed that they most closely

5

correspond to real life situations. Furthermore, given the cost of an attack
effort as used in this chapter and as defined below, for most popular block
ciphers generic attacks are the ones that are believed to have the lowest cost
(cf. [64], [63], and Section 3 for an exception).
Security level. If a symmetric cryptosystem with λ-bit keys does not allow

a generic attack that requires less effort than exhaustive key search, then it is
traditionally said to have security level λ. Exhaustive key search for λ-bit keys
may be expected to involve 2λ−1 different keys, with in the worst case up to 2λ

keys. In general, a cryptographic system offers security level λ if a successful
generic attack can be expected to require effort approximately 2λ−1. How an
attack effort is measured is explained in the next paragraph.
The cost of an attack effort. A security level explicitly refers to an attack

effort and not to the time that may be needed to realize it. All attacks discussed
in this chapter are fully parallelizable in the following way. Assume an attack can
be realized in d days by a device that costs c dollars. Then, for any reasonable w,
the attack can be realized in d/w days by a device costing cw dollars. As first
suggested in this context in [3], this implies that an appropriate way to measure
an attack effort is obtained by multiplying the time required by the equipment
cost; see also [35] and [64] where this measure is referred to as the throughput
cost and full cost, respectively. Below it is simply referred to as the cost of an
attack effort and it will be measured in dollardays: the attack effort suggested
above would cost dc dollardays. Exhaustive key search is an example of a fully
parallelizable attack, because the search space can be arbitrarily divided over
any number of processors that can work independently on the search range
assigned to them.

This cost allows to leave unspecified if and how an attack effort is parallelized
or distributed—all one has to do is make sure that full parallelization of an attack
is possible. Note that this does not take into account large-scale (and possibly
surreptitious) internet based calculations. For cryptographically relevant key
lengths, however, effective attacks require such a huge computational effort that
they will not go unnoticed when mounted using some type of internet worm.
Relation between security level and security. To determine if a crypto-

graphic system offers adequate security or protection, it is not immediately use-
ful to tie the definition of security level to symmetric cryptosystem key lengths.
In the first place, the amount of time and money required to realize an attack
effort decreases over time because computers become faster and cheaper. Thus,
the amount of protection offered by a certain fixed security level is constantly
eroded. A related point is that cryptanalytic progress over time may affect the
security level of a cryptographic system not by lowering the cost to realize a
certain attack, but by proposing an improved attack method. Furthermore, the
definition of security level involves an unspecified constant of proportionality—
vaguely indicated by the ‘approximately 2λ−1’—and thus its meaning may vary
from system to system. And finally, ‘adequate protection’ is a vague term whose
interpretation depends on the application one has in mind, and is even then still
subjective. In the remainder of this section these issues affecting the relation
between security levels and security are addressed, which allows selection of key

6

lengths corresponding to any amount of protection one feels comfortable with.
Modelling the relation. Although a cryptosystem’s security level may not

be indicative of its effectiveness, security levels allow comparison of the security
offered by cryptosystems. Assuming identical constants of proportionality and
environments, a cryptosystem of security level λ + µ may be expected to be 2µ

times harder to attack, and thus be 2µ times more secure, than a cryptosystem
of security level λ. Once it has been agreed that a certain security level offers
an adequate amount of protection in a certain known (past) environment, twice
the protection can be achieved in that environment by incrementing the secu-
rity level by one (assuming other characteristics of the cryptosystem involved
are not affected by the change). And, more in general, an x times higher amount
of protection follows, in that same environment, by adding log2 x to the secu-
rity level. If, additionally, the effect of changes in the environment is modelled,
then a more general correspondence can be derived between security levels and
amount of protection for any (future) environment. As indicated above, these
environmental changes come in two flavors: changes in the computational envi-
ronment that affect the amount of protection by lowering the cost at which the
same attack can be realized but that leave the security level itself unchanged,
and changes in the cryptanalytic environment that allow a different type of at-
tack thereby lowering the security level. The presentation below heavily relies
on [37] where this approach was first proposed.
Defining adequate protection. The Data Encryption Standard (DES) is a

symmetric cryptosystem with 56-bit keys, published in 1977 by the U.S. Depart-
ment of Commerce [42] and was brought up for reaffirmation, like other Fed-
eral Information Processings Standards (FIPS), once every five years. There
was some skepticism about the security level of the DES. But despite exten-
sive cryptanalysis no better generic attack than exhaustive key search has been
found and the security level is generally believed to be 56.

Because the DES was widely adopted, there must have been broad consen-
sus that in 1982, the first year the DES would come up for review, it offered
an adequate amount of protection for commercial applications. For that rea-
son, and for the purposes of this chapter, adequate protection is defined as the
security offered in 1982 by the DES. Disregarding the effect of the constant of
proportionality, this is synonymous with security level 56 in 1982. In the re-
mainder of this section it is discussed what security level can be expected to
offer adequate protection until the year of one’s choice. It is left to the reader
to determine how the definition of adequate protection compares to one’s own
security requirements and, if desired, to change the default choice made above.
The paragraphs below may be helpful for this purpose.
The cost of breaking the DES. To put the definition of adequate protection
in a different light, in 1980 it was estimated that, in 1980 money and technology,
an exhaustive key search attack against the DES would require on average 2 days
on a device that would cost approximately US$50 million to build. The design
underlying this estimate is fully parallelizable as defined above: in 1980 the DES
could be broken in approximately 100M dollardays. The cost does not include
the one time overhead for the detailed design specifications.

7

Modelling the effect of changes in the computational environment.

Technical progress had a profound effect on the security of the DES. In 1993 a
DES key search engine was proposed that would require about 150K dollardays,
down from the 100M dollardays required by the 1980 design [62]. And in 1998
a parallel hardware device was built for US$130K including design overhead,
and used to crack the DES in a matter of days [16, 27]. Thus, though security
level 56 may have offered adequate protection for commercial applications in
1982, this is no longer the case in 2004.

The effect of changes in the computational environment is modelled using
Moore’s law. Traditionally, it says that the computing power per chip doubles
every 18 months. To make Moore’s law less technology dependent the following
variant is adopted for this chapter:

Moore’s law. The cost of any fixed attack effort drops by a factor 2 every
18 months.

This can be seen to be in reasonable correspondence with the various DES
cracking devices referred to above. It follows that the 100M dollardays cost of
the 1980 DES cracker would be reduced to 40M dollardays in 1982, because
40 ≈ 100/224/18.

Obviously, all estimates of this sort based on Moore’s law have to be taken
with a grain of salt and interpreted appropriately: the approximate values and
growth rates matter, not the precise figures. General agreement on Moore’s law,
however, is impossible to achieve. As formulated above, it is an acceptable com-
promise between those who argue that this rate of progress cannot be sustained,
and those who find it prudent to expect more rapid progress or that, based on
economies of scale arguments, an even stronger version of Moore’s law would
apply when highly parallel devices are taken into account (cf. [28]). Another
argument in favor of more rapid progress is that cost according to the definition
used in this chapter includes both time and the price of memory: speed may
increase—traditionally the only effect taken into account in Moore’s law—while
simultaneously the price of memory may drop, combined with the fact that
for asymmetric cryptosystem cryptanalysis larger memories may allow closer to
optimal parameter selection and thereby make computations much more time
efficient (cf. [36] and Section 6). But arguing against it is the observation that
memory speeds often lag behind, thereby affecting or possibly cancelling the
effect of processor speedups. Overall the choice made in this chapter must be
seen as a compromise that attempts to take all processor speed and memory
issues into account.
The cost of adequate protection. Adequate protection was defined as the

security offered by the DES in 1982. The cost to break the DES in 1982 is
estimated as 40M dollardays. This leads to the following equivalent and more
generally applicable definition of adequate protection. Irrespective of the speed
or type of the cryptosystem, a cryptosystem is said to offer adequate protection
until a given year if the cost of a successful attack measured in that year—
and thus using the buying power of the dollar in that year—can be expected
to be approximately 40M dollardays. See below how to change the cost figure

8

corresponding to adequate protection from 40M to x ∗ 40M if 40M is felt to be
inadequate (x > 1), or overkill (0 < x < 1), or if the effect of inflation is not
adequately taken into account by Moore’s law. For reasonable values of x the
effect of the resulting corrections is mostly negligible, since only the approximate
values matter.

For asymmetric cryptosystems based on the factoring problem or the general
problem of computing discrete logarithms in multiplicative groups of finite fields
the 40M dollardays cost measure will be used to determine adequate protection.
For other asymmetric cryptosystems based on the discrete logarithm problem,
symmetric cryptosystems, and cryptographic hash functions one can instead
use the approach based on security levels combined with Moore’s law. To allow
comparison with DES security levels the effect of the constant of proportionality
must be taken into account, at least in principle. Below it is shown how this is
done.
The effect of Moore’s law. It follows from Moore’s law that to maintain

the same amount of protection once every 18 months the security level should
be incremented by one, assuming the speed is not affected. Thus, assuming the
same speed as the DES, a symmetric cryptosystem of security level 56+10 = 66
would offer adequate protection in 1997, since 1997 − 1982 = 15 years covers
10 periods of 18 months. Under the same assumption, security levels 76 and 86
should be adequate until 2012 and 2027, respectively.

More in general, a symmetric cryptosystem of speed comparable to the DES
would offer adequate protection until the year y = 1982 + 15x if its security
level is λ = 56+10x. Given a security level λ, the year y(λ) until which it offers
adequate protection is thus calculated as

y(λ) = 1982 +
3(λ − 56)

2
.(1)

Conversely, given a year y, the security level λ(y) that offers adequate protection
until year y is

λ(y) = 56 +
2(y − 1982)

3
.(2)

Although this may be a reasonable model that leads to a useful computational
tool, it would stretch the imagination to use it beyond, say, the year 2050. But
it is, for instance, not unreasonable to conclude that the widely used security
level λ = 80 offers adequate protection until the year

y(80) = 1982 +
3(80 − 56)

2
= 2018

(cf. equation (1)).
The effect of the constant of proportionality. If a symmetric cryptosys-

tem is s > 0 times faster than the DES, exhaustive key search and thus generic
attacks are s times faster as well. To compensate for s 6= 1 without changing
the year, log2 s should in principle be added to the security level; or if the se-
curity level should be left unchanged, 1.5 log2 s must be subtracted from the

9

year. Ciphers faster than the DES (s > 1) require a higher security level, or the
same security level does not last as long. But for slower ciphers (s < 1) a lower
security level suffices, or the same security level lasts longer.

