
Nearest Neighbor Searching in Metric Spaces:

Experimental Results for sb(S)

Kenneth L. Clarkson
Bell Laboratories, Lucent Technologies

Murray Hill, New Jersey 07974
clarkson@research.bell-labs.com

http://cm.bell-labs.com/who/clarkson/

December 5, 2002

Abstract

Given a set S of n sites (points), and a distance
measure d, the nearest neighbor searching prob-
lem is to build a data structure so that given a
query point q, the site nearest to q can be found
quickly. This paper gives a data structure for
this problem; the data structure is built using the
distance function as a “black box”. The struc-
ture is able to speed up nearest neighbor search-
ing in a variety of settings, for example: points in
low-dimensional or structured Euclidean space,
strings under Hamming and edit distance, and
bit vector data from an OCR application. The
data structures are observed to need linear space,
with a modest constant factor. The preprocess-
ing time needed per site is observed to match the
query time. The data structure can be viewed
as an application of a “kd-tree” approach in the
metric space setting, using Voronoi regions of a
subset in place of axis-aligned boxes.

1 Introduction

Given a set S of n sites (points), and a distance
measure d, the nearest neighbor searching prob-
lem is to build a data structure so that given a
query point q, the site nearest to q can be found
quickly.

This paper gives a data structure, denoted

sb(S), for this problem, in a setting where the
sites and queries are in a metric space. Algo-
rithms in a such a setting have been considered
for some time[FS82]; a recent survey of work in
this area is given by Chavez et al.[CNBYM01].
This paper is a continuation of previous theo-
retical work[Cla97], but the emphasis here is on
empirical results. A recent paper gives an data
structure akin to that in[Cla97], with provable
results in the setting of growth-restricted metric
spaces.[KR02] Such a property is roughly compa-
rable to the assumption of a uniform distribution
of data points in IRd.

The nearest neighbor problem has a vast lit-
erature, with threads of work in many different
fields. Here we are seeking a general, practical
approach, where the goal is to produce an ana-
log, for nearest neighbor searching, of the role
played by qsort as a sorting routine: a code that
works pretty well, most of the time, so that more
specialized procedures are not often needed.

The procedure given here satisfies some ba-
sic requirements for such a goal. First, it does
no harm: that is, its space requirements are
modest, and its worst-case behavior is to take
about the same amount of time as brute-force
search. Its preprocessing time seems to behave
roughly like its search time, so that in settings
where the data structure doesn’t help, that can
be discovered at preprocessing time. Finally, it

1

is general, both with respect to its application
to general metric spaces, and with respect to the
searching tasks that can be done: it has been
adapted to fixed-radius, k-nearest-neighbor, and
inverse nearest-neighbor searching, as well as
nearest. Its preprocessing solves the all-nearest-
neighbor problem for the sites, and in one ver-
sion, produces the results of a well-known clus-
tering algorithm[Gon85].

The closest comparable software is due to
Arya and Mount[AM]; their code provides a sim-
ilar capability for point sets in IRd, using a vari-
ant of kd-trees. It is almost certainly faster in
that setting than the code given here, but plainly
is more limited. Moreover, kd-trees are clearly
inappropriate for some of the high-dimensional
pointsets tested here, without at least some mod-
erately expensive preprocessing to reduce dimen-
sionality, such as principal components analy-
sis. A notable, and novel, result here is shown
in Figure 12. This illustrates modest, but defi-
nite, speedups for some high-dimensional bitvec-
tor datasets arising in practice, and for strings
under hamming and edit distance.

2 The Data Structure

The sb(S) data structure is somewhat analogous
to kd-trees, and can be motivated by consider-
ing a simple version of them: suppose we have a
collection of orthogonal rectangles whose union
contains S, and for each rectangle R, we have
recorded the list R ∩ S. (See Figure 1.) Given
a query point q, we could look in each R ∩ S,
looking for a nearest site. Suppose the nearest
site found so far is p∗, so that the current “near-
est neighbor ball” centered at q has radius equal
to the distance of q to p∗. Consider rectangle R.
It’s easy to check if the current nearest neighbor
ball for q meets R; if not, the nearest site to q
does not lie in R. Otherwise, we must examine
the sites in R. The basic idea is that by doing a
constant-time test, we can exclude a number of
sites from consideration.

