[image: image1.png]Memo on RSA signature generation in the presence of faults

Arjen K. Lenstra, Citibank, N.A., September 28 - October 28, 1996

Introduction.

This memo was written after reading newspaper articles about a Bellcore attack on
smartcards, because no details about the Bellcore attack were available. In the mean time
I have found (cf. {1]) that the first attack described here, on RSA signatures generated
using Chinese remaindering, is more efficient and potentially more dangerous than the
approach used by the Bellcore researchers: my attack requires a message and only one
faulty signature of that message, the Bellcore attack requires one correct and one faulty
signature of the same message. The second attack described here, on RSA signatures
generated without Chinese remaindering, is probably quite similar to the attack proposed
by the Bellcore researchers (cf. [1]), though I have not seen any of the details of their
approach in this case. The Bellcore researchers have developed similar attacks against the
Fiat-Shamit, Schnorr, and Guillou-Quisquater identification schemes and the ElGamal
public key system (cf. [1]).

RSA signatures with Chinese remaindering.

Let n=pq be a composite RSA-modulus, with public and secret exponents e and d. The
signature S(m) of a message m equals m® mod n. Thus, SGm)* mod n is again equal to m
modulo n. It is well known that S{m) can be computed by computing m? both modulo p
and q, and by combining the two results using the Chinese remainder algorithm.

If a fault occurs in the course of the computation of the signature, the resulting
value S’(m) will most likely not satisfy the congruence S$’(m)° = m mod n. If, however,
the fault occurred only during the computation of m® modulo p, and if the exponentiation
modulo ¢ and the application of the Chinese remainder algorithm were carried out
correctly, then the resulting faulty signature 8’(m) satisfies S$’(m)° = m mod q, but the
same congruence modulo p does not hold. Therefore, q divides S’(m)*—m, but p does not
divide §?(m)*—m, so that a factor of n may be discovered by the recipient of the faulty
signature $’(m) by computing the greatest common divisor of n and S’ (m)°—m.

This implies that, even if there is the tiniest probability that an error occurs during
RSA signature generation, the generator of an RSA-signature must make sure that each
signature generated is indeed correct. An inefficient way to do this is by generating the
signature twice and checking that the same signature was found twice. This solution
assumes that an identical arithmetic error does not occur twice. Since e is usually much
smaller than d, a more efficient way to proceed is to check the correctness of the signature
in the saime way the verifier would do it, namely by checking that S(m)® mod n is equal to
m modulo n. Even if an error occurs twice, it is exceedingly unlikely that this test will be
satisfied. Note that this possible weakness only occurs if RSA signatures are generated
using the method sketched above. But even if m’ mod n is computed directly modulo n,
the secret key might leak if an error is made during the computation; see below.

Obviously, faulty decryption of RSA-encrypted messages using the Chinese
remainder theorem can lead to decrypted messages m’ for which m’~m and n (where m is

[image: image2.png]]

the correctly decrypted message) have a non-trivial factor in common. RSA-decryptions <y

should therefore not be shared before their correctness is verified. ?
Arithmetic faults of this type may be triggered in devices with relatively low level

security specifications if they are subjected to exceptional physical circumstances

(abnormal voltage, heat, radiation): according to {2], the specifications of devices with

security level 3 or higher require that they shut off and/or self-destroy if they are put in

exceptional circumstances.

Remark. Note that the attack works if a fault is made in the data operated upon, or in the
order or type of instructions that are carried out, or both, as long as the code works again
properly for the Chinese remainder operation. The time-window of one of the modular
exponentiations is sufficiently large that they may indeed be successfully targeted; it is
unclear, however, if the circuitry will again function faultlessly afterwards, and correctly
perform the remainder of the computation. If the result of the first exponentiation is stored
at some particular location that is not used for any other purposes, then this attack can
also be carried out by permanently damaging the wiring of that location so that its value
will never be retrieved correctly.

RSA signatures without Chinese remaindering.
Assume that we compute RSA signatures without the use of the Chinese remainder
theorem and that a small error is made during the computation of the signature S(m) of
message m. Can the secret exponent d be recovered? If only one faulty signature of some
message is available, there does not seem to be much one can do. Let us assume that we ,.,%
may request faulty signatures S°(m) of as many different and known messages m as we)
would like to have, and that all $’(m)’s have some particular type of fault that is randomly
selected from some collection of faults. Can we find d, and if so, how many faulty
signatures do we need to find d? Let e again be the corresponding public exponent.
Let the collection of (faulty signature, message) pairs received be (8°(my), my),
(S’(my).my), ..., (87(my), my)). If each §’(m;) would be the (correct) signature of mi+E;,
ie., the original message plus some random and presumably small error pattern E;, then
we would be able to break RSA in general if we could find d from the collection of
corrupted signatures. Since we consider that to be unlikely, we assume that the collection
of faulty signatures received looks different, in particular we assume that they are not all
dth powers (of a known value).
So, let us assume that the error does not occur right away at the beginning,
corrupting only the message (but leaving the computation intact), but that some type of
error occurs in the course of the computation. We analyze what the effect of a single error
may be, where we restrict ourselves to an error that affects a single register value once; we
do not consider the possible effects of corruption of values that may be hardwired or that
are stored in non-volatile memory, such as d and n. We also assume that the proper
instructions are carried out in the right order. Thus, we assume that the correct code
operates on values d and n that remain correct, but that one of the other values during the
computation gets corrupted, presumably by a value of small Hamming weight. For an
attack based on single bit distortions of d, see [3]. ‘3