In theory this correction based on the speed compared to the DES takes care
of the unspecified constant of proportionality mentioned above. In practice,
however, this correction should not be used. Not only is | log2 s| typically small,
but also making such corrections would lead to a misleading sense of precision
contradictory to the way these estimates should be interpreted.
Alternative definitions of adequate protection. Defining adequate pro-

tection as the security offered by security level 56 in 1982 may be a reasonable
compromise. But it is a subjective choice. If ‘security level 56 in year Y ’ better
reflects one’s feelings, then one should replace in the sequel all occurrences of
‘1982’ by Y . Furthermore, in the ‘40M dollardays cost’ associated with ade-
quate protection, the ‘40’ must be divided by 22(Y −1982)/3. For instance, if the
DES was still felt to offer adequate protection in the year 1990, replace 1982 by
1990 throughout, and ‘40M’ by 1M , since 22(1990−1982)/3 ≈ 40.

Similarly, if one is more comfortable with interpretation of cost figures and
finds the ‘40M dollardays’ inappropriate, replace the ‘40’ in the sequel by x ∗ 40
for any x 6= 1 of one’s choice. As a consequence, all occurrences of the year 1982
must be replaced by 1982− 1.5 log2 x.
Modelling the effect of changes in cryptanalytic capabilities. Moore’s
law may act as a self-fulfilling prophecy by influencing and controlling the de-
velopment of the steady stream of improvements required to sustain it. There
is no similar mechanism controlling the rate of cryptanalytic progress.

Moore’s law affects all cryptosystems across the board in the same way by
lowering the cost of attacks, cf. discussion of Moore’s law in Section 2. Crypt-
analytic progress, on the other hand, usually affects the security level of one
particular type of cryptosystem while leaving that of others untouched. An
advance in factoring does not affect the security level of symmetric cryptosys-
tems, and a newly found peculiarity in the design of an S-box used by some
symmetric cryptosystem has no effect on the security level of RSA or of symmet-
ric cryptosystems using non-affected designs. Furthermore, the overall effect of
cryptanalytic progress may vary from system to system. When a new weakness
in a symmetric cryptosystem or cryptographic hash function is discovered, it
may be possible to modify or simply retire it, because relatively small modifica-
tions often render new attacks useless and, if not, there are enough equivalent
alternative cryptosystems and functions to choose from. In the asymmetric
case the situation is different. The luxury of a quick switch to an alternative
cryptosystem can generally not be afforded because there are not that many
different equivalent schemes. As a result, adapting key lengths may be the only
option to compensate for the effects of a new cryptanalytic insight such as a
new algorithm to solve the mathematical problem underlying an asymmetric
cryptosystem.

There are cryptographic applications, however, where system modification
or retirement and key length adaptations are not feasible, and where adequate
protection must be maintained for an extended period of time, even in the pres-

10

ence of cryptanalytic progress discovered after the application was put to use.
For instance, in long term confidential data storage in an infrastructure that
lacks appropriate physical protection, the fixed stored data must remain unde-
cipherable as long as the confidentiality must last. With the present state of
the art of cryptology disasters can always happen, and adequate long term pro-
tection cannot be fully guaranteed. Barring disastrous cryptanalytic progress,
however, proper application of suitably modelled cryptanalytic progress leads
to an acceptable practical solution for long term protection as well.

It remains to model cryptanalytic progress. A priori it is unclear how this
should be done. However, since there is no reason to expect significant changes in
the global research community that is interested in cryptanalysis, it is assumed
that the rate of cryptanalytic progress in the future is the same as it was since
cryptography became more of a mainstream public-domain activity. Because
past cryptanalytic progress varied considerably between different cryptographic
systems, a specific cryptanalytic progress model is defined for each of the various
cryptosystems. The details of each model are described in the relevant sections
below.

3 Symmetric cryptosystems

Symmetric cryptosystems are encryption methods where sender and receiver
share a key for encryption and decryption, respectively. Examples are block and
stream ciphers. There is a great variety of such cryptosystems, but only a few of
them are generally accepted and widely used. The popular block ciphers, with
the exception of the original DES, can be expected to offer adequate protection
(cf. Section 2) for the foreseeable future. If adequate protection until the year
2018 is desired the key generation method should use at least 80 random bits.
With 90 random bits adequate protection until at least 2030 may be expected.
Thus, from a pragmatic point of view, key length selection for block ciphers is
hardly an issue as long as one sticks to widely used modern schemes. In this
section some issues are discussed concerning security levels and key lengths for
a number of popular block ciphers.

Stream ciphers are more problematic. They are not considered here for
a variety of reasons. Often their design is proprietary or their usage subject
to licensing restrictions. Their cryptanalysis is too much in a state of flux and
their security level influenced by the way they are used. For instance, the strong
version A5/1 of a stream cipher used in the European cellphone industry can
trivially be broken [5], a similar application of the stream cipher RC4 was found
to be completely insecure [17], and the stream cipher SEAL has been revised
several times [22]. Finally, all six stream ciphers submitted to the NESSIE
initiative [43] were found to be too weak and none was selected, illustrating the
apparent difficulty of designing stream ciphers.
Block ciphers. Table 1 lists some common block ciphers along with their key
length choices, block lengths, and the most up-to-date information about their
security levels under generic attacks. The list is for illustrative purposes only and

11

Table 1: Common block ciphers.
name key length block length security level
DES 56 64 56

two key triple DES 112 64 112
three key triple DES 168 64 123

DESX 120 64 120
IDEA 128 64 128

AES-128 128 128 128
AES-192 192 128 192
AES-256 256 128 256

is not, nor is it meant to be, exhaustive. In- or exclusion of a cipher in no means
indicates the author’s support for that cipher or lack thereof. Although other
types of attacks such as differential and linear cryptanalysis are not considered
to determine the security level (cf. Section 2), the more recent block ciphers are
designed to have strong resistance against those attacks as well.

Typically, key lengths of block ciphers are not variable parameters, so for a
fixed block cipher iterated application is the only way to increase its security
level. Double encryption using two independent keys is widely believed to add
little to the security level (cf. [64]) and is therefore not considered in Table 1.
Triple encryption, however, has significant effect on the security level, as shown
for the DES in Table 1. It turned out to be a convenient way to boost security
by repeated application of an available cipher when replacement by a stronger
one is not an option. Usually the middle encryption is a decryption operation
for easy compatibility with the original single encryption. The two key variant
uses the same key for the first and last iteration, but a different for the middle
decryption iteration, whereas the three key variant uses three independent keys
for the three iterations.

For triple DES the security levels in Table 1 are based on the analysis in [64].
For two key triple DES the security level of 112 assumes that the known plaintext
consists of at most 212 blocks; for instance, with 230 known plaintext blocks the
security level would be only about 100 (cf. [63]). Also, under a different attack
model where an unlimited number of chosen plaintexts is allowed, the security
level drops even sharper, namely from 112 to about 75 (cf. [64]). For DESX
(cf. [25]) and IDEA (cf. [4]) the security levels are based on the fact that even
after many years no effective cryptanalysis has been published, as far as generic
attacks are concerned. For the Advanced Encryption Standard (AES) they may
be based on wishful thinking because at the time of writing of this chapter the
AES has been scrutinized for only a few years. But this is combined with the
expectation (based on the sudden replacement of SHA by SHA-1, see Section 4)
that if anytime soon something serious affecting the AES would be found, a
modification would be introduced. Table 1 shows that, other than for legacy
reasons and if the security level is the only criterion, there is in principle no
reason to settle for a cipher that offers a security level lower than its key length.
Performance considerations. As indicated in Section 2 a proper interpre-

tation and comparison of the security levels in Table 1 in principle requires
knowledge of the relative speeds of the various block ciphers. It is also men-

12

tioned, however, that this type of ‘overprecision’ has no practical relevance. This
is illustrated here.

According to equation (1) from Section 2, security level λ offers adequate

protection until the year y(λ) = 1982 + 3(λ−56)
2 , disregarding the effect caused

by the speed relative to the DES. A block cipher of security level λ ≥ 128
leads to an un-corrected year estimate of y(128) = 2090 and beyond. Proper
interpretation of this result is that security level 128 should suffice for, say, the
next three decades and probably even longer. Incorporation of the effect of the
speed compared to the DES has no effect. For instance, IDEA and the DES
have comparable hardware performance but in software IDEA is approximately
twice faster (i.e., s = 2 in the notation of Section 2). So, in principle it would be
‘correct’, and may be even believed to be prudent, to subtract 1.5 log2 2 = 1.5
from the year 2090, as set forth in Section 2. But the practical conclusion
that IDEA should offer adequate security for the foreseeable future remains
untouched by this correction. The same practical conclusion would be reached
for block ciphers of security level 128 that would be a million times faster or
slower than the DES.
Other considerations. Another issue with block ciphers is their block length.
With b-bit blocks, and under reasonable assumptions regarding randomness of
the inputs and the cipher’s output behavior, a duplicate output block may be
expected after about 2b/2 blocks have been encrypted. A duplicate generated
with the same key may facilitate cryptanalysis and should be avoided.

When b = 64, this implies that the key should be refreshed well before
232 blocks of 64-bits (i.e., 32 Gigabytes) have been encrypted—say after 10
gigabytes. When b = 128, the likelihood is negligible that duplicate blocks are
encountered for any realistic amount of data properly encrypted with the same
key.
Symmetric key lengths that offer adequate protection. With the ex-

ception of the DES, all ciphers listed in Table 1 offer adequate protection with
respect to generic attacks at least until the year 2030: even the weakest among
them, two key triple DES, may be expected to offer adequate security until 2066

since, according to equation (1) in Section 2, y(112) = 1982+ 3(112−56)
2 = 2066.