Algorithms for metric spaces, and using such
a “kd-tree” approach, have been proposed, typi-

Figure 1: Excluding sites quickly with rectan-
gles.

cally by partitioning using spheres.[Bri95, Uhl91,
Yia93] Here we use, instead, Voronoi regions for
a subset R ⊂ S. That is, the sites of S \ R are
grouped according to their nearest neighbor in
R. For p ∈ R, call such a set the S-Voronoi set
Vp∩S of p. For a given query q, distance d(q, R),
and site p ∈ R, we can do some simple checks
that can sometimes rule out every site in the S-
Voronoi set of p from being a nearest neighbor
to q in S. To describe one such constant-time
check, it is time to give a few definitions:

Definition: Nearest Neighbors. For metric
space (V, d), set R ⊂ V , point q ∈ V , the nearest
neighbor distance of q with respect to R is

d(q, R) ≡ min
p∈R\{q}

{d(q, p)}.

A point p ∈ R realizing that distance is a nearest
neighbor of q in R.

Definition: γ-Nearest Neighbors. Say that
p ∈ V is a γ-nearest neighbor of q ∈ V with
respect to R if d(q, p) ≤ γd(q, R).

We have the following simple condition:

Claim 2.1 If the S-Voronoi set of p meets the
nearest neighbor ball N(q, R) of q with respect to
R, then p is a 3-nearest neighbor of q with respect
to R.

Proof: (See Figure 2.) Suppose site a is both
in the S-Voronoi set of p, and in N(q, R); that is,
there is a site a ∈ Vp ∩ S, and d(a, q) < d(p′, q),

2

q p
a

p’

Figure 2: The Voronoi set of p etc.

where p′ is nearest to q in R. Then

d(a, p) < d(a, p′),

since q ∈ Vp, and

d(a, p′) ≤ d(a, q) + d(q, p′) ≤ 2d(q, p′),

and so d(q, p) ≤ d(q, a) + d(a, p) ≤ 3d(q, p′).
With the following definition, a slightly differ-

ent bound is easily shown.

Definition: Mp. Let Mp denote the farthest
distance to p ∈ R from a site in its S-Voronoi
set.

Referring to Figure 3, we have the following
constant-time test.

Claim 2.2 Suppose that the S-Voronoi set of p
meets N(q, R), so there is a site a ∈ Vp ∩S, and
d(a, q) < d(p′, q), where p′ is nearest to q in R.
then

d(q, p) ≤ d(q, a) + d(a, p) ≤ d(q, p′) + Mp.

Proof: Trivially follows using the triangle in-
equality, the assumptions, and the definition of
Mp.

Construction of sb(S). The data structure
sb(S) is based on an incremental construction: a
permutation (p1 . . . pn) of S yields subsets Ri ≡
{p1 . . . pi} for i = 1 . . . n; we can think of these
subsets as being built by adding sites one by one.
The search algorithm for sb(S) will maintain the
nearest neighbor of a query point q in Ri, and
a set of pending sites p ∈ Ri, such that the S-
Voronoi set of p with respect to Ri may contain

p
q

S
R

Figure 3: Mp bound

a nearer site to q. The invariant maintained is
that the nearest site to q is either a pending site,
or in the S-Voronoi set with respect to Rm of a
pending site, as m passes from 1 to n.

Of course, we don’t want to consider each m
from 1 to n; it is only necessary to consider those
pi that touch a pending site pj , where touching
means that pi changes Vpj ∩S when pi is added.
That is, pi touches pj if there is some pk so that:
pj is closest to pk in Ri−1, but pi is closest to pk

in Ri. For each pj , such touching sites are put
into a list Ej in preprocessing, in the same order
as in the permutation. The list Ej also has, for
each touching site pi, the maximum distance of
pj to a site in its Voronoi set with respect to Ri.
(That is, the value of Mpj with respect to Ri.)
The latter distance value can be used to check
the pending status of pj when the touching site
pi is processed.

The lists Ej , together with the associated dis-
tance data, comprise the sb(S) data structure.
Before describing the preprocessing algorithm
for building sb(S), we describe how to use it.

Searching. One method of using sb(S) for
nearest neighbor searching is shown in Figure 4.
We will explain the procedure, but not every de-
tail of the code.

The value alpha is between 0 and 1, and al-
lows a tradeoff between search speed and accu-
racy. If alpha is set to 1, then searching always
returns the correct answer; for smaller alpha,
searching is faster but not necessarily correct.