™~

[image: image3.png]To study this effect, we first have to consider how the exponentiation is carried
out. There are essentially two methods to do this, the first using the bits of d from right to
left (least to most significant), the second one using them from left to right:

1. s=m; r=1; for i=1 to #d { if (bit i of d is on) r *=s; s ¥=s;} outputr
and
2. r=1; for i=#d downto 1 { r *=r; if (bit i of d is on) r *=m;} output r

In (1) we consider a single corruption of either r or s in the course of the computation, in
(2) we consider a single corruption of either m or r in the course of the computation. We
refer to the four different possibilities as (1r), (1s), (2m), and (2r). We assume that
d:(dz*zj)+d1, that the corresponding public exponent is e, and that the single corruption
takes place during iteration j.. We also assume that the computation from that point on is
based on the corrupted value, i.e., once s gets corrupted (in (1s)), all subsequent powers
of s are also corrupted, and are powers of the corrupted s. (For an attack where only a
single s gets corrupted by a single bit, and where all subsequent powers are again correct,
see [3].) The attack is based on the observation that (again assuming (1s)) if the leading j
bits of d are known and k is large enough, then there should be an m; for which the
correct signature divided by m;*(d;*2Y) is equal to the corrupted signature divided by its
‘corrupted part’ (mi* (2)+E)Ad, for some small error E. Thus the eth powers of these
values are also equal, so that the eth power of the correct signature can be replaced by mi.
This equality can be used to confirm a guess for the jth bit of d, once the first j—1 bits of d
are known, by trying sufficiently many small error patterns E. We now describe this
approach in somewhat more detail.

Let #d denote the number of bits of d. As a result of the corruption and based on
our assumption, the S(m;)’s look as follows, where in each case E; is an error pattern,
most likely of small Hamming weight (and everything is done modulo n):

(I: (my*(d*2)) (my* di+Ed)
(1s): (mA2)+E) o) (msrdy)
@m): (mr(do*2h)(m; +E)Ady
@) (it d+E)A2)) (it dy)

Given a sufficiently large k (with either all S(m) of type (1r) or (1s), or all of type (2m) or
(21)) we may be able to retrieve d. Omitting all details, and with a lot of handwaving, this
goes as follows (assuming (1r) or (1s); (2m) or (2r) goes similarly). Assume that the first f
and the last I bits of d are already known (namely dr and d)). We guess the next bit of dr
and append it to dr resulting in d¢ of length f+1. For all E’s of low Hamming weight and
all available (and unused) S’(my)’s (some of them of type (1s), and some of which might
even have the correct j=#d—f~1), compute

(S’ M)/ (A 2%)+E)Adr)

and compare the result to

[image: image4.png](S (d*2*)Y = mi/(m; Me*de 2").

If a match is found, it is likely that we were using the correct guess dy’, the correct E, and
that we were comparing with a type (1s) fault. The ‘correct’ §°(m;) can now be marked as
used. If no match is found, guess the other d¢’, and try again. Similarly, we may try to find
new bits of d;, hoping that we have values of type (1r). If none of the $’(m;)’s had the
right j=#d—f-1 or j=l+1, we may simply progress with a guess for either d¢’ or dy’, until
we find a match at f+u or l+u for a small value of u (trying all guesses for all small u’s). If
no match is found, the ‘j-gap’ in the collection of S’(m)’s is too large, or the error pattern
was too large, and more S’(m;)’s need to be collected.

How large does k need to be? If we do not allow gaps between the j’s and insist
on a match at each step we need k on the order of (#d)log(#d). If we allow rather large
gaps (i.e., large u’s) and make sure that we try all possible error patterns, then a k of the
same order of magnitude as #d suffices. For instance, for #d=1024, the maximal gap for
k=1024 can be expected to be about 7 (for 512 it is only 4, however).

As mentioned above, many details would have to be filled in in order to obtain a
complete description of this ‘attack’. Given how ‘realistic’ our attack scenario is,
however, providing these details is probably not worth the trouble. In circumstances
where this attack is conmsidered to be realistic, signatures should be checked for
correctness before they are transmitted. Note that our attack scenario is about just as
realistic as the scenarios from [4] and [5].

Run time. For each fixed u the run time of the above approach is polynomial in the
number of error patterns allowed, and in all other relevant variables. Note that a similar
approach can be used to retrieve d if more than a single corruption takes place during the
computation; the run time remains polynomial as long as the number of corruptions is
bounded by a fixed constant.

References.

—_

Dan Boneh', personal communication, October 1996.

Security Requirements for Cryptographic Modules, FIPS PUB 140-1.

3. Feng Bao, Robert Deng, Yongfei Han, Albert Jeng, Teow Hin Nagir, Desai
Narasimhalu, A new attack to RSA on tamperproof devices, manuscript, October 23,
1996. Available from the first author (baofeng@iss.nus.sg).

4. Eli Biham, Adi Shamir, A new cryptanalytic attack on DES, draft, October 18, 1996.

Jean-Jacques Quisquater, Short cut for exhaustive search using fault analysis:

applications to DES, MAC, keyed hash function, identification protocols, ..., draft,

October 23, 1996.

N

w

! Dan Boneh is one of the authors of the original Bellcore paper Cryptanalysis in the presence of
hardware foults by Boneh, DeMillo, and Lipton; a draft of this paper exists, but is not for distribution.
Addition. October 30, 1996: an extended abstract of a Bellcore paper titled On the importance of
checking compwations by the same authors may now be obtained from the first author
(dabo@bellcore.com).