Correction for the performance degradation compared to the DES (by − log2 1/3
resulting in y(112) = 2067.5, since s would be 1/3) is meaningless, since the pre-
cision suggested by the original calculation is overzealous already: the model is
nowhere near precise enough to draw conclusions up to a specific year, let alone
half a year, and certainly not if it is more than 50 years in the future.

Given the virtual lack of cryptanalytic progress with respect to generic at-
tacks and assuming current cryptanalytic trends persist (i.e., that cryptanalysis
remains relatively ineffective), the ciphers of security level ≥ 128 can be ex-
pected to offer adequate protection for any conceivable commercial application,
including long term data storage, and as long as anyone can reasonably predict.
Thus, most ciphers from Table 1 with the exception of the DES can safely be
recommended, as long as the amount of data that will be encrypted with a single
key is limited. If the latter cannot be guaranteed, the AES should be used.

13

In [6], which dates back from 1996, it is recommended that for adequate
protection for the next 20 years, i.e., until the year 2016, keys in newly-deployed
symmetric cryptosystems should be at least 90 bits long. According to the
estimates presented here, security level λ = 90 would offer adequate security

until the year y(90) = 1982 + 3(90−56)
2 = 2033 and security level λ(2016) =

56 + 2(2016−1982)
3 = 78 2

3 would suffice until the year y = 2016 (cf. equations (1)
and (2) in Section 2). Thus, the recommendation of [6] is conservative and can
be followed without hesitation.

It may seem wasteful to use a key length such as 128 that leads to a security
level that is so much larger than necessary. As far as the speed of symmetric
cryptosystems is concerned, this is not an issue because key sizes do not have
a major impact on their speed. If the ‘overlong’ key is problematic because of
other concerns such as cost of key exchange or storage, a sufficiently shortened
but still adequately long version may be used and padded with a fixed sequence
of bits known as salt (cf. [53]). If used, salt should be applied with great care.
For instance, in case of triple DES care must be taken that it does not reduce the
encryption to double encryption, thereby effectively almost halving the length
of the already shortened key (cf. [64]). Since algorithms are generally designed
assuming the entire key is secret, as a general practice it is recommended to
derive the actual key from the shortened version and the salt by hashing or a
similar mixing operation.

4 Cryptographic hash functions

Given an input consisting of an arbitrary sequence of bits, a cryptographic hash
function efficiently produces a fixed length output, the hash of the input. In
this section H denotes the bit-length of the hash. The output is intended as
a ‘fingerprint’ of the input in data integrity and authentication applications.
Therefore, cryptographic hash functions must have a number of properties that
make them suitable for these applications. In the first place given any output
value for which the corresponding input is unknown, it must be computationally
infeasible to find any input that hashes to that output. Secondly, for a known
(input, output) pair, it must be computationally infeasible to find another in-
put that hashes to the same output. Although these two properties suffice for
many applications (cf. [2]) it is common to assume a stronger version of the last
property, namely that it must be computationally infeasible to find two distinct
inputs that hash to the same output. This last requirement is often referred to
as collision resistance.

The issue at discussion here are the requirements on H without which a
cryptographic hash function cannot have the desired properties, i.e., the length
requirements that must be met irrespective of any of the other properties of the
hash function. Obviously, satisfying the requirements on H does not guarantee
proper design of the hash function, it is just a necessary first step.

Assume that the output of a hash function behaves as a uniformly distributed
random H-bit value. It follows from the first two requirements that H must be

14

Table 2: Common cryptographic hash functions.
name H security level

RIPEMD-160 160 80
SHA-1 160 80

SHA-256 256 128
SHA-384 384 192
SHA-512 512 256

chosen such that it is computationally infeasible to perform 2H applications of
the hash function (for random inputs). Thus, to achieve security level λ and to
satisfy the first two requirements, it must be the case that H ≥ λ.

The collision resistance requirement, however, has more severe consequences
for H . If values are drawn at random from a set of cardinality C then the
expected number of draws before an element is drawn twice (a so-called collision)
is approximately 1.25

√
C. This fact is commonly known as the birthday paradox.

If follows that if the hash is computed of different randomly selected inputs,
a duplicate output can be expected after about 1.25 ∗ 2H/2 attempts. This
birthday paradox attack is fully parallelizable with cost, as defined in Section 2,
essentially proportional to 2H/2 (cf. [64]). To achieve security level λ and to
satisfy the third requirement, it must therefore be the case that H ≥ 2λ.

The search for a collision as described above is commonly known as a col-
lision attack. Resistance against exhaustive key search and collision attacks
play comparable roles in the contexts of symmetric cryptosystems and crypto-
graphic hash functions, respectively: well-designed symmetric cryptosystems do
not allow generic attacks faster than exhaustive key search, and well-designed
cryptographic hash functions do not allow discovery faster than by collision
attacks of a distinct pair of inputs with identical outputs.
Cryptographic hash functions. Table 2 lists some common hash functions
along with their output lengths and the most up-to-date information about their
security levels under collision attacks (cf. [54]).
Cryptanalytic developments. Well-known precursors of the cryptographic

hash functions in Table 2 are MD4, MD5, and RIPEMD-128, all with H = 128,
and SHA, with H = 160. Significant deficiencies were found in their design.
MD4 is considered to be broken and it is widely suspected that the security levels
of MD5 and RIPEMD-128 are both lower than 64. Furthermore, a sufficiently
serious problem was found in SHA to replace it by SHA-1. For a discussion of
these developments see [15], [50], and also [9].

The results of those cryptanalytic findings were incorporated in the design
of the cryptographic hash functions in Table 2. That is no guarantee that those
functions do not allow faster attacks than collision attacks. But it indicates
that the functions from Table 2 were designed with a great deal of care and that
an unanticipated new weakness most likely requires new cryptanalytic insights.
Given how infrequently such insights occur, it is reasonable at this point to as-
sume that the security levels in Table 2 are accurate for the foreseeable future.
This should be combined with a conservative choice of cryptographic hash func-
tion and, where possible, application of the methods from [2] to design one’s

15

protocols in such a way that the cryptographic hash function does not have to
be collision resistant, i.e., does not have to meet the third requirement. If the
latter is properly done it effectively doubles the security level.
Performance considerations. Whether or not a cryptographic hash function
of hash length H offers adequate protection until a certain year, as defined in
Section 2, in principle depends on the relative speed of the hash function com-
pared to the DES. With inputs of comparable length, the speed of all common
cryptographic hash functions is comparable to the speed of common blockci-
phers, such as the DES. Thus, the effect of incorporating the speed is negligible
to begin with. Furthermore, as argued in Section 3, for the larger H values the
effect is best neglected anyhow because it would lead to inappropriately precise
interpretation of inherently imprecise figures.
Cryptographic hash lengths that offer adequate protection. In com-

bination with the findings of Sections 2 and 3 it follows that cryptographic
hash functions with 2λ-bit hash values offer adequate protection until the year

y(λ) = 1982 + 3(λ−56)
2 (cf. equation (1) in Section 2). More in particular,

the above cryptographic hash functions with H = 160, assuming they re-
main unbroken, may be expected to offer adequate protection until the year
y(160/2) = 2018. All functions listed in Table 2 can be expected to offer ad-
equate protection at least until the year 2030, very conservatively estimated,
under the proviso that the functions with 160-bit hash values are used in com-
bination with the methods from [2]. As a rule of thumb, hash lengths must be
chosen twice longer than symmetric key lengths.

5 Asymmetric methods

Private key and public key. In asymmetric cryptosystems each user, say
A, has its own pair of keys: A’s private key sA and the corresponding public
key pA. Typically, the public key pA can be used by any party to encrypt
information intended for user A, which can then be decrypted by A using sA.
Alternatively, A may use sA to digitally sign documents, and any party can
use pA to verify the resulting digital signatures. For some cryptosystems a single
private/public key pair allows both en-/decryption and digital signatures, but
great care has to be taken when doing so (cf. [12], [13], and [21]).
Performance deterioration. For symmetric cryptosystems and crypto-

graphic hash functions the number of realistic alternatives is fairly limited,
and their speed hardly depends on the key or hash length one settles for. For
asymmetric cryptosystems the situation is different. There the performance of
both the public operation (encryption or signature verification) and the private
one (decryption or signature generation) deteriorates markedly, and possibly
to different degrees, as the security level increases. Therefore, for asymmet-
ric cryptosystems it is more important than for symmetric cryptosystems and
cryptographic hash functions to determine the smallest key length that still of-
fers the right amount of protection, thereby balancing security and performance
requirements.

16

The design of asymmetric cryptosystems. The design of all common
symmetric cryptosystems and cryptographic hash functions is mostly based on
a combination of hard-to-define ingredients such as experience, avoidance of
common errors, incorporation of the latest cryptanalytic insights, taste, sound
judgment, and luck. As argued in [29], the design of the AES is a first at-
tempt to a more scientific, less artful approach to block cipher design. All
common asymmetric cryptosystems, on the other hand, are based on a well-
defined mathematical problem, if at all possible combined with a proof that
solving the latter is equivalent to breaking the cryptosystem. The security of an
asymmetric cryptosystem is then based on the hope and belief that the mathe-
matical problem does not allow an efficient solution. Sometimes that hope turns
out to be ill-founded. For instance, the once popular trapdoor knapsack public
key cryptosystems (cf. [40]) were found to be susceptible to attacks using lattice
basis reduction. Efficient lattice basis reduction methods thus meant the end for
trapdoor knapsack asymmetric cryptosystems. Refer to [45] for the extensive
literature on these and related subjects.
Factoring and discrete logarithms. The two mathematical problems un-

derlying the popular and by now ‘classical’ asymmetric cryptosystems are inte-
ger factorization and computing discrete logarithms, as described below. Both
these problems have been the subject of active research during the last few
decades. Also, the cryptographic protocols they are embedded in have been
widely studied, in various cases resulting in provable equivalence of breaking
the protocol and solving the mathematical problem. Despite occasional jumps
due to theoretical advances, it turned out that the practical implications of the
solution methods for the mathematical problems underlying asymmetric cryp-
tosystems so far always displayed a smooth pattern without jumps or unwelcome
‘surprises’. The assumption that this same smooth pattern persists allows rea-
sonably well-founded analyses of key lengths required for adequate protection
in the future. These analyses are presented in the subsequent sections.