The value sbt->end thresh is discussed in the
next section; for now, we can consider its value to
be n; that is, the test on line 6 always succeeds.

3

size_t search_sb_d_order(sb* sbt, size_t q,

float alpha)

{

size_t pj=0, touch=0;

float d=0;

SD q_nn = {0, FLT_MAX};

heap *ph = sbt->psh;

do {

stat_inc_search_loop;

1 if (!sbt->seen_for[pj]

2 && sbt->nn[touch].max.old+alpha*q_nn.key > d)

3 {

4 d = sbt->dist(q,pj);

5 if (d<q_nn.key) {q_nn.key=d; q_nn.point=pj;}

6 if (sbt->ins_num[pj] < sbt->end_thresh)

7 {

8 MARK_SEEN(sbt, pj);

9 sbt->cur_touching[pj] = sbt->offset[pj];

10 insert_heap(sbt->psh, pj, -d);

11 }

12 }

13 while (sbt->psh->num_entries>0)

14 {

15 size_t pm = topp(sbt->psh).point;

16 d = -topp(sbt->psh).key;

17 touch = (sbt->cur_touching[pm])++;

18 if (touch<sbt->offset[pm+1]

19 && sbt->dDL[touch] + alpha*q_nn.key > d)

20 {

21 pj = sbt->DL[touch];

22 break;

23 }

24 delete_heap(sbt->psh, 0);

25 }

} while (sbt->psh->num_entries>0);

reset_aux(sbt);

return q_nn.point;

}

Figure 4: Search procedure for sb(S).

During a search, the set of pending sites is
kept in a heap, using the simple data structure
attributed to Floyd.[Flo64] The key for pm in
the heap is its distance to the query point q, or
rather, the negation of its distance, so that the
top of the heap corresponds to the pending site
whose distance to q is minimum.

Also maintained for each pending site pm is
a site pj in the list Em for pm. (This site
is indexed by sbt->cur touching[pm], where
the index is into the array sbt->DL, between
sbt->offset[pm] up to sbt->offset[pm+1],
which is the representation of Em. The basic op-
eration of the search algorithm is to determine
whether the touching site pj must be made pend-
ing, and for the pending site pm with the mini-
mum distance to q, to check if pm is still pending
when the next site on Em is considered. These
two main steps are done in lines 1-12 and 13–25
of the figure. Next we consider these two steps
in more detail.

For the first step: when pj is added, some sites
in the S-Voronoi set of pm are removed, and be-
come part of the S-Voronoi set of pj . Denoting
such sites as Smj , note that if Smj contains a
site a closer to q than some given upper bound
q nn.key, then

d(pm, q) ≤ d(pm, a) + d(a, q)
< max

b∈Smj

d(pm, b) + q nn.key.

This provides the test on line 2, which must
be satisfied if pj touching pm is to become
pending. Here maxb∈Smj

d(pm, b) corresponds to
sbt->nn[touch index].max.old. When α = 1,
the test on line 2 must hold if pj should be made
pending. When α < 1, the test is more strict,
fewer sites are made pending, and the returned
answer is only approximately the nearest neigh-
bor. (The test on line 1 checks that pj was not
already seen for q, that is, it was not already
made pending.)

For the second main step (lines 13–25), the top
entry of the heap sbt->psh is examined, corre-
sponding to the pending site pm closest to q, and
the next site pj touching pm is considered, corre-
sponding to sbt->DL[touch index]. When pj

4

is added, the S-Voronoi set of pm shrinks, and
it may be that a simple test can show that the
S-Voronoi set of pm can’t possibly contain a site
nearer to q than the current upper bound on the
nearest neighbor distance. Such a test is given
in line 19, where sbt->dDL[touch index] is the
pre-computed farthest distance of pm to the sites
in its S-Voronoi set, after pj is added.

Preprocessing. The preprocessing for sb(S)
involves considering each pi, for i = 1 . . . n, and
finding those sites not in Ri for which pi is near-
est in Ri. The former nearest neighbors of such
sites are the ones that pi touches. The prepro-
cessing also finds, for such a touched site pj , the
distance of the farthest site to pj in its current
Voronoi region. The preprocessing is aided by
keeping, for each pj , its S-Voronoi set in a heap,
with key for a site equal to its distance to pj ,
and with the farthest site at the top of the heap.