It should be understood, however, that a clearly discernable and well-established
past pattern in practical cryptanalytic progress is no guarantee that the future
pattern will be the same or that there will not be any surprising breakthroughs
with immediate practical consequences. With the present state of the art there
is no hard proof of the security of any of the popular asymmetric cryptosystems,
simply because there are no proofs yet of the difficulty of any of the underlying
mathematical problems: the only evidence of their difficulty is our failure to
solve them. This is independent of any proofs of equivalence between a cryp-
tosystem and its underlying mathematical problem. To refer to this provable
equivalence as ‘provable security’, as common in the cryptographic literature,
may be misleading, since what it actually means is ‘provable equivalence to a
problem of unproved hardness’.

Roughly speaking, all common asymmetric cryptosystems are based on one
of the following two problems, or a variation thereof:

Integer factorization. Given a composite integer n > 0, find integers u > 1
and v > 1 such that n = uv.

17

In RSA, the most common factoring based asymmetric cryptosystem, a
user’s public key contains the integer n, the corresponding private key
contains (information equivalent to) u and v, and n is unique per user.

Discrete logarithm. Given an element g of a multiplicatively written group
G and an element h in the subgroup 〈g〉 generated by g, find an integer k
such that gk = h. The smallest non-negative such k is referred to as the
discrete logarithm of h with respect to g and denoted logg h.

For additively written groups one would look for an integer k such that
kg = h. The smallest non-negative such k is again referred to as logg h.

In discrete logarithm based asymmetric cryptosystems, a user’s public
key contains g and h and the corresponding private key contains logg h.
Different users may share the same g but use different h’s.

The traditional discrete logarithm problem refers to the case where G is chosen
as the multiplicative group (Fp`)∗ of a finite field Fp` of cardinality p`, for some
prime p and positive integer `.

Instances of these problems can easily be generated that are suitable for
cryptographic applications and generally believed to be hard to solve. In the
sections below it is discussed how to do this in such a way that the corresponding
cryptosystems offer adequate protection until a specified year, as defined in
Section 2. This has certain consequences for the size of the integer n and its
factors, for the cardinality # 〈g〉 of the subgroup 〈g〉, and for the cardinality
p` − 1 of the group G = (Fp`)∗ if the traditional discrete logarithm problem is
used. Intuitively this is rather obvious, since small integers are easy to factor,
small factors are easy to find, and discrete logarithms are easy to calculate if
〈g〉 is small. In Section 6 the requirements on n and its factors are discussed,
and in Section 7 the same is done for g both for the case G = (Fp`)∗ and for
more general groups G.
Other asymmetric cryptosystems. There are quite a few asymmetric cryp-
tosystems that are based on different mathematical problems than the currently
popular ones mentioned above, but that have not yet gained general acceptance.
The reason for the latter is related to the underlying mathematical problem, the
cryptographic protocol it is embedded in, or a combination of these issues. There
may be skepticism about the difficulty of the mathematical problem because it
has not been studied long enough. Or the effectiveness of solution methods
may be hard to judge or in a constant state of flux, making it difficult to recom-
mend secure parameter choices. Also, cryptographic protocols that are provably
equivalent to the mathematical problem may still be lacking, or the cryptosys-
tem may simply be too impractical. Asymmetric cryptosystems that have any
of these shortcomings are not further discussed in this chapter. Examples are
the recently proposed lattice based cryptosystems (cf. [45]), such as [1], [20],
and, in particular, NTRU [23] (even though it was not originally designed as a
lattice based cryptosystem). Although NTRU looks promising, due to frequent
protocol design tweaks the dust has not settled yet and it is too early for a fair

18

security assessment. The reader is recommended to consult the recent cryptol-
ogy literature to find the latest updates on asymmetric cryptosystems that are
not treated here.

6 Factoring based cryptosystems

There are several types of asymmetric cryptosystems that rely for their security
on the hardness of the integer factorization problem: if the integer factorization
problem can be solved for a certain composite integer referred to as the modulus
n, then the cryptosystem using that n can be broken. Thus, factoring the
modulus suffices to break the cryptosystem. In this section its is discussed
how n should be selected in such a way that the integer factorization problem
for n offers adequate protection until a year of one’s choice. It should be kept
in mind, however, that for most common factoring based cryptosystems (such
as RSA) it has, in general, not been proved that factoring the modulus is also
necessary to break them, although cryptosystems equivalent to factoring do
exist. An example is Rabin’s signature scheme (cf. [49]).
Main variants. The way the modulus is constructed depends on the factoring
based cryptosystem one uses. In the most common factoring based cryptosys-
tems the modulus is the product of two primes of approximately the same size
(cf. [51]). A variation, RSA multiprime (cf. [51]), improves the efficiency of the
private operations by allowing more than two factors of approximately equal size
in the modulus. Less common variants are RSA for paranoids [56], where the
private operations are performed modulo the smallest prime factor of the mod-
ulus, and variants where the modulus contains repeated factors. Requirements
on the size of the modulus and its factors are discussed below. For any of the
variants moduli can be constructed efficiently because primes of any practical
size can be generated quickly.
Trial division. The conceptually most straightforward way to factor a com-

posite integer n is by trying if n is divisible by 2, 3, 5, 7, 11, 13, . . ., successively
trying all primes until the smallest proper divisor is found. This process is
known as trial division. It remains the method of choice of amateur-factorizers.
For that reason a detailed explanation of the cryptanalytic ineffectiveness of
trial division is provided.

For randomly selected composites without known properties, and therefore
not stemming from cryptographic applications, trial division is often a very
efficient way to find a factor because for random composites the smallest factor
can be expected to be small: half of the random composities are even, so the
first trial division attempt will be successful in 50% of the cases, one third of
the remaining (odd) numbers is divisible by three, etc. It is very easy, however,
to construct composites for which trial division is totally ineffective. This can
be seen as follows.

According to the prime number theorem the number of primes up to x is
proportional to x

log x . This means that, to find the smallest prime factor p

of n using trial division, on the order of p
log p smaller primes have to be tested

19

before p is found. Because the cost of each attempt is at least proportional to the
logarithm of the number tested and because the primes ≤ p can be generated in
time proportional to p, the overall computational effort to find the prime factor p
of n is proportional to p. Thus, if n is constructed as the product of two, say,
b-digit primes, the computational effort to factor n using trial division is on the
order of 10b, which can be parallelized in any way one sees fit by distributing
ranges of candidate factors. Even for moderate b such as 50 a computational
effort of this magnitude is out of reach, also if any realistic level of parallelism
is applied. Furthermore, there are other factoring methods that would factor
such n much faster. These other methods also allow arbitrary, but even much
simpler, parallelization.

Another consequence of the prime number theorem is that the number of
b-digit primes outnumbers the number of smaller primes. Thus, it does not help
much, as often proposed, to exclude from the search in the example the primes
having fewer than b digits thereby limiting the trial divisions to b-digit primes.
This counting argument needs to be refined if binary as opposed to decimal
length is used—amateur-factorizers, however, are usually bit-challenged and
prefer decimal notation.
Exponential-time factoring algorithms. In the worst case where n has two
factors of approximately equal size the computational effort to factor n using
trial division is proportional to

√
n = n1/2 = exp((log n)/2). With a constant

multiple of the input length log2 n in the exponent, it follows that trial division is
an exponential-time algorithm. There are exponential-time factoring algorithms
that are much faster than trial division. For instance, Pollard’s rho method [46]
can be expected to find the smallest p dividing n after a computational effort
that is not proportional to p but to

√
p, i.e., proportional to n1/4 in the worst

case p ≈ √
n.

If exponential-time algorithms were the fastest factoring algorithms, it would
be possible to select moduli n in such a way that log2 n is proportional to the de-
sired security level: if Pollard-rho would be the best factoring algorithm, then
4λ-bit moduli would offer security level λ. Unfortunately for cryptographic
applications of factoring based asymmetric cryptosystems, exponential-time al-
gorithms are by no means the best that can be done for factoring. As indicated
above, much faster factoring algorithms exist. As a consequence, the required
modulus bit length grows much faster than a linear function of the desired
security level. In particular, modulus sizes grow much faster than symmetric
cryptosystem key sizes and cryptographic hash function sizes.
Polynomial-time factoring algorithms. On the opposite side of the spec-

trum from exponential-time algorithms are the polynomial-time algorithms: a
polynomial-time factoring algorithm would require computational effort pro-
portional to at most (log n)c, for some constant c. Although a polynomial-time
factoring algorithm has been published in [59], it requires a not-yet-existing
type of computer, a so-called quantum computer, to run it on. If the engi-
neering problems of building a large enough quantum computer can be solved,
factoring may be done in polynomial time, which will most likely mean the end
for factoring based asymmetric cryptosystems. Even a very modest prototype

20

quantum device whose factoring capabilities would be non-trivial but well below
those of an ordinary PC, for instance a device that would be able to factor a
128-bit RSA modulus in half an hour, would suffice to shake our confidence in
the practical difficulty of integer factorization. Most popular number theory
based asymmetric cryptosystems would be affected to the same dramatic ex-
tent. The effect on symmetric cryptosystems and cryptographic hash functions
would be less significant.

Alternatively, development of a polynomial-time factoring algorithm that
would run on a traditional computer, a possibility that cannot yet provably be
excluded, would have the same consequence. Even if the method has complexity
O((log n)12) and will not be a practical threat, its mere existence would be
devastating for most current asymmetric cryptosystems—irrespective of future
improvements and eventual practical applicability of the method.

At this point there is not sufficient reason to suspect that practical polynomial-
time factoring is a realistic prospect. The possibility of practical polynomial
time factoring is therefore not included in the analysis below.

What can realistically be done, however, is something that lies between
exponential-time and polynomial-time factoring. These so-called subexponential-
time factoring algorithms are further discussed below.
Subexponential-time factoring algorithms. The computational effort re-
quired for an exponential-time factoring algorithm is bounded from above by a
constant positive power of

n = exp(log n).

For a polynomial-time method the required computational effort would be bounded
from above by a constant power of

log n = exp(log log n).

To express the computational effort of algorithms that are faster than exponen-
tial time but not as fast as polynomial time, both possibilities are captured in
a single formula in the following way. Let

L[n, r, α] = exp(α(log n)r(log log n)1−r).

Exponential time is characterized by r = 1, polynomial time by r = 0, and
everything in between, i.e., 0 < r < 1 is referred to as subexponential time
(with, in all cases, α a positive constant).

There are many factoring algorithms for which the computational effort is
expected to be L[n, 1/2, 1 + o(1)] for n → ∞ (i.e., asymptotically for n to
infinity, the value of α approaches 1). For most of these algorithms the analysis
is based on heuristic arguments, for some it can rigorously be proved. Note
that, on the scale from r = 0 to r = 1 suggested above, L[n, 1/2, 1 + o(1)],
i.e., r = 1/2, is halfway between exponential time and polynomial time—this
is just a curiosity of this parameterization and should be taken with a grain of
salt. One example is the quadratic sieve factoring algorithm (QS) which can
heuristically be expected to factor n, irrespective of any properties its factors

21

may have, for a computational effort that behaves as L[n, 1/2, 1 + o(1)] for
n → ∞ (cf. [48]). Another example is the elliptic curve method (ECM) which
can heuristically be expected to find a factor p of n for a computational effort
(log n)2L[p, 1/2,

√
2 + o(1)] (cf. [38]); in the worst case p ≈ √

n this becomes
L[n, 1/2, 1 + o(1)].
Number Field Sieve. Because so many quite different methods all share

essentially the same expected computational effort L[n, 1/2, 1 + o(1)], this was
suspected by some to be the ‘ultimate’ complexity of factoring, although the
author is unfortunately not aware of any published conjectures. In 1988 these
cryptographic dreams were shattered by John Pollard’s invention of a new fac-
toring algorithm, cf. Pollard’s first article in [32]. The blow was, however,
softened considerably by credible looking evidence that the new method would
only become practical beyond key sizes that were then employed in practice.
Even though as a result of Pollard’s invention long term expectations suddenly
changed significantly, the practical impact turned out to fit smoothly on the an-
ticipated cryptanalytic curve. The credible looking evidence later turned out to
be wrong—if the new algorithm had immediately been as effective as it turned
out to be, its practical impact would have been alarming too.

The original version of the new factoring algorithm, now referred to as the
Special Number Field Sieve (SNFS), was intended to factor the ninth Fermat

number F9 = 229

+1, a number that was indeed completely factored in 1990 [33].
The SNFS can be applied to numbers that allow a particularly ‘nice’ polynomial
representation, such as F9. Based on heuristic arguments the expected compu-
tational effort is L[n, 1/3, 1.526 + o(1)]. The generalized version, now referred
to as the Number Field Sieve (NFS), factors any number n for a (heuristic)
expected computational effort L[n, 1/3, 1.923 + o(1)] (cf. [32]), which was later
improved to L[n, 1/3, 1.902 + o(1)] (cf. [10]).

On the scale from exponential time (r = 1) to polynomial time (r = 0)
the NFS represents substantial progress from the halfway point (r = 1/2) in
the direction of polynomial-time algorithms. Since the invention of the NFS no
progress affecting the current best r = 1/3 value has been published (with the
exception of r = 0 for quantum computers).
The cost of the NFS. Let the cost function be as defined in Section 2, i.e.,

the product of time (or, equivalently, computational effort) and equipment cost.
The NFS has two major stages, the relation collection stage and the matrix
stage. As shown in [3] and [35], the cost of the NFS depends on the way the
relation collection stage is carried out. If a memory-intensive approach based
on sieving is used the overall NFS cost behaves as L[n, 1/3, 2.852 + o(1)] for
n → ∞. An ECM-based approach is asymptotically considerably less costly:
just L[n, 1/3, 1.976 + o(1)] if the matrix step is done on a mesh of processors
and L[n, 1/3, 2.080+o(1)] if the matrix is done using more traditional methods,
and both for n → ∞.
NFS results. Compared to the older L[n, 1/2, 1 + o(1)]-methods, the NFS is

conceptually complicated and, originally, suffered from rather large o(1)-values.
Therefore, it was believed by some that the NFS had only theoretical but no

22

practical value (cf. [11]). However, a lot of progress has been made to improve
the method, thereby lowering the o(1)’s. As a result the NFS eventually sur-
passed the older methods also from a practical point of view. At the time of
writing of this chapter, the NFS is the method of choice for actual large-scale
distributed factorization experiments (cf. [8] and [18]) and special purpose fac-
toring hardware design proposals such as TWINKLE and TWIRL (cf. [58], [34],
and [57]). The following results have been obtained using the sieving-based
approach:

• Software implementation: a 576-bit modulus has been factored using
the NFS in about 12 years of computing time on a 1GHz Pentium III
processor [18]. In reality the attack made use of the full parallelizability
of the main part of the attack: it was done on m processors in 12/m
years of computing time per processor, for some large m. Assuming the
essential parts of a single 1GHz Pentium III processor can be obtained for,
say, US$100, a software attack on a 576-bit RSA modulus would cost less
than 0.5M dollardays.

• Special purpose hardware design proposal: using 90 nanometer
VLSI technology, it can be expected that factorization of a 1024-bit mod-
ulus takes at most one year using TWIRL, a special purpose hardware
device that takes at most US$1 million to build [36]. It follows that in
2004, at the time of writing this chapter, the cost of an attack on a 1024-
bit RSA modulus using dedicated hardware can be estimated as at most
400M dollardays.

The earlier 130 nanometer version of the same device has a cost that is 10
times as high. The relatively large cost reduction is due to the fact that
the larger memory of the later 90 nanometer design allowed much better
parameter choices and thus led to a more than proportional speedup. This
is an example of the effect that was noted in the discussion of Moore’s law
in Section 2. This remark is solely meant to explain why the 90 nanome-
ter datapoint is so much better than the previous 130 nanometer one, it
does not influence Moore’s law or the way it will be used for asymmetric
cryptosystems,

Actually, these results refer to just the relation collection step, in practice the
most cumbersome stage of the NFS factoring process. The other major stage,
the matrix step, although in theory equally costly, is in practice negligible com-
pared to the relation collection stage (cf. [3] and [35]).

Using L[n, 1/3, . . .]-based estimates (as shown below) it can be seen that
dedicated hardware is substantially more cost-effective than a software imple-
mentation. This implies that the hardware estimates lead to larger, more con-
servative RSA moduli. The estimates below are therefore based on the hardware
figures.
Extrapolation to other modulus lengths. The 400M dollardays cost to

factor 1024-bit moduli in the year 2004 is combined with the asymptotic cost

23

estimates for NFS to estimate the cost of factoring b-bit moduli in 2004 as

L[2b, 1/3, α]

L[21024, 1/3, α]
· 400M dollardays,

with α = 2.852 + o(1). For the sake of simplicity—and because no better
alternative is available—it is assumed that upon substitution the two o(1)’s
cancel. From a theoretical point of view this assumption is hardly acceptable,
but for limited range approximations the results of this compromise approach
have been satisfactory, so far. Although the 400M dollardays for 1024-bit moduli
is based on the sieving-based approach, the author found that rough estimates
for the ECM-based approach are not that much different. Therefore one may
alternatively replace 2.852 by 1.976 or 2.080 in the above estimate. For key
length estimate purposes α = 1.976 + o(1) is a more prudent choice than the
other two choices, because α = 1.976 + o(1) results in lower factoring costs
and therefore larger and more conservative choices for key lengths achieving
adequate protection.

As an example, 1248-bit moduli are roughly expected to be between

L[21248, 1/3, 1.976]

L[21024, 1/3, 1.976]
≈ 250

and
L[21248, 1/3, 2.852]

L[21024, 1/3, 2.852]
≈ 3000

times costlier to factor than 1024-bit ones. Similarly, 1536-bit moduli are be-
tween 137K and 26M times costlier and 2048-bit moduli are at least 2 billion
times costlier to factor than 1024-bit ones.

These extrapolation arguments are mostly useful to get a quick first impres-
sion of the cost of breaking a certain modulus size. If a more accurate estimate
is needed the much more cumbersome approach from [36] can be used.
Cryptanalytic developments. During the last three to four decades there

has been a steady stream of developments in integer factorization algorithms.
The practical performance of the best existing algorithms such as the NFS and
the ECM is still constantly fine-tuned and improved. This smooth progress is,
less frequently, combined with more substantial advances such as, most impor-
tantly, the invention of an entirely new method or, less dramatic but often with
important practical consequences, better ways to handle certain steps of exist-
ing methods. It is reasonable to assume that the trend as observed so far will
continue for the years to come.

Combining the occasional jumps and the regular smooth progress, the effect
of cryptanalytic progress on the difficulty of the integer factorization problem
turns out to be very similar to Moore’s law: overall, and on the same equip-
ment, the cost of factoring drops by a factor 2 every 18 months. According
to Moore’s traditional law as formulated in Section 2, the equipment cost also
drops by a factor 2 every 18 months. These two effects, cryptanalytic progress
and hardware advances, have in the past been independent and it is reasonable

24

to assume that they will remain to be so. As a result of the combination of
these two independent effects, the decrease in the cost of factoring is modelled
in the following way:

Double Moore factoring law. The cost of factoring any fixed modulus
drops by a factor 2 every 9 months.