When adding pi, its processing can be ac-
celerated by using both the data structure, as
constructed up to that point, and the auxiliary
heaps for each pj . The idea is to use these struc-
tures to speed up the “inverse nearest neighbor”
searching needed for pi. That is, rather than
examine every pk for k > i, we use a search-
ing procedure, akin to that for answering nearest
neighbor queries, to find those pk with pi nearest
in Ri.

The inverse searching procedure maintains a
set of pending sites; the invariant holds that any
site pk with pi nearest in Ri has a pending site
nearest in Rm, where pm is the current site being
considered for pending status. Only those sites
that touch a pending site need be considered for
pending status. Moreover, the following allows
some sites to be discarded as pending.

Lemma 2.3 If p ∈ R is at most Mp from any
site in Vp ∩ S, then any site p′ closer to some
a ∈ Vp ∩ S than p has d(p′, p) ≤ 2Mp.

Proof: For any such a, d(a, p) ≤ Mp, and so

d(p, p′) ≤ d(p, a) + d(a, p′) ≤ 2p(p, a) ≤ Mp.

That is, any pending pm must have d(pi, pm) ≤
2Mpm . The inverse searching procedure is thus:
for each pending site pj , walk down its Ej list,
considering each site on the list for pending sta-
tus, until the corresponding Mpj value is smaller
than d(pj , pi)/2. Note that since the check that
Mpj ≤ d(pj , pi)/2 does not depend on any other
pending site, or change of status for pi, so the
pending sites need not be kept in a heap, and a
list Ej can be traversed independently of others.

Some pending sites pj will “survive,” that is,
will have their Ej lists traversed to the end with
their pending status preserved. Such a site p
may have some members of Vp ∩ S with pi near-
est. To find such members, we need not exam-
ine all of Vp ∩ S; only those members a with
d(pi, pj) ≤ 2d(a, pj) can have pi nearest, as in
the lemma above. To find such a, we can recur-
sively examine the heap of sites in Vp ∩ S; this
procedure need not examine the children of a
node in the heap if the site corresponding to the
node has distance to pj smaller than d(pi, pj).

2.1 Variations on sb(S)

One improvement to the basic data structure is
to run the construction only up to some Rεn, and
then keeping in the data structure the S-Voronoi
sets of the sites of Rεn. The search procedure
would then search the S-Voronoi sets of sites that
are still pending at the end of the basic search
procedure. The value of sbt->end thresh in
Figure 4 equals εn.

Another variation mentioned above for the
search procedure involves the use of the param-
eter α, which trades accuracy for speed.

One significant improvement involves a change
in the order of insertion of sites into Ri. While
the motivation of these algorithms is from ran-
domization, it seems to be more efficient here
to construct a packing: that is, the next site to
add to Ri is the one whose minimum distance
to sites in Ri is maximum. Such a site will be
the one realizing the bound Mp; this value and
site are already maintained by the algorithm, so
the change to finding the maximum Mp is not
difficult.

5

Although the results proven about this varia-
tion are limited so far, it seems to be about 30%
faster for observed problems than the random-
ized version. Moreover, this packing construc-
tion is useful in itself: such packings have been
proposed as a method of cluster analysis.[Gon85]

While the search algorithm above considers
pending sites according to their distance from
the query point, a more natural scheme consid-
ers sites in their insertion order. This scheme
is more amenable to analysis, but appears to be
slower.

2.2 Performance

This section gives some data for tests for sb(S),
using the packing variation and search procedure
given above.

2.2.1 The datasets and conditions

The data structure was tested on Euclidean data
in a cube, in various dimensions. Following
the work of Arya and Mount, it was tested
for uniform, normal, clustered normal, corre-
lated normal, Laplacian, and correlated Lapla-
cian distributions.[AM]

Strings from a dictionary wordlist were tested,
under hamming distance and a version of string
edit distance.

Two sets of 256-dimensional data were also
considered, from an OCR application, of size
1606 and 6791.

We also considered three bit-vector datasets,
taken from an optical character recognition ap-
plication. They are two sets of about 9000 sites
in 81 dimensions, and 14520 sites in 2304 dimen-
sions.

In the figures below, labels are generally:

• the dimension, for Euclidean data

• ’s’ for strings under edit distance

• ’h’ for strings under Hamming distance

• ’t’ for the 256-dimensional data

• ’o’ for the bit-vector data

24
4

4 2

16

8

32

4

24

8

2
2

32

16

8

8

24

4

4

32

16

8

2

32

24

32

24

16

4

2

32

24

16
8

8

32

24

16

4

2

24

16

2
2

32

16

8

4

8 10 12 14

1.5

2

3

4

log2 n

storage
per
point

Figure 5: Storage for synthetic data; label is di-
mension.

In these results, the end thresh parameter de-
scribed above is set at n/10. All query results
are the average over 500 queries.

2.2.2 Storage and Preprocessing

First, it’s convenient to quickly verify that the
storage requirements are modest, and in partic-
ular do not rise sharply with dimension. In Fig-
ure 5, the number of entries in sb(S) per site are
recorded, as a function of the log of the num-
ber of sites. For each dimension and number of
sites, the storage shown is the maximum over all
distributions. A similar graph is shown for the
other datasets in Figure 6. For each entry, a site
number and a small number of distance values
are needed.

The number of distance evaluations per site
seems to behave similarly to the query time; Fig-
ure 7 shows the ratio of such per-site preprocess-
ing to the number of distance evaluations per
query, over all datasets. These results are, of
course, dependent on the end thresh parameter;
when end thresh is equal to n, the preprocess-
ing time rises, while the query time falls slightly.

2.2.3 Query time

Running time vs. distance evaluations. In
the results below, the “query time” is assumed

6

o

t
h

hs
st

h

s

o
o

2000 5000 1042×1045×104

1.4

1.6

1.8

2
2.2
2.4
2.6
2.8

number of points n

storage
per
point

Figure 6: Storage for all non-synthetic datasets

.

....

.

....
.
....
.
..
..
.
..
..

.

.

...

.

.

...
.

.

...

.....

.

....
.
....
.
....
.
....
.
..
..

.

.

...
.
.
...

.....

.

....

.

....
.
....

.

..

..
.
..
..

.

.

...
.

.

...

.....

.

....
.
....
.
....
.
..
..

.

.

...
.

.

...
.

.

...

..........
..........
.....

.....

.

.........

.

....
.
....
.
....

.

....
.
..
..

.

..

..

.

..

.

.

.

..

.

.

.

..

.

.

.

.

...

.

.

.

.

.

.

.

...

.

.

...

.

.

...

.

.........
.
....

.

..

..
.
..
..

.

.

...

.

.

...

.

.

...
.....
.
....
.
..
.
.
.
.
...

.

.

...

.

.

...

.

.

...
.

.

...
.
....
.
....

.

..

.

.
.
..
..
.

.

...

.

.

...

.

.

...
.

.

...

.....

.

....
.
....
.....
.
....
.
..
.
.

.

..

..
.

.

...

.........

.

.

.......
.
.

.

..

.

.

.

....

.

..

.

.

.

.

...

.....

.

..

.

.
.
..
.
.
.
..
.
.

.

..

.

.
.

..

.

.

.

.

...

.

.

...

.....

.....
.
....
.
....
.
..
.
.
.
..
.
.

.

..

.

.
.

.

.

.

......
.
....
.
....
.
....
.
..
.
.
.
..
.
.

.

..

.

.
.

.

...
.....
.
....
.
..
.
.
.
....
.
..
.
.
.
..
.
.

.

..

.

.
.

.

.

.

.
..........

.

.........
.
....
.
..
.
.

.

..

.

. .
..
..

..

.

.

........
.
.
.
.....
....
.

.

....
.
..
.
.

.

..

.

.
...............
.....
.....
.....

...

.

.

.....
.........................

.....
.....

.....
....................
.....

.....

....................
.....
.
....

.

..

.. .
.........

.....
.....
.....
.
..
.
.
.
..
.
.

.

..

.

. .
....

..

.

...........
.
..
.
.
......

.....
..
............................

.....
.....

.........................
.....

.........................
.....

.....

.........................
.....

.....
...............
.....
.
....

.

....

....

...

..................
.

.....
..............................

.....
.....

.........................
.....

.....

.........................
.....

.....

.........................
.....

..........
..........
.....

.........
..........
.....
.....

.....

....

.

..

.

....
..
....
.
.
..... ..
.
.
.

.....

.

.

...

.

.

...
.
....

.

..

..

.

....

.....

.

.

...
.....

.....

.

....

.

..

.

.

0 2×104 4×104 6×104

0

0.1

0.2

0.3

0.4

number of sites n

prep vs.
query time

Figure 7: Ratio of preprocessing time to query
distance evaluations, all datasets

.....