As an example, in 2.5 years it can be expected that the cost of factoring a
1024-bit modulus is reduced to

400M

22.5·12/9
≈ 40M dollardays.

Similarly, over a period of 6 years it is expected that the factoring cost drops by
a factor 26·12/9 = 256. Thus, it would be conservative to expect that factoring
a 1248-bit modulus in 2010 would cost about the same as a 1024-bit modulus
in 2004.

Note that the double Moore factoring law consists of equal technology and
algorithmic components. If one argues that due to economies of scale and high
parallelism a double Moore law already applies to the technology component
alone (cf. [28]), then one should consider a triple instead of double Moore fac-
toring law. This will not be done here.
Small factors. In regular RSA the modulus is chosen as the product of

two primes of approximately equal sizes. Asymptotically, and for all regular
RSA moduli commonly in use, the most efficient published method to factor
such moduli is the NFS. As cited above, there are at least two variants of
RSA where the modulus n may have one (RSA for paranoids) or more (RSA
multiprime) prime factors that are substantially smaller than

√
n. Currently the

asymptotically fastest method to find small factors, if there are any, is the ECM.
Therefore, care must be taken to select the factors in such a way that finding
them using the ECM can be expected to be at least as hard as factoring n using
the NFS. The reader is referred to [31] for a further discussion of this point.
RSA modulus lengths that offer adequate protection. According to the
definition in Section 2 an RSA modulus offers adequate protection until year y if
the factorization cost in that year can be expected to be at least 40M dollardays.
Thus, 1024-bit RSA moduli offer adequate protection for 2.5 more years from
the year 2004, when this chapter was written. More in general, by combining the
above extrapolation to other modulus lengths with the double Moore factoring
law it can be determined—to the best of the current knowledge—if a b-bit RSA
modulus offers adequate protection until the year y: it does if

L(2b, 1/3, α)

L(21024, 1/3, α)
· 400 ≥ 40 · 24(y−2004)/3,

where, again, α = 1.976 leads to a conservative, relatively large b-value and
α = 2.852 to a less prudent smaller one. All estimates are conservative in the
sense that the base-point of the extrapolation is the cost of an attack on a
1024-bit modulus using the dedicated hardware described in [57] as analysed
in [36].

25

Table 3: Minimal RSA modulus bit-lengths for adequate protection until a given
year.

(optimistic) bit-length (conservative) bit-length
year y (λ(y)) for α = 2.852 for α = 1.976
2010 (75) 1112 1153
2020 (82) 1387 1569
2030 (88) 1698 2064
2040 (95) 2048 2645
2050 (102) 2439 3314

Table 4: Years until which common RSA modulus bit-lengths offer adequate
protection.

modulus (conservative) year yc (optimistic) year yo

bit-length for α = 1.976 (λ(yc)) for α = 2.852 (λ(yo))
1024 2006 (72) 2006 (72)
1280 2014 (78) 2017 (80)
1536 2020 (82) 2025 (85)
2048 2030 (88) 2040 (95)
3072 2046 (99) 2065 (112)
4096 2060 (108) 2085 (125)
8192 2100 (135) 2142 (163)

Table 3 lists the resulting RSA modulus bit-lengths for both choices for α
and for several years, and Table 4 lists the years until which several common
RSA modulus bit-lengths offer adequate protection, again for both α-values.

For each year y in the two tables the security level λ(y) = 56 + 2(y−1982)
3 that

offers adequate protection until year y, rounded upwards to the nearest integer,
is given between parentheses (cf. equation (2) in Section 2). Note that λ(y)
corresponds to the minimally required symmetric key length in year y.

It follows from the Tables that 2048-bit RSA moduli offer adequate protec-
tion at least until the year 2030, and even until 2040 if one is less prudent and
confident that ECM-based factoring devices will not be able to outperform the
sieving-based approach before the year 2040.

Although this type of estimates is the best that can be done at this point,
it should be understood that actual factoring capabilities may follow an en-
tirely different pattern. Any prediction more than a few decades away about
security levels is wishful thinking. The figures in the tables should be properly
interpreted, namely as today’s best estimates that may have to be revised tomor-
row. Anyone using factoring based asymmetric cryptosystems should constantly
monitor and stay ahead of the developments in the research community.

7 Discrete logarithm based cryptosystems

Let g 6= 1 belong to some group G and let h 6= 1 be an element of the subgroup
〈g〉 of G generated by g. It is assumed that the order # 〈g〉 of g is known, but
the order of h is unspecified. The cryptographic application of the generator g
imposes a representation for each element of 〈g〉. Given these representations the
group operation and inversion can be performed efficiently. Using multiplicative

26

notation for the group operation the element gk can for any k be computed in
O(log |k|) group operations plus a single inversion if k < 0. On the other hand,
because of the cryptographic application, g and G must be chosen such that the
‘reverse’ problem of computing logg h offers adequate protection until a year
of one’s choice. The resulting requirements on g and G are discussed in this
section.

The discrete logarithm problem can be solved either in the subgroup 〈g〉
directly or in the group G in which 〈g〉 is embedded. For adequate protec-
tion it must be infeasible to solve the problem using either approach. Of par-
ticular practical interest is the traditional discrete logarithm problem where
G = (Fp`)∗.
Unsuitable groups. There are groups in which discrete logarithms are not

hard to compute. An example is the additive group of integers modulo a positive
integer, where computing discrete logarithms is equivalent to modular division.
Obviously, such groups must be avoided in cryptographic applications. Unfor-
tunately, this is not always as easy as it sounds. There are examples of groups
where at first sight the discrete logarithm problem looks hard, but where, after
closer scrutiny by the research community, the problem turned out to be easier
than expected. For instance, a certain type of elliptic curve based groups as
proposed for cryptographic applications in [41] was shown to allow trivial dis-
crete logarithm computation in [52], [55] and [61]. Interestingly, these groups
were offered as an alternative to another class of elliptic curve based groups
where the discrete logarithm problem allowed an undesirable reduction to the
traditional case G = (Fp`)∗ (cf. [19] and [39]).

Accidents of this sort are impossible to avoid. But, as a general advice,
cryptographic application of newly proposed groups should be postponed until
the mathematical and cryptanalytic communities have scrutinized the proposed
groups and failed to ‘break’ them. In the sequel it is implicitly assumed that the
groups in question do not allow other attacks than the ones described below.
If G = (Fp`)∗, discrete logarithms in G can be calculated using a method that
is similar to the NFS algorithm for integer factorization discussed in Section 6.
Roughly speaking, computing discrete logarithms in (Fp`)∗ is about as hard
as factoring an integer n with log n ≈ log p` using the NFS. Thus, to achieve
adequate protection until a given year the size requirements on n as presented
in Section 6 imply the same size requirements on p`.

This is a rough estimate in the sense that it somewhat underestimates the
difficulty of computing discrete logarithms in (Fp`)∗ and thereby overestimates
the p` values that would suffice for adequate protection. An often encountered
argument is that the matrix step (cf. Section 6) as required for the discrete
logarithm version of the NFS, is much harder than the one for the regular
factoring NFS. It is true that the matrices, assuming comparable dimensions,
are harder to deal with. But, in the first place, compared to factoring the
cost will not increase by more than a factor (log # 〈g〉)2, which is, relatively
speaking, only a minor effect. In the second place, the actual cost of the relation
collection stage (cf. Section 6) may still far outweigh the matrix step cost,
further diminishing the effect of the more expensive matrix step on the overall

27

cost of the computation. Given the granularity of finite field sizes that are
available in practice, there is no practical need for more precise estimates.
Reduction to prime order subgroup. Due to the Pohlig-Hellman algo-

rithm, the problem of computing logg h can efficiently be reduced to the problem
of computing logg h modulo each of the prime divisors of # 〈g〉 and their powers
(cf. [47]). Therefore, and because the complete factorization of # 〈g〉 may be
unknown and hard to find (cf. Section 6), it is assumed that # 〈g〉 has at least
one prime divisor that satisfies the size requirements specified further below and,
if applicable, the structural requirements set forth in the next paragraphs. For
convenience of presentation and without loss of generality, it is assumed that
〈g〉 itself is prime, implying that the order of h, the element whose discrete
logarithm is sought, equals the same prime. If G = (Fp`)∗ with ` ≥ 2 this prime
〈g〉 must be carefully chosen, as shown in the next paragraphs.
The discrete logarithm problem in a subgroup of G = (Fp`)∗. The

generator g belongs to G = (Fp`)∗ and thus has (prime) order dividing p` − 1.
For ` > 1, however, the number p` − 1 has factors that should be avoided
in the sense that if # 〈g〉 divides such a factor, the difficulty of the discrete
logarithm problem in 〈g〉 may be affected: g must be chosen such that # 〈g〉
does not divide pd − 1 for any d less than and dividing `. This is explained
below. Readers not interested in the justification of the choice of # 〈g〉 can skip
to its size requirements.
Justification of choice of subgroup of (Fp`)∗. For each positive integer d

dividing ` the finite field Fp` has a subfield Fpd and the multiplicative group
G = (Fp`)∗ has a subgroup (Fpd)∗ of order pd − 1 dividing p` − 1. If the order
〈g〉 of g divides pd − 1 for a d less than and dividing `, then g belongs to the
true subgroup (Fpd)∗ of the multiplicative group G = (Fp`)∗ of the finite field
Fp` , and thereby g belongs to the true subfield Fpd of Fp` . Representations of
such subfield elements of Fp` can efficiently be mapped back and forth to direct
representations in the finite field Fpd itself. As a result, the discrete logarithm
problem in 〈g〉 can be solved in the true subfield Fpd , which is a substantially
easier problem than in the ‘large’ field Fp` : in the notation of Section 6 it reduces
the cost of computing discrete logarithms from L[p`, 1/3, α] to L[pd, 1/3, α], for
some constant α > 0.