.....
. . . .

..... . . .

.....
. . ..

..
.. . . .

.

....
. . .

..
...

. . .

..
..
. . . .

..... . . .

...
..

. . .

..
.
.
.
.

.
.

...
..

.

. .

..
.
.
.
.

.
.

...
..

. . .

...
..

. . .
...
..

.
.

.

..
..
.
.

.
.

...
..

.
.

.

..
..
. .

.

.

...
.
. . .

.

...
.
. . . .

....
. . .

.

..
..
. .

. .

..
..
. . .

.

..
.
.
. .

.
.

...
..

. . .

..
... .

.

...
.
. . . .

....
. .

.
.

..

.

..
.

.

.

..
.

0 2×104 4×104 6×104

1

2

3

4

5

6

7

number of sites n

loop vs.
query time

Figure 8: Ratio of loop iterations to query dis-
tance evaluations

to be synonymous with the number of distance
evaluations done for a query. This is justifiable in
cases where distance evaluations are very expen-
sive, but it is also useful to check that the book-
keeping in the query procedure is not too far out
of range of the distance evaluations. Consider-
ation of the query procedure of Figure 4 shows
that the work done, except for heap operations,
is proportional to the number of iterations of the
main loop. The work done for heap operations
is proportional to the maximum heap size, Mh,
times the logarithm of Mh. Figure 8 shows the
ratio of the number of iterations of that main
loop to the number of distance evaluations done
during a query, while Figure 9 shows the ratio
of Mh log Mh to the distance evaluations. These
figures use the results for all datasets. The re-
sults give some confidence that distance evalua-
tions are a good indicator of the total work done.

Figure 10 shows the number of distance eval-
uations for exact searching of two-dimensional
uniform Euclidean data, using several variations
of the search method. The most notable of
these methods use labels of “d”, for the nearest-
distance method described above, and “i”, for a
search method where the sites that are touching
currently pending sites are considered in inser-
tion (permutation) order. The other labels are
“s”, for a method that uses a stack of pending
sites in place of a heap; “h”, for a method that

7

..
... . . .

.

..
..

. . .

.

..
..

. . .

..
..
. . . .

...
.. . . .
..
...

. . .

.

.
..
. . . .

.

..
.. .

. .

..
.
.
. . . .

..
.
.
. . . .

..
...

. . .

....
.
. .

.

..
.
.
.
.

.
.

..
.
..

.
.

.

..
.
.
.
.

.
.

..
..
.
.

. .

.

...
. .

. .

.....
. .

.

....
. .

.
.

...
..

. .
.

....
. .

.
.

...
..

. . .

...
.. . . .

..... . . .

..... . . .

..... . . .

.....
. . .

....
. . .

.

....
. .

. .

.....

..... . . .

..... . . .

....
. . . .

...
.. . .

....
. . . .

..... . . .

.

.

.

..

.
.

.

..
.

0 2×104 4×104 6×104

0

2

4

6

number of sites n

heap vs.
query time

Figure 9: Ratio of Mh log2 Mh to query distance
evaluations

d
ishn

d
ishn

d

i
shn

d

i
s
hn d

i
sh
n

d

i

s
h
n d

i

s
h

n

d

i

s
h
n

8 10 12 14

30

40

50

60

70

log2 n

query
distance
evals

Figure 10: Query distance evaluations, d = 2,
uniform, different search methods

2 2 2 2 2 2 2 24 4 4 4 4 4 4 4
8

8
8

8 8
8

8 8

16
16

16
16

16
16

16
16

24
24

24
24

24
24

24
24

32
32

32
32

32
32

32
32

8 10 12 14
4

6

8

10

12

14

log2 n

log query
distance
evals

Figure 11: Query distance evaluations, uniform

reduces but does not eliminate the use of the
heap; and “n”, for a recursive method that does
not use a heap. The main observation here is
that the “i” method is uniformly worst, and “d”
is uniformly best. This seems to hold for other
problem instances, as well.

The logarithmic dependence of the query time
on the number of sites is apparent here also.

Figure 11 shows search times for uniform Eu-
clidean data, in different dimensions, and Fig-
ure 12 shows the speedup (number of sites di-
vided by distance evaluations) for the various
non-synthetic datasets tested. For the latter,
note that although the speedups are generally
modest, there is always at least some speedup
in distance evaluations, even a quite substantial
one in some cases.