It follows that g should be chosen in such a way that its order # 〈g〉 does
not divide pd − 1 for any d less than and dividing `. This is achieved as follows.
The dth cyclotomic polynomial Φd(X) is recursively defined by

Xd − 1 =
∏

t dividing d

Φt(X).

For instance, Φ1(X) = X − 1, Φ2(X) = X2
−1

X−1 = X + 1, Φ3(X) = X3
−1

X−1 =

X2 +X +1, etc. Thus, g must be chosen in such a way that # 〈g〉 divides p` −1
but does not divide Φd(p) for a d less than and dividing `. This condition is
satisfied if g is chosen so that # 〈g〉 is a prime divisor larger than ` of Φ`(p),
the ‘last’ cyclotomic factor of p` − 1 (cf. [30]). For instance, if ` = 2 the order
〈g〉 of g must be chosen as a sufficiently large prime divisor of Φ2(p) = p + 1;

28

and of

Φ6(p) =
p6 − 1

(p − 1)(p + 1)(p2 + p + 1)
= p2 − p + 1

if ` = 6.
Size requirements. Under the general representation assumptions speci-

fied at the beginning of this section (and avoiding unsuitable groups), the best
methods to solve the discrete logarithm problem in 〈g〉 require approximately
√

〈g〉 group operations. There are essentially two methods that achieve this
operation count, Shanks’ baby-step-giant-step method [26, Exercise 5.17] and
Pollard’s rho method [46]. Shanks’ method requires a substantial amount of
memory. This implies that the cost of an attack effort (as defined in Section 2)
by means of Shanks’ methods is much larger than

√

〈g〉: according to [64] it
is approximately (# 〈g〉)2/3.

Pollard’s rho method, on the other hand, requires just a constant amount of
memory when run on a single processor. Although this implies an attack effort
cost of approximately

√

〈g〉, an attack of this sort does not have any practical
significance because the original algorithm imposes a long serial computation
that cannot be parallelized. However, a variation of Pollard’s rho method allows
efficient parallelization with the same cost (cf. [64]). Therefore, both from a
theoretical as practical point of view, the cost of Pollard-rho based attack effort
is approximately

√

〈g〉.
It follows that the discrete logarithm problem in an order # 〈g〉 subgroup

g offers security level approximately log2

√

〈g〉 = 1
2 log2 # 〈g〉. To decide if

a certain discrete logarithm security level offers adequate protection as defined
in Section 2, the relative speed of the group operation compared to the DES
must in principle be taken into account. Since in any standard application the
DES will be at least as fast as the group operation, and considerably faster if
g ∈ (Fp`)∗, neglecting this effect will only increase the level of protection offered
by the discrete logarithm based cryptosystem.
Cryptanalytic developments. Concerning cryptanalytic methods that di-
rectly attack the subgroup discrete logarithm problem, the most recent substan-
tial cryptanalytic development was the parallelization of Pollard’s rho method,
as referred to above. This influenced the practical significance of a Pollard-rho
based attack, but had no theoretical effect on the cost. As far as the choice of
the subgroup size # 〈g〉 is concerned, it is therefore reasonable to assume that
for the foreseeable future the cost of subgroup attack efforts will not be differ-
ent from the current cost of

√

〈g〉 group operations. This cost corresponds to
the provable lower bound for the computation of discrete logarithms in generic
groups (cf. [44] and [60]).

There has been a steady stream of improvements to the NFS method for fac-
toring that may have comparable effects on the version of the NFS that applies
to the computation of discrete logarithms in (Fp`)∗. As in Section 6 it is reason-
able to assume that in the foreseeable future there will not be major variations
in the rate of cryptanalytic progress observed over the last few decades.
Choices of # 〈g〉 and p` that offer adequate protection. Summarizing

29

the above conditions on g, it is assumed that g is chosen in such a way that
〈g〉 is prime, so that the discrete logarithm problem in 〈g〉 cannot be reduced
to a discrete logarithm problem in a smaller group (of order a proper divisor of
〈g〉). Furthermore, if g ∈ (Fp`)∗ it is assumed that # 〈g〉 is a prime divisor
larger than ` of Φ`(p) to make sure that g cannot be embedded in a smaller
multiplicative group (Fpd)∗ for some d < `.

Under these restrictions, g must be chosen such that the discrete logarithm
problem in 〈g〉 offers adequate protection until the year of one’s choice. Combin-
ing the attack effort cost of

√

〈g〉 with Moore’s law it follows that a subgroup
of prime order # 〈g〉 offers adequate protection until the year

y(
1

2
log2 # 〈g〉) = 1982 +

3(1
2 log2 # 〈g〉 − 56)

2

(cf. equation (1) in Section 2). This ‘double growth’ compared to symmetric
key lengths leads to the same rule of thumb as given at the end of Section 4 for
hash function lengths. Since the collision attack in Section 4 and the Pollard-
rho based attack here are both based on the same ‘birthday paradox’ technique,
this is hardly a surprise.

If g ∈ (Fp`)∗ adequate protection until year y also requires to select p` in
such a way that

L(p`, 1/3, α)

L(21024, 1/3, α)
· 400 ≥ 40 · 24(y−2004)/3,

with α either 1.976 (prudent) or 2.852 (optimistic) as in Section 6. This is the
same requirement as on regular RSA moduli (cf. Section 6).

It follows that the US Government’s Digital Signature Algorithm (DSA),
standardized in FIPS Publication 186 (cf. [14]), with # 〈g〉 ≈ 2160 offers ade-
quate protection against subgroup attacks until the year

y(
1

2
log2 # 〈g〉) ≈ y(

1

2
log2 2160) = y(80) = 2018.

But the fact that the DSA prescribes usage of g ∈ (Fp)
∗ with log2 p ≤ 1024 un-

dermines the security level and implies that the DSA offers adequate protection
only until 2006 (cf. Table 4 in Section 6). FIPS Publication 186 is currently
being revised to support larger key sizes for the DSA. ECDSA (cf. [24]), on the
other hand, does not suffer from an embedding in a finite field and is believed
to offer adequate protection until 2018 when 160-bit prime order subgroups are
used.

8 Conclusion

To summarize, adequate protection was defined as the security offered in 1982
by the DES. It was argued that a cryptosystem offers adequate protection until

30

a given year if the cost of a successful attack in that year is at least 40M dol-
lardays: a computation that lasts x days on possibly parallelized or distributed
equipment that costs 40/x million dollars to build (for any reasonable x).

Given this definition and using conservative dedicated hardware cost esti-
mates, for the most common cryptographic systems the following general key
length recommendations can be made.
Symmetric cryptosystems. A symmetric cryptosystem with (56+b)-bit keys
and no known weaknesses offers adequate security until year 1982 + y only if
3b ≥ 2y.
Cryptographic hash functions. A cryptographic hash function of bit-length
112+b and without known weaknesses offers adequate security until year 1982+y
only if 3b ≥ 4y.
Factoring based asymmetric cryptosystems. Refer to Table 3 for modulus
bit-lengths that should offer adequate protection until year 2000 + 10i for 0 <
i ≤ 5. Refer to Table 4 for the year until which several common modulus
bit-lengths can be expected to offer adequate protection.
Discrete logarithm based asymmetric cryptosystems. A subgroup 〈g〉
offers adequate security until year 1982 + y only if

3(
1

2
log2 # 〈g〉 − 56) ≥ 2y.

If g ∈ (Fp`)∗, then log2 p` must satisfy the same requirements as modulus bit-
lengths for factoring based asymmetric cryptosystems. Furthermore, stay away
from newly proposed groups.

Finally, it was shown how the definition of adequate protection can be tuned
to one’s own perception of security and how this changes the key length recom-
mendations.
Acknowledgment. This chapter benefited greatly from enlightening emails

from Michael Wiener and insightful and detailed comments and suggestions by
anonymous reviewers. The first version of this chapter was written while the
author was employed by Citigroup, N.A.

31

Glossary

AES Advanced encryption standard
DES Data encryption standard
DESX Data encryption standard XORed
DSA Digital signature algorithm
ECDSA Elliptic curve digital signature algorithm
ECM Elliptic curve method
FIPS federal information processing standards
GHz Gigahertz
IDEA International data encryption algorithm
MD Message digest
NESSIE New european schemes for signature, integrity, and encryption
NFS Number field sieve
NTRU Number theory research unit
QS Quadratic sieve
RACE Research and development in advanced communications technologies in Europe
RC4 Ron’s cipher 4
RIPEMD RACE integrity primitives evaluation message digest
RSA Rivest Shamir Adleman
SEAL Software-optimized encryption algorithm
SHA Secure hash algorithm
TWINKLE The Weizmann Institute new key location engine
TWIRL The Weizmann Institute relation locator
XOR Exclusive or

32

References

[1] M. Ajtai, C. Dwork, A public-key cryptosystem with worst-case/average-
case equivalence, Proceedings 29th STOC, ACM 1997, 284–293.

[2] M. Bellare, P. Rogaway, Collision-resistant hashing: towards making
UOWHFs practical, Proceedings Crypto’97, LNCS 1294, Springer-Verlag
1997, 470–484.

[3] D.J. Bernstein, Circuits for integer factorization: a proposal, manuscript,
November 2001; available at cr.yp.to/papers.html#nfscircuit.

[4] E. Biham, O. Dunkelman, V. Furman, T. Mor, Preliminary report on the
NESSIE submissions Anubis, Camelia, IDEA, Khazad, Misty1, Nimbus,
Q, available from https://www/cosic.esat.kuleuven.ac.be/nessie/reports.

[5] A. Biryukov, A. Shamir, D. Wagner, Real time cryptanalysis of A5/1 on a
PC, Proceedings of FSE 2000, LNCS 1978, Springer-Verlag 2001, 1–18.

[6] M. Blaze, W. Diffie, R.L. Rivest, B. Schneier, T. Shimo-
mura, E. Thompson, M. Wiener, Minimal key lengths for
symmetric ciphers to provide adequate commercial security,
www.bsa.org/policy/encryption/cryptographers c.html, January 1996.

[7] J.R.T. Brazier, Possible NSA decryption capabilities, jya.com/nsa-
study.htm.

[8] S. Cavallar, B. Dodson, A.K. Lenstra, W. Lioen, P.L. Montgomery, B.
Murphy, H.J.J. te Riele, et al., Factorization of a 512-bit RSA modulus,
Proceedings Eurocrypt 2000, LNCS 1807, Springer-Verlag 2000, 1–17.

[9] F. Chabaud, A. Joux, Differential collisions in SHA-0, Proceedings
Crypto’98, LNCS 1462, Springer-Verlag 1998, 56–71.

[10] D. Coppersmith, Modifications to the number field sieve, J. Crypto. 6 (1993)
169–180.

[11] Dagstuhl seminar 9226, “Algorithms in number theory,” June 1992.

[12] G. Davida, Chosen signature cryptanalysis of the RSA (MIT) public key
cryptosystem, TR-CS-82-2, Dept. of EECS, Univ. of Wisconsin, Milwaukee,
1982.

[13] Y. Desmedt, A.M. Odlyzko, A chosen text attack on the
RSA cryptosystem and some discrete logarithm schemes,
www.dtc.umn.edu/~odlyzko/doc/arch/rsa.attack.pdf.

[14] FIPS PUB 186, “Digital Signature Standard (DSS),”
www.itl.nist.gov/fipspubs/fip186.htm, May 1994.

33

[15] H. Dobbertin, A. Bosselaers, B. Preneel, RIPEMD-160, a strengthened ver-
sion of RIPEMD, Fast Software Encryption, LNCS 1039, Springer-Verlag
1996, 71–82.

[16] Electronic Frontier Foundation, Cracking DES, O’Reilly, San Francisco,
July 1998.

[17] S. Fluhrer, I. Mantin, A. Shamir, Attacks on RC4 and WEP,
RSA Laboratories’ Cryptobytes, v. 5, no 2 (2001) 26–34; also at
www.rsasecurity.com/rsalabs/cryptobytes.

[18] J. Franke, personal communication, January 2004.

[19] G. Frey, H.-G. Rück, A remark concerning m-divisibility and the discrete
logarithm problem in the divisor class group of curves, Math. Comp. 62

(1994) 865–874.

[20] O. Goldreich, S. Goldwasser, S. Halevi, Public-key cryptosystems from
lattice reduction problems, Proceedings Crypto’97, LNCS 1294, Springer-
Verlag 1997, 112–131.

[21] S. Haber, B. Pinkas, Securely combining public-key cryptosystems, Proceed-
ings 8th ACM conference on computer and communications security, ACM
Press 2001, 215-224.

[22] H. Handschuh, H. Gilbert, χ2 Cryptanalysis of the SEAL encryption algo-
rithm, Proceedings of FSE 1997, LNCS 1267, Springer-Verlag 1997, 1–12.

[23] J. Hoffstein, J Pipher, J.H. Silverman, NTRU: a new high speed public key
cryptosystem, Proceedings ANTS III, Springer-Verlag 1998, LNCS 1423,
267–288.

[24] D. Johnson, A. Menezes, The elliptic curve digital signature algorithm
(ECDSA), CACR Technical report CORR 99-31, University of Waterloo,
1999.

[25] J. Kilian, P. Rogaway, How to protect DES against exhaustive key search,
Proceedings Crypto’96, LNCS 1109, Springer-Verlag 1996, 252–267.

[26] D.E. Knuth, The art of computer programming, Volume 2, Seminumerical
Algorithms, third edition, Addison-Wesley, 1998.

[27] P.C. Kocher, Breaking DES, RSA Laboratories’ Cryptobytes, v. 4, no 2
(1999) 1–5; also at www.rsasecurity.com/rsalabs/cryptobytes.

[28] P.C. Kocher, personal communication, September 1999.

[29] S. Landau, Polynomials in the nation’s service: using algebra to design
the advanced encryption standard, The mathematical society of America
monthly, 111 (2004) 89–117.

34

[30] A.K. Lenstra, Using cyclotomic polynomials to construct efficient discrete
logarithm cryptosystems over finite fields, Proceedings ACISP’97, LNCS
1270, Springer-Verlag 1997, 127–138.

[31] A.K. Lenstra, Unbelievable security, Proceedings Asiacrypt 2001, LNCS
2248, Springer-Verlag 2001, 67–86.

[32] A.K. Lenstra, H.W. Lenstra, Jr., (eds.), The development of the number
field sieve, Lecture Notes in Math. 1554, Springer-Verlag 1993.

[33] A.K. Lenstra, H.W. Lenstra, Jr., M.S. Manasse, J.M. Pollard, The factor-
ization of the ninth Fermat number, Math. Comp. 61 (1993) 319–349.

[34] A.K. Lenstra, A. Shamir, Analysis and optimization of the TWINKLE fac-
toring device, Proceedings Eurocrypt 2000, LNCS 1807, Springer-Verlag
2000, 35–52.

[35] A.K. Lenstra, A. Shamir, J. Tomlinson, E. Tromer, Analysis of Bernstein’s
factorization circuit, Proceedings Asiacrypt 2002, LNCS 2501, Springer-
Verlag 2002, 1–26.

[36] A.K. Lenstra, E. Tromer, A. Shamir, W. Kortsmit, B. Dodson, J. Hughes,
P. Leyland, Factoring estimates for a 1024-bit RSA modulus, Proceedings
Asiacrypt 2003, LNCS 2894, Springer-Verlag 2003, 55–74.

[37] A.K. Lenstra, E.R.Verheul, Selecting Cryptographic Key Sizes, Proceed-
ings PKC 2000, LNCS 1751, Springer-Verlag 2000, 446–465; J. Crypto. 14

(2001) 255–293; available from www.cryptosavvy.com.

[38] H.W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math.
126 (1987) 649–673.

[39] A.J. Menezes, T. Okamoto, S.A. Vanstone, Reducing elliptic curve loga-
rithms to a finite field, IEEE Trans. Info. Theory 39 (1993) 1639–1646.

[40] R. Merkle, M. Hellman, Hiding information and signatures in trapdoor
knapsacks, IEEE Trans. Info. Theory 24 (1978) 525–530.

[41] A. Miyaji, Elliptic curves over Fp suitable for cryptosystems, Proceedings
Auscrypt 92, LNCS 718, Springer-Verlag 1993, 479–491.

[42] National Bureau of Standards, NBS FIPS PUB 46, “Data Encryption Stan-
dard.” National Bureau of Standards, U.S. Department of Commerce, Jan-
uary 1977.

[43] NESSIE, New European schemes for signatures, integrity, and encryption,
2000–2003, https: //www.cosic.esat.kuleuven.ac.be/nessie/.

[44] V.I. Nechaev, Complexity of a determinate algorithm for the discrete log-
arithm, Mathematical Notes, 55 (1994) 155–172; translated from Matem-
aticheskie Zametki, 55(2) (1994) 91–101; this result dates from 1968.

35

[45] P.Q. Nguyen, J. Stern, The two faces of lattices in cryptology, Proceedings
of CALC 2001, LNCS 2146, Springer-Verlag 2001, 146–180.

[46] J.M. Pollard, Monte Carlo methods for index computation (mod p), Math.
Comp. 32 (1978) 918–924.

[47] S.C. Pohlig, M.E. Hellman, An improved algorithm for computing loga-
rithms over GF (p) and its cryptographic significance, IEEE Trans. Info.
Theory 24 (1978) 106–110.

[48] C. Pomerance, Analysis and comparison of some integer factoring algo-
rithms, in Computational methods in number theory (H.W. Lenstra, Jr., R.
Tijdeman, eds.) Math. Centre Tracts 154, 155, Mathematisch Centrum,
Amsterdam (1983) 89–139.

[49] M.O. Rabin, Digital signatures and public-key functions as intractable
as factoring, MIT Laboratory for computer science, Technical report,
MIT/LCS/TR-212, January 1979.

[50] http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.html.

[51] R.L. Rivest, A. Shamir, L.M. Adleman, Cryptographic communications sys-
tem and method, U.S. Patent 4,405,829, 1983.

[52] T. Satoh, K. Araki, Fermat quotients and the polynomial time discrete log
algorithm for anomalous elliptic curves, Comm. Math. Univ. Sancti Pauli,
47 (1998) 81–92.

[53] B. Schneier, Applied cryptography, second edition, Wiley 1996.

[54] FIPS PUB 180-2, “Secure hash standard,”
csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf.

[55] I.A. Semaev, Evaluation of discrete logarithms on some elliptic curves,
Math. Comp. 67 (1998) 353–356.

[56] A. Shamir, RSA for paranoids, RSA Laboratories’ Cryptobytes, v. 1, no. 3
(1995) 1–4.

[57] A. Shamir, E. Tromer, Factoring large numbers with the TWIRL device,
Proceedings Crypto 2003, LNCS 2729, Springer-Verlag 2003, 1–26.

[58] A. Shamir, Factoring large numbers with the TWINKLE device, Proceed-
ings CHES’99, LNCS 1717, Springer-Verlag, 1999.

[59] P.W. Shor, Algorithms for quantum computing: discrete logarithms and fac-
toring, Proceedings of the IEEE 35th Annual Symposium on Foundations
of Computer Science, 124–134, 1994.

[60] V. Shoup, Lower bounds for discrete logarithms and related problems, Pro-
ceedings Eurocrypt’97, LNCS 1233, 256–266, Springer 1997.

36

[61] N.P. Smart, The discrete logarithm problem on elliptic curves of trace one,
J. Crypto. 12 (1999) 193–196.

[62] M.J. Wiener, Efficient DES key search, manuscript, Bell-Northern Re-
search, August 20, 1993.

[63] M.J. Wiener, personal communication, 2004.

[64] M.J. Wiener, The full cost of cryptanalytic attacks, accepted for publication
in J. Crypto.

37