Approximation. Figures 13 through 16
show results are given for variation of the pa-
rameter α. Note that even with α = 0.1, where
the speedup over exact queries is considerable,
the number of exact (truly nearest) answers is
between twenty to forty percent, and even when
not exact, the error ratio is typically fifteen to
twenty-five percent.

2.2.4 Other Euclidean distributions

In Figure 17 are shown the query times for a
variety of probability distributions, for d = 16.

8

s

s

s

o

o

o
h

h

ht

t

0 2×104 4×104 6×104

0

10

20

30

number of points n

speedup
over
brute force

Figure 12: Query speedup over brute force, non-
synthetic data

0.10.51.0 0.10.51.0
0.10.5
1.0

0.10.5

1.0

0.1
0.5

1.0

0.1
0.5

1.0

0.1

0.5

1.0

0.1

0.5

1.0

8 10 12 14

0

2000

4000

6000

8000

log2 n

query
distance
evals

Figure 13: Query distance evalutions, vs. ap-
proximation parameter α

.

.
.

.

. .

.

. .

.

. .

.

. .

.

.
.

.

.
.

.

. .

0.2 0.4 0.6 0.8 1

20

40

60

80

100

parameter α

percent
exact

Figure 14: Proportion of queries with no error,
vs. α

.

. .

.

. .

.

. .

.

. .

.

. .

.

. .

.

. .

.

. .

0.2 0.4 0.6 0.8 1

0
5

10
15
20

parameter α

percent
error

Figure 15: Error ratio (for queries with non-zero
error), vs. α

.

. .

.

. .

.

. .

.

. .

.

. .

.

. .

.

. .

.

. .

0.2 0.4 0.6 0.8 1

0
5

10
15
20
25

parameter α

rank

Figure 16: Rank (in distance) vs. α

9

u

u

u

u
u

u

u

u

l

l

l

l

l

l

l

l

g

g

g

g

g

g

g

g

G

G

G

G

G

G

G

G

L

L

L

L
L

L
L

L

c

c

c

c

c

c

c

c

8 10 12 14

5

6

7

8

9

10

11

log2 n

log of query
distance
evals

Figure 17: Query times, d = 16, various distri-
butions

Here the labels are:

• ’c’ for clustered Gaussian data

• ’l’ for Laplacian data

• ’L’ for correlated Laplacian data

• ’g’ for Gaussian data

• ’G’ for correlated Gaussian data

3 Concluding remarks

We’ve described a data structure for nearest
neighbor searching, and showed useful or at least
interesting behavior for it in a variety of settings.

References

[AM] S. Arya and D. Mount. Ann:
Library for approximate

nearest neighbor searching.
http://www.cs.umd.edu/~mount/ANN.

[Bri95] M. Brin. Near neighbor search
in large metric spaces. In Proc.
21st Int. Conf. on Very Large Data
Bases, 1995.

[Cla97] K. L. Clarkson. Nearest neighbor
queries in metric spaces. In Proc.
29th Symp. Theory Comp.., 1997.

[CNBYM01] Edgar Chavez, Gonzalo Navarro,
Ricardo A. Baeza-Yates, and
Jose L. Marroquin. Searching in
metric spaces. ACM Computing
Surveys, 33(3):273–321, 2001.

[Flo64] R. Floyd. Algorithm 245:
Treesort3. Comm. ACM, 7:701,
1964.

[FS82] C.D. Feustel and L. G. Shapiro.
The nearest neighbor problem in
an abstract metric space. Pattern
Recognition Letters, 12 1982.

[Gon85] T. Gonzalez. Clustering to min-
imize the maximum inter-cluster
distance. Theoretical Computer
Science, 38:293–306, 1985.

[KR02] D. Karger and M. Ruhl. Find-
ing nearest neighbors in growth-
restricted metrics. In Proc. of the
34th Annual ACM Symp. on The-
ory of Comp, pages 741–750, 2002.

[Uhl91] Uhlmann. Satisfying general prox-
imity/similarity queries with met-
ric trees. Inform. Proc. Letters, 40,
1991.

[Yia93] P. N. Yianilos. Data structures
and algorithms for nearest neigh-
bor search in general metric spaces.
In Proc. 4th ACM-SIAM Sympos.
Discrete Algorithms, pages 311–
321, 1993.

10

